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Abstract. This paper describe an application of a neural network ap-
proach to SM (standard model) and MSSM (minimal supersymetry stan-
dard model) Higgs search in the associated production t̄tH with H → bb̄.
This decay channel is considered as a discovery channel for Higgs scenar-
ios for Higgs boson masses in the range 80 - 130 GeV. Neural network
model with a special type of data flow is used to separate t̄tjj back-
ground from H → bb̄ events. Used neural network combine together a
classical neural network approach and linear decision tree separation pro-
cess. Parameters of these neural networks are randomly generated and
population of predefined size of those networks is learned to get initial
generation for the following genetic algorithm optimization process. A
genetic algorithm principles are used to tune parameters of further neu-
ral network individuals derived from previous neural networks by GA
operations of crossover and mutation. The goal of this GA process is
optimization of the final neural network performance.
Our results show that NN approach is applicable to the problem of Higgs
boson detection. Neural network filters can be used to emphasize dif-
ference of Mbb distribution for events accepted by filter (with better

signal
background

rate) and Mbb distribution for original events (with original
signal

background
rate) under condition that there is no loss of significance. This

improvement of the shape of Mbb distribution can be used as a criterion
of existence of Higgs boson decay in considered discovery channel.

1 Introduction

This work is devoted to application of neural network to high energy physic.
There is a broad consensus in physics community that newly building Large
Hadron Collider (LHC) detector at CERN, Geneve, should be able to produce
showers of particles, whose will have capability to confirm presence of Higgs
boson. Using theoretical background of high energy physic there is possible to
postulate theoretical properties of some distributions of selected values whose
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describe properties of Higgs boson decay in the LHC. Using simulated output
from LHC based on simulation package PYTHIA, we have available two sets of
shower parameters, one set corresponding to case with Higgs boson decay (we
denote this as signal) and second one corresponding to case without Higgs boson
decay (we denote this as background). So we can see the problem of Higgs boson
search as a classical problem of pattern recognition with this exception that the
quality of separation is measured as difference between two distribution curves
corresponding to separated sets.

Neural nets are broadly used in pattern recognition problems and functions
approximation tools. There are many types of artificial neural networks whose
differ in architecture, in the type of implemented transfer functions and strategy
of learning. Regard to universal approximation property we declined to use a
special kind of neural nets, namely neural network with switching units [1],
[2], [3] to solve pattern recognition problem postulated above. To reach better
performance of these neural networks we tune topology and parameters of such
networks via genetic algorithm optimization.

2 Description of neural network with switching units

Neural network with switching is a combination of classical neural network ar-
chitecture and decision tree. This network is actually an oriented acyclic graph
(see Fig. 1) which node are structures called as building blocks. This acyclic
graph will be referenced as outer graph.
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Fig. 1. Schema of connection between
building blocks.

Each building block is a neural
network consisting from two types of
nodes. These nodes are connected to-
gether in such a way that they formed
an acyclic graph again but with the
restriction that outputs dimension of
building block is the same for all build-
ing blocks in outer graph. First type of
node, we refer this node as functional
units, makes predefined mapping from
input space corresponding to this node
to output space of this node. Hence
such node can be described by tu-
ple of integers, input vector dimen-
sion and output vector dimension, and
by transfer function. Definition of this
transfer function include parameters of
this functional unit (weight vectors,
threshold etc. in current neural net-

works terminology).
Functional units map corresponding inputs to outputs by internal transfer

function. This transfer function can differ for each functional unit. For example,
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Fig. 2. A topology of simplified building block.

let now we describe transfer function currently implemented. Let xi ∈ !n, i∈
{1, . . . , p} are input patterns into functional unit, corresponding desired outputs
let be denoted as yi ∈ !m, i ∈ {1, . . . , p} . Desired output of functional unit
can be generally different from desired output of the whole network, but for the
sake of explanation clarity we assume that desired output of each functional unit
is the same as desired output of the whole network. A simple case of transfer
function is linear mapping which minimize norm of the vector AW −Y , where
W ∈ !m×n is matrix of weight parameters, A ∈ !n×p is a matrix which rows
are vectors xi and Y ∈ !m×p is a matrix which rows are formed by vectors yi.

