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Abstract. The aim of this paper is to study (from a numerical point of
view) the behavior of orbits of the forced pendulum. We resort mainly
to the numerical method by the author, which allows to distinguish effi-
ciently the numerical approximation of a rational rotation number from
that one of an irrational rotation number, so we can characterize respec-
tively the periodic and non-periodic behavior of the orbits. Moreover we
study numerically the appearance of chaotic behavior depending on the
forcing parameter and we show how the numerical results provide useful
and reliable information about such an event.

1 Introduction to the problem

We consider the motion of a forced pendulum that moves on a vertical plane; in
absence of friction, the displacement angle ¥ from the vertical rest position of
the pendulum satisfies the following second order differential equation:
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where g is the gravitational constant and [ is the length of the pendulum; without
loss of generality now we assume g = [; moreover we assume «a(t) = 1 + ¢ cost,
where ¢ is the forcing parameter and is supposed to be very small (i.e. € << 1).
Introducing the variables

v

zi(t) =9(1),  @(t) = — (2)
equation (1) becomes
dz
i ®
% = —(1+ecost)sinzy (4)

At first we assume ¢ = 0.
We are interested in the orbits of the pendulum away from the equilibrium
point (nm, 0),where n is any integer point. As x1 is 2r—periodic, we will consider
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the vertical strip of the plane with 0 < zy < 2/pi. Moreover for the same
reason, it suffices to take initial data on the xo-axis, say x9. Therefore we need
to determine the shapes of the curves of the form
1 2 L 02

5 (@2)" + (1~ cosz1) = 5(23) (5)
where 29 is the initial data on the zp-axis.

For any x9, the curve defined by equation (5) is symmetric with respect to
x1-axis; so we consider only the curves

Zo = \/(:138)2 —2(1 — coszq). (6)

If the following inequality

(29)% > 2(1 — coszy), (7)

is satisfied, that is if the values of 2§ are such that (23)? > 4, then the range
of 21 is unrestricted and the curve defined by equation (6) is 2r-periodic graph
over the zi-axis. There are no equilibria on these curves and they correspond
to the orbits of the motions of the pendulum with initial velocity so large that
the pendulum revolves around and around without end.

As the behavior of this kind of orbits is well known for ¢ = 0, here our
purpose is to study the behavior of these orbits when the pendulum is forced,
that is in the case £ # 0, by means of numerical methods.

2 The rotation number for the forced pendulum

For our purpose we resort to the rotation number p, which is well-known to have
strong implications for dynamical systems (e.g. [5]). Its relevance for the study of
the considered orbits of the forced pendulum can be summed up in the following
way:

— If a unique p exists and is rational, then the related orbit is periodic.

— If a unique p exists and is irrational, then exists an invariant set of rotation
number p.

— If a unique p does not exist, then the forced pendulum exhibits topological
chaos, i.e. positive topological entropy [1]; for more details see [6].

We remark that the last statement holds at least for circle maps [5]; however the
considered orbit of the forced pendulum is topologically equivalent to a circle
map, as it will be enlightened in the next Section.

Definition 1. (Poincaré-1885) For a monotone map g : R — IR with g(6+1) =
9(0) +1,

p = lim (g"(0) - 0)/n (8)
exists for all 8 € R and is independent of 8 and is called rotation number of
g.
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At first we consider € = 0 in (3),(4), that is we deal with a simple pendulum.

As pointed out in the previous Section, z is the displacement angle of the
pendulum which, in absence of friction, is a monotone (increasing) function of
the time. When we numerically integrate (3), (4) with step size h = 1, with
any initial conditions, say 21(0), z2(0), we obtain the solutions z1(n),z2(n),
n = 1,2,3,4,... In the following we will assume z,(0) = 0 without loss of
generality. For physical reasons, two solutions with the same xzo that differ in
x1 by 2w, have to be considered the same (actually equations (3),(4) remain the
same under the change of variables (z1,22) — (21 + 27, z2) ); therefore if we
normalize the period to 1 considering f™(0) = z1(n) / 2x ,n = 1,2,3...., it can be
viewed as the n — th iteration of a monotone map with § = z1(0) = 0 satisfying
Definition 1. Therefore when the pendulum is simple the rotation number always
exists and is unique.

What happens when ¢ # 07 It is known that for the forced pendulum the
limit providing the rotation number does not always exist; therefore two main
questions arise:

1. when does the rotation number exist for the forced pendulum with a given
parameter 7

2. if the rotation number exists for the forced pendulum with given initial
conditions and a given parameter ¢, is it the same as for the simple pendulum
with the same initial conditions? does it remains rational or irrational?

