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Abstract. Three different learning methods for RBF networks and their combi-
nations are presented. Standard gradient learning, three-step algoritm with un-
supervised part, and evolutionary algorithm are introduced. Their perfromance
is compared on two benchmark problems: Two spirals and Iris plants. The re-
sults show that three-step learning is usually the fastest, while gradient learning
achieves better precission. The combination of these two approaches gives best
results.

1 Introduction

By an RBF unit we mean a neuron with multiple real inputs #x = (x1, . . . , xn) and one
output y. Each unit is determined by an n-dimensional vector #c which is called center.
It can have an additional parameter b usually called width.

The output y is computed as:

y = ϕ(ξ); ξ =
‖ #x− #c ‖

b
(1)

where ϕ : R → R is a suitable activation function, typically Gaussian ϕ(z) = e−z
2

.
For evaluating ||#x−#c||

d , the Euclidean norm is usually used. In this paper we consider
a general weighted norm instead of the Euclidean norm. A weighted norm is determined
by a n× n matrix C and is defined as

‖ #x ‖2C= (C#x)T (C#x) = #xTCTC#x. (2)

It can be seen that the Euclidean norm is a special case of a weighted norm de-
termined by an identity matrix. In further text we will use the symbol Σ−1 instead of
CTC.

In order to use a weighted norm each RBF unit has another additional parameter
matrix C.

An RBF network is a standard 3-layer feedforward network with the first layer con-
sisting of n input units, a hidden layer consisting of h RBF units and an output layer of
m linear units. Thus, the network computes the following function #f : Rn → R

m :

fs(#x) =
h∑

j=1

wjsϕ

(‖ #x− #cj ‖Cj

bj

)
, (3)
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where wji ∈ R and fs is the output of the s-th RBF unit.
Denote T = {(#x(t), #d(t); t = 1, . . . , k} a training set — a set of examples of

network inputs #x(t) ∈ Rn and desired outputs #d(t) ∈ Rm . For every training example
we can compute the actual network output #f(#x(t)) and error ej(t) of each of the output
units:

ej(t) = dj(t)− fj(t).

The instantaneous error E(t) of the whole network is then:

E(t) =
1

2

p∑
j=1

e2
j(t). (4)

The goal of learning an RBF net is to minimize an error function

E =
k∑

t=1

E(t). (5)

1.1 Three step learning

The gradient learning described in previous section unifies all parameters by treating
them in the same way. Now we introduce a learning method taking advantage of the
well defined meaning of RBF network parameters (cf. [1], [2]).

There are three categories of RBF network parameters, so we can divide the learning
into three consequent steps and customize the method of each step for the appropriate
parameter.

The first step consists of determining the hidden unit centers. The positions of cen-
ters should reflect the density of data points and thus various clustering or vector quan-
tization techniques can be used. Using a genetic algorithm during the first step will be
discussed in 1.2.

The second phase sets the additional hidden unit parameters if there are any. There
can be a parameter called width or a weighted norm matrix. These parameters determine
the size and the shape of the area controlled by the unit. Suitable parameter values can
be found by gradient minimization of function

E(b1, · · · , bh;Σ−1
1 , · · · ,Σ−1

h ) = 1
2

∑h
r=1

[∑h
s=1 ϕ (ξsr) ξ

2
sr − P

]2
(6)

ξsr =
‖ cs − cr ‖Cr

br

where P is the overlap parameter controlling the overlap between areas of impor-
tance belonging to particular units.

In case of units with widths we can get around the minimization using simple heuris-
tics. The often used one called the q-neighbours rule simply set the width proportionally
to the average distance of q nearest neighbouring units.