The second type of nodes, switching units, collect all outputs from parents
functional units, concatenate them together to form one vector, and search pre-
defined number of clusters in the set of such input vectors. We use the Jancey
cluster algorithm which is non-deterministic procedure described in the following
schema:

(let d be the number of desired clusters (which is equal to the number of
switching unit children), z is concatenation of output vectors of switching unit
parents.

1. for randomly chosen sequence 1 ≤ j1 < j2 < · · · < jd ≤ p set

cnewq = coldq = zjq and S̄new
q = S̄old

q = {zjq}, q∈{1, . . . , d}

2. let r1, · · · , rp is random permutation of the 1, · · · , p,
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3. FOR ALL k = r1, · · · , rp
DO

let q be such index that zk ∈ S̄old
q ,

i = min
{
v
∣∣∥∥coldv − zk

∥∥
E

= minq∈{1,...,h}
{∥∥coldh − zk

∥∥
E

}}
,

coldq = coldq − zk−coldq

|Soldq | , coldi = coldi +
zk−coldi

|Soldi |
S̄old
q = S̄old

q \ {zk}, S̄old
i = S̄old

i ∪ {zk},
END

4. IF (∃q)(S̄new
q '= S̄old

q )

THEN for all such q let cnewq = coldq , S̄new
q = S̄old

q and GOTO 2
5. STOP

After clustering each cluster is jointed with a corresponding child functional
unit and consequently parameters of this functional unit are adjusted with regard
patterns in the corresponding cluster only. In fact, division of input patterns into
two or more disjoint sets, and consecutive learning over these subsets of patterns,
put a separation hypersurface into the input space. The type of these hyper-
surfaces is defined by the type of transfer functions of switching unit parents.

So each building block is learned, output from each building block is propa-
gated to all children and output of the top building block is considered as final
output from the neural network.

3 Tuning of neural nets via GA procedure

Computational power of neural network depends in general on two aspects

1. structure and connection state (topology of the net)
2. learning method.

The second one is more or less question of amount of learning data and ’qual-
ity’ of learning method. Main goal of each learning method is optimization of
some fitness function which is defined on the set of all possible neural net pa-
rameters. We can insight this problem as global optimization of fitness function.
There are many gradient algorithm based methods whose provide a possibility to
find a local solution (minimum or maximum). But these methods does not allow
to find a global extreme point of fitness function due to non-continuous sub-
stance of some parameters (types of transfer function, number of inputs, graph
connections, etc.). We need to use some nongradient global optimization method
to do this. But many deterministic techniques of global optimization, like divide
and conquer, or analytic extreme, search aren’t the most efficient on problems
like acyclic graph construction and operations on it. It could be convenient to use
some more natural ways to do so. Therefore we decided use genetic algorithms
[7], [6] to set up parameters and topology of neural net. Theoretical analysis of
GA follows that no best solution is reached but an average fitness increases at all
in new generations. This is done due a special property of GA which is known as
’implicit parallelism’ (see [5]). Shortly implicit parallelism theorem imply that
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an exponentially large sets of parameter space are searched for domains with
above-average fitness in polynomial time.

About the implementation, a queue (FIFO) of randomly generated networks
is constructed (this queue has user predefined length). Then every network is
learned, tested and evaluated with fitness, at this moment implemented in fol-
lowing ways (denote Sa accepted signal, e.g. all signals correctly classified, Ba

accepted background, Sr rejected signal, e.g. all misclassified signal, Br rejected
background,):

1. maximal enrichment factor, e.g. max Sa
Sr

under condition that the amount of
accepted signal will be statistically significant

2. minimal loss of signal under condition on amount of rejected background,
e.g. maxSa and Br =predefined value

3. maximal rejection of signal under condition on amount of accepted signal,
e.g. maxBr and Sa =predefined value

4. maximization of quality factor, e.g.

max
Sa√

Sa +Ba

.