Here we answer at once the first question, whereas we will deal with the
second question in Section 4, where numerical examples will provide numerical
evidence about the answer.

If we choose as initial conditions 21 (0) = 0,22(0) = 23 > 2 and 0 < e << 1,
as already pointed out, the numerical integration of (3), (4) allows to compute
the rotation number p if and only if the following finite limit exists

L )

Obviously the used integration stepsize is much less than 1.
We remark that we always have p £ 0 and positive
Then we can derive a Numerical Convergence Condition.

Condition.If numerically integrating equations (3),(4) with given initial con-
ditions and given parameter £, we always obtain non-decreasing values for the
displacement angle x1(n)/2rw for increasing n until n is ”large enough”, then a
unique rotation number p does ezist.

Proof. At first, we remark that the sequence %ﬁﬁ % has a finite limit p, when

z1(n)

o has a linear increas-

n — oo, if and only if the non-decreasing sequence
ing asymptotic behavior, that is if T’lz—(:) — pn when n — oco. Actually, if the

sequence %ﬂ,ﬁ is bounded, then the sequence %ﬁﬂl % converges to 0, and this
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z1(n)
2T 7

for any considered n, the convergence of %ﬂﬂl % to a finite (nonnull) limit can
be achieved.

Moreover, we remark that from the numerical point of view, we have to know
the accuracy of the results obtained by means of the used numerical integration
algorithm, say 7; therefore if % — “2—(:) > n for any n, then the rotation
number does exists.

means that the rotation number does not exist. Therefore, if % >

In other words we can state that:

If numerically integrating equations (3),(4) with given initial conditions and
given parameter €, we always obtain non-decreasing values for the displacement,
angle z1(n)/2n for increasing n until n is ”large enough”, then topological chaos
does not appear in the orbits of the considered forced pendulum.

Obviously we cannot carry out the numerical integration until n is as large as
we want, but only until n is “large enough” and we remind that the determination
of when n is “large enough” is a questionable point (see Section 4).

3 Numerical computation of the rotation number

From a numerical point of view, it is clear that the main problems are:

— numerical integration of equations (3),(4) over a long time interval,
— numerical estimation of the limit (9), under the condition that it exists,

Let us treat the problems separately.

From the previous Section, it is clear that the numerical method used to
integrate (3),(4) is definitively relevant. As here we deal with numerical integra-
tion of a perturbed Hamiltonian system over a long time interval (i.e. n >> 1),
we choose a symplectic method such as the implicit midpoint method, which
is second order, symmetric, and A-stable. This choice allows the numerical dis-
cretization to retain the property of symplectic map provided by the considered
Hamiltonian system. Indeed the failure of well-known methods in mimicking
Hamiltonian dynamics is due to the fact that they do not preserve symplectic-
ity. In practice the midpoint solution is guaranteed to lie on the same orbit as the
exact solution, whereas for example classical fourth order Runge-Kutta method
does not; this fact is absolutely important for our kind of numerical problem, as
we will see in the following. However here we will not give more details about
symplectic methods (see e.g. [11], [4]).

In order to provide a numerical estimation of the limit (9), that is to numeri-
cally compute the rotation number, we resorted to some different methods, each
of whom uses a different approach to the numerical problem.

1 - Method M1

Under the condition that the limit (9) exists, the ratio wle(Z) tends to be a con-
stant, when(n) is large enough. Therefore Method MI computes the numerical

z1(n

sequence ——, which provides a numerical approximation of the rotation num-

ber when %%l tends to remain constant for increasing n. As already pointed out,
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we cannot know a priori when n is large enough; in practice we make sure that,

if for example = 0.5- 1073, for small values of i we have %(Z—ﬁ% - %%l <

this means that all the subsequent values coincide with %%2 at least in three
decimal digits which are consequently considered three correct digits in the exact
value of the limit p
2 - Method Mg

When n is large enough (with the same caution as above), we have w;_(:) >~ pn.
Therefore for a fixed large N, Method Mg computes the linear least square
approximation of z1(n) /27, 0 < n < N; from the angular coefficient of the best
fitting line we obtain an approximation of the rotation number.