5. negative value of total mean square error over all events

The values of fitness of the network in queue builds actually the base for proba-
bility, according to which the parents of newborn network are chosen. After par-
ents are given, some analysis comes to figure out, how those can be crossovered.
Crossover itself is considered as an interchange of corresponding blocks (note
that blocks have the same number of inputs and the same number of outputs, so
they are replaceable), whose represent here the ’separated gen’. Since mutation
should be of tiny use and its effect weak at all, we have some operation (edge
removing, edge adding, activation function change, etc.) for disposal. The new
structures is grown, then learned, tested and evaluated. And so on, until some
criteria aren’t reached. As those conditions may serve given generation count,
acceptable level of specified fitness, etc.

3.1 Paralleling of neural net

The merit of our work lies in the application of GA procedures of crossover
and mutation to find better topology and parameters of neural networks. A
reasonable applicability of this approach assume to take a great population of
individuals (learned and tested neural networks) and many generation of such
populations. It is well known that learning of a neural net on large set of learning
data should be very time consuming, hence GA procedures over such individuals
should be time consuming naturally too. This leads us to such implementation
which should be able to run effectively on more processors. Primarily we in-
tend run our experiments on cluster of Linux PCs which is available in ISC
AC CR. Todays, we have at our disposal 20-node cluster of PCs (from 600MHz
one processor machines to 1GHz two processors machines) running Linux op-
erating system. This allows us to run our experiments on parallel mode under
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Portable Batch System environment, which is able to distribute separated tasks
to processors with regard to their load.

To improve overall performance we implemented parallel version of neural
net learning process also. First question about paralleling of our learning process
solves the problem of level of paralleling. In our case, because of incomparable
complicated optimization of transfer function with regard to other operations in
neuron learning process, we decided to use the paralleling at this point. Program
uses Parallel Virtual Machines library (PVM), so it could be executed, only
if PVM installed. The count of slaves (whose are machines on PC-cluster or
processors on multiprocessors system) is configured in PVM console. Significant
advantage of paralleling based on PVM is that this allow us to run our networks
effectively on wide range of architectures.

4 Application of neural network with switching units and
genetic algorithms to Higgs boson search

As we already mentioned objective of our work is a search of H → bb̄ decay.
Those data are produced during proton–proton collision with energy 14 TeV
(in centroid mass system). There is a certain probability that Higgs bosons are
produced in this collision (see Fig. 3, a)). In the case that mass of this Higgs
boson is m ≤ 200GeV/c2 a decay H → bb̄ is dominating. The main background
of process above is process without production of Higgs boson but with the same
final state (see Fig. 3, b)). Instead of Higgs boson in this case a gluon is radiated
and produce a bb̄ pair.
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Fig. 3. Feynman diagram of decay trees.

Thus product of this type of collision are 2 jets from one w decay, 4 b-jets and
one lepton (electron or muon) plus missing energy from unobserved neutrino.
Each visible particle (2 jets, 4 b-jets and lepton) is described by three values
PT – transversal momentum [GeV/c2], η – pseudorapidity and φ – direction
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angles [rad], corresponding to particle vectors with negligible mass. Neutrino
is described by two missing energy values Emiss

x , Emiss
y . Pseudorapidity is an

angular variable defined by

η = −l̃n
(

t̃an

(
θ

2

))

whose inverse function is

θ = 2^arctan
(
e−η

)
.

Cartesian coordinates of each such particle can be expressed as px = PT cosφ,
py = PT sinφ, pz = PT

tan θ . Using these values, we can evaluate values of energy
Ei for each jet

Ei =

√
(px)

2
i + (py)

2
i + (pz)

2
i .

Those values allow evaluate effective masses Mi,j

Mi,j =

√
(Ei +Ej)

2 −
(
(px)i + (px)j

)2

−
(
(py)i + (py)j

)2

−
(
(pz)i + (pz)j

)2

for all sensible tuples of particles.