3 - Method Mp ([7], [8])

It exploits the order by which the iterates of a diffeomorphism of the circle
are generated and is based on two theorems which can be summed up in the
following

Theorem 1. Let f be a circle map with rotation number p; for each integer
n >0, we call X1 = {f(Xo)},.... Xn = {f(Xn_1)} = {f"(X0)} the fractional
parts of the first n iterates of Xo. Then for each N > 0, the geometric order of
the set of X; = {f"(Xo)},1 < i < N, allows to define four integers A, a, B, b
which are consecutive terms of the Farey sequence (therefore |Ab—aB| = 1)
and provide the value of the rotation number p by means of one of the following
eTPressions

a) if p is irrational then Aja < p < B/b;

b) if p is rational (unreducible), say p = p/q and N < gq, then Aja < p < B/b;

¢c) if p is rational (unreducible), say p = p/q, and N > q, then either A/a =
p<BJ/borAla<p=B/b
In all the cases A =|AJa — B/b| is such that 1/N? < A < 1/N.

In order to use this theorem, we need to clarify two points.

Remark 1. Equations (3) and (4) remain the same under the change of variable
x1(t) = z1(t + 2m); in such a way the orbit takes place on the circle R/ 2nxZZ,
where the diffeomorphism of the circle z1(¢) is defined.

Remark 2. The rotation number depends on the geometric order only; therefore
it does not depend on the circle IR, / kZZ, where k is any real number. Actually
the points of the orbits along circles with different &, can be obtained the ones
from the others by means of a simple homotety.

Because of these two remarks, the previous Theorem which applies to maps
of the circle of length 1, can be applied to maps of the circle of any length. For
more details [8], [9], [10].

Actually the numerical approximation p. of an irrational rotation number p
is computed by the following expression:

_A+B
Pe = at+b

(10)
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Provided that methods Ml and Mp work only if the rotation number p exists,
it is easy to state the following Numerical Comparison Criterion.

Criterion. A unique rotation number exists if and only if all the three men-
tioned methods provide as a result the same numerical value within the used
Precision.

It is clear that all the presented methods are affected by the same integration
errors due to (3), (4). Actually even though the used implicit midpoint method
provides solutions lying on the exact orbit, it is not very accurate for N large
because of the accumulation of truncation errors. Therefore a major problem is
the numerical error estimation A of the difference between the exact value of
the rotation number p and its numerical approximation p.. Method Mg can be

considered the most reliable as it goes through a least square linear approxima-
z1(n)

tion of the behavior of using linear polynomial p(n) = s-n+gq, where ¢ =0
(as the polynomial goes through the origin); the computed value of parameter
s provides p.. The advantage of this method is that it can be considered as a
filter of the numerical integration errors. Moreover, as well-known, we can use

the quantity F = \/% S [%ﬁﬂl — p(n)]? as an estimation of the accuracy of

the method; indeed when E = 0, it means that all th %ﬂﬂl lie on the line p(n),
for all the considered n.

Method MI provides an error estimation only in the sense seen before. In
practice if we assume for example 7 = 0.5- 1073, and we have that there exists a

N such that for all N > N, we have %(x—ﬂ% — %%2 < 0.5-1073, then all the

subsequent values coincide with ) ot least in the first three decimal digits.

This allows us to state that these (irigits are even the first three correct digits in
p-

A major drawback of methods Mg and M1 is that they do not allow to detect
whether the rotation number is rational or irrational, whereas another drawback
is that their rate of convergence cannot be known a priori, even though from a
theoretical point of view, it is known to be less than linear.

On the contrary method Mp can distinguish between rational and irrational
rotation number and in the case of rational rotation number its error is equal to
0.

Method Mp provides an accurate error estimation. The method is based
on a normalized continued fraction expansion of the rotation number. In litera-
ture other methods based on continued fraction expansions were presented (see
[2] and [5]); however the rate of convergence can vary significantly when differ-
ent continued fraction approximations are used. For example when the rotation
number is a Liouville number, the convergence of method in [5] is so slow that
it becomes questionable from a numerical point of view to achieve 7 significant
digits, whereas method Mp converges very fast. From a theoretical point of view
we can guarantee that method Mp approximates any irrational rotation number



522 R.Pavani

with an accuracy between 1/N and 1/N2, but experimentally we found that the
rate of convergence is usually very close to be quadratic.

We remark that the only drawback of method Mp is that when the four
integers A, a, B,b fail to be consecutive terms of the Farey sequence, due to
machine accuracy, then the method is not reliable any longer; however as this
event can be detected very easily (it happens when Ab— aB # +1), the method
can be controlled, improving for example the numerical integration accuracy.

4 Numerical examples

Here we present some numerical examples, which are significant but far to be
exhaustive.

In the following Tables we report the values of p. (rounded to 3 digits) for
z1(0) = 0, N = 200; the used integration step for the implicit midpoint rule

was h = 0.005; Ay, indicates the value of % — 35217(12)‘ when k& = 195 and

we experimentally checked that for all £,196 < k < 199, such differences were
< Apy; therefore Ay can be considered an error estimation for method MI;
Aprp refers to the actual error estimation by method Mp, therefore %(% — %),
Aprg reports the computed value of E, given above.

We emphasize that when the rotation number exists and is irrational, all
the methods provide the same rounded value, as it is expected from Numerical
Comparison Criterion. However only method Mp provides the rational rotation
number (see Table 1), even though in this case we need to use N > 209.

Crosses indicate when the rotation number does not exist.

Now we can empirically answer the question 2 in Section 2: if the rotation
number exists for the forced pendulum with given initial conditions and given
g, is it the same as for the simple pendulum with the same initial conditions?

From Table 3, we see that for given initial conditions, when ¢ increases signif-
icantly, the rotation number changes slightly, but clearly, therefore for £ > 1073
the numerical evidence provides a negative answer to the above question.

Table 1. e =0

X2 (O) M1 A]Ml 1\Ig A}\,[g l\/Ip AMp
2.005 .124 4E-4 124 1E-1 124 3E-5
2.2 237 2E-4 237 5E-2 237 8E-5
2.4 290 4E-5 .290 3E-2 .290 8E-5
2.6 335 3E-4 335 2E-2 70/209 O
2.8 376 2E-4 376 2E-2  .376 2E-5
3.0 414 2E-4 414 2E-2 414 3E-5
3.2 452 7TE-5 452 1E-2 452 8E-5
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Table 2. e = 0.1

i) (0) M1 A]Ml I\/Ig A}\,[g I\Ip A}\,[p
2.005 - - -2E-4 3E-1 - -
2.2 - - -1E-2 3.1 - —
2.4 272 HE-4 272 4E-2 272 3E-A4
2.6 320 4E-4 320 1E-1 320 7E-4
2.8 366 3E-4  .366 2E-2  .366 3E-4
3.0 406 3E-4 406 2E-2 406 n.c.
3.2 445 2E-4 445 1E-4 445 3E-4

Table 3. ¢ = 0.1

z2(0)\e O 0.001 0.005 0.01 0.05 0.1 0.5
2.005 124 124 X X X X X
2.2 237 237 235 .234 217 X X
2.4 .290 .290 289 289 282 272 X
2.6 70/209 .335 334 334 329 320 X
2.8 376 376 375 375 371 366 318
3.0 414 414 414 414 410 .406 .365
3.2 .452 452 452 451 448 445 412

From Table 2 it is clear when we say that the rotation number does not exist;
here “n.c.” means that the error is not computable because method Mp fails to
find four integers belonging to Farey sequence.

There is a numerical evidence that for each value of z2(0) there exists a
value of €* such that for € > ¢* the rotation number does not exist. The value
of €* does not increase linearly with 22(0). Moreover we can see that for any
fixed value of 22(0) and for increasing values of £ from 0, the rotation number
is always not increasing.

We emphasize that the existence of the rotation number is not affected by
the “graphical” behavior of the orbits, in the sense that the rotation number
exists even when orbits clearly split and do not overlap any longer. For example
Fig. 1 and 2 show the orbits in the phase space for z2(0) = 2.4 and ¢ = 0.005,
0.1, respectively (see Table 3); in spite of what appears in Fig. 2, in both cases
the rotation number exists and chaos does not happen; indeed as the rotation
number depends on the geometric order of the iterates of the map, it means
that a kind of geometric order is preserved, even though it is not immediately
detectable from the graphical representation, as in Fig.2. On the other hand,
Fig. 3 shows the orbits for z2(0) = 2.4 and ¢ = 0.5, that is the case when the
rotation number does not exist at all and chaos happens, as no geometric order
is preserved any longer. In Table 3 bold characters indicate rotation numbers
referring to these cases of splitted orbits, whose rotation number exists anyway.
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We point out that this new fact can be interesting to KAM theory and can
be detected here just because we have approximated numerically the rotation
numbers.

y2
o de
KN

5 Conclusion

In [3] the rotation number was already presented as a quantitative measure of
chaos, however the method given there to compute the rotation number did
not provide any numerical result. Here referring to the forced pendulum, we
numerically support their statement. Indeed we present a comparison among
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some different numerical methods and show how they can provide a reliable
estimation of the rotation number, when it exists. Moreover we emphasize that
the existence of the rotation number does not depend on the ”graphical” behavior
of the orbits, but on the geometric order of the iterates only. When the rotation
number does not exist, topological chaos appears; therefore the rotation number
can be used as a reliable quantitative index of chaos itself.
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