Fundamental variable which can be used in Higgs boson search is a effective
mass Mbb of two b-’s which can arise either form Higgs boson decay or from gluon
decay after pp̄ collision. There is lot of events with gluon decay (background)
and much less events with Higgs decay (signal). Each of these two classes of
events have different statistics of effective mass Mbb. Statistics corresponding
to Higgs boson decay is theoretically of Gaussian distribution with mean 120
GeV/c2 and

√
σ = 15GeV/c2, whereas statistics corresponding to gluon decay is

much broader. Difference between those two statistics can be exploited to decide
if Higgs boson decay is present in the data or not.

In addition, other physical reasons reject all events in which at least one of
following conditions has been satisfied:

– at least one jets has PT < 15GeV ,

– at least one jet has pseudorapidity out of the range (−2.5, 2.5) ,

– lepton is electron and P lep
T < 20GeV

– lepton is muon and P lep
T < 6GeV

All events passed those restrictions form histogram on Fig. 4.
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M_bb for signal and background (slides-pictures/exact.results.test.dta.res)

signal 1250, mean=120.7, var=55.7 (smooth 0)
background 7017, mean=110.9, var=70.7 (smooth 0)
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Fig. 4. Histogram of Mbb̄ for signal and background (first number in the legend
is number of events accepted by rejecting algorithm, means is average value of
Mbb, var is mean square error and smooth is a smoothing factor used to plot the
histogram).

Data really measured do not provide information about presence of Higgs
decay in the event, hence for real data we have available total distribution of Mbb

(see Fig. 4, upper curve) only. For data simulated, we can plot two histograms
of Mbb, one for background only and the second one for plain signal (see Fig. 4,
two bellow curves).

Application of neural networks covers the case when we know distribution
of separated signal and separated background (e.g. below curves in the Fig. 4)
because neural networks should provide information if a given event is signal or
background (up to some misclassification, of course). So the main idea how to
exploit neural network to confirm Higgs decay presence is based on filtering of
events in such a way that percentage of signal will be increased after filtering
and at the same time significance Sa√

Sa+Ba
will stay on the same level.

5 Results and Conclusions

Some experiments were performed with signal and background data described
in section 4. We use raw data as they were produced by package PYTHIA. Our
first results are demonstrated on the plot 5.
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Fig. 5. Histogram of neural network output for signal and background.

It is evident that neural nets with switching units are able to partly separate
signal with Higgs decay and background without Higgs decay. As we can seen
on the plot mentioned, there is possible to choose an interval in which signal
prevail over background, in case presented such interval should be (0.45, 0.75)
. We call such interval ”best signal window”. On the other hand we can take
interval, in which the signal is suppressed and background will be of dominant
importance. In the case discussed now as this interval should serve (0.20, 0.45)
. We call such interval consistently ”best background window”.

If Higgs decay is present than we can assume that plot of Mbb over all event
whose are mapped by neural network into the best signal window will differs
from the next one, based on events mapped into the best background window.
Really, for our simulated data these plots differ, see figures 6 a) and 6 b). We
can see visual differences between these two plots. Of course these plots should
be different from the resemble plot on Fig. 4.

Hence our first experiments convinced us that chosen approach to separation
of Higgs decay seem to be applicable and promise useful detection methods.

Finally we point out that developed separation method based on neural
networks with switching units and genetic optimization is universal separation
method which can be used for various pattern recognition problem. Perhaps
someone can find this method too extensive, especially GA part, but no effec-
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(a) Signal window: Mbb for events
mapped into range 0.45-0.75.
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(b) Background window: Mbb for
events mapped into range 0.20-0.45.

Fig. 6. Signal and background windows.

tive method for neural net topology and parameter tunning is known to this
time. In the next, we plan to implement further transfer function for functional
nodes, paralleling of transfer function optimization via taking some parallel ver-
sion of optimization routine (parallel LAPACK, for example) and applicate this
separation tool to another pattern recognition problems.
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