The third step is a usual supervised learning known from multilayer perceptron
networks reduced to a linear regression task. The only parameters to be set are the
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weights between the hidden and the output layer which represent the coefficients of
linear combinations of RBF units outputs. Our goal is to minimize the overall error
function:

E =
1

2

k∑
t=1

m∑
s=1

(d(t)
s − f (t)

s )2 . (7)

It can be achieved using gradient minimization or assuming the partial derivative
∂E
∂wij

equal to zero and finding the solution in terms of linear optimalization using any
of various linear least squares methods.

k∑
t=1

(d(t)
r yq(#x

(t)))−
h∑

j=1

wjr

k∑
t=1

(
yj(#x

(t))yq(#x
(t))
)

= 0 , (8)

where q = 1, . . . , h and r = 1, . . . ,m.
It is true, however, that the success of this learning step depends on the previous

steps.

1.2 Evolutionary learning

The third learning method is based on using a genetic algorithm. It is a stochastic op-
timization method inspired by evolution, using principals as selection, crossover and
mutation.

A genetic algorithm works with a population of individuals. An individual (see
fig. 5) represents some feasible values for all parameters of an RBF net being learned.
Each individual is associated with the value of the error function of a corresponding
network.

Starting with a population of random individuals new populations are produced us-
ing operators of selection, mutation and crossover. The selection guarantees that the
possibility of being chosen to the new population is the higher the smaller is the error
function of the corresponding network. The crossover compose a pair of new individu-
als combining parts of two old individuals. The mutation brings some random changes
into the population. We iterate until population contains an individual with an error
small enough.

Genetic algorithm can be combined with previous methods. Specifically, the deter-
mination of centers in the three-step method can be done by means of genetic algorithm.
Than an individual codes only values of centers and its error is computed as

Evq =
1

k

k∑
t=1

‖ #xt − #cc
2 ‖, c = argmini=1,..h{‖ #xt − #ci ‖}, (9)

where #xt is training sample a #ci is the center of ith unit.
We implemented also canonical version of genetic learning described in [3].
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2 Experiments

In the following sections results from our experiments will be presented. The first is
a classification task, called Two Spirals. We will demonstrate an advantage of using a
weighted norms. The second task, also a clasification – the known Iris Plants, compare
all three methods described in previous sections and shows the advantage of combining
two of them, specifically the three step method and the gradient learning.

All experiments were run on the Linux cluster. Each computation was run on an
individual node with a Celeron 533 MHz processor and 384 MB memory.

2.1 Two spirals

The task of the first experiment, Two Spirals, is to discriminate between two sets of
training points which lie on two distinct spirals in the 2D plane. The training set con-
tains 372 training samples, each 2 input values (2D coordinates) and 1 output value
(classification – either value 0.0 or value 1.0).

Considering the character of the training data we expect that a rather high number
of RBF units will be needed. We used a network with 150 RBF units and both the
Euclidean norm and a weighted norm. This network was trained using the gradient
learning and the three step learning. The genetic algorithm isn’t suitable because of the
higher number of RBF units.

Gradient learning Knowing that a result of the gradient learning is dependent on the
initial setup of parameters, the gradient learning was run five times using the Euclidean
norm and five times using weighted norms and we consider the average, the worst and
the best computation.

All computations were stopped after 5 000 iterations, the average time of 100 it-
eration was 361 seconds for an RBF net with weighted norms and 115 seconds for an
RBF net with the Euclidean norms. In Figure 1 you can see the fall of the error function
for the average computation using the Euclidean norm and for the average computation
using weighted norms. The average error after 5000 iterations was 0.0167 for Euclidean
norm, and 0.0088 for the weighted norm. Table 1 compares the time and the number
of iterations needed for the fall of the error function under a given ε with an RBF net
using the Euclidean norm and an RBF net using a weighted norm.

However a computation using weighted norms is slower than using the Euclidean
norms, fewer iterations are needed to reach a given error and in the end a better solution
is obtained.

Three step learning The three step learning was the second method applied on Two
Spirals. Since the training samples are distributed on two spirals, we used several vector
quantization methods to distribute the centers of RBF units. The Lloyd algorithm and
the k-means clustering are known vector quantization methods. The genetic algorithm
is our application of a common genetic algorithm to vector quantization.
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The resulting value of the error function is comparable for all methods (see Table 2),
but in case of the genetic algorithm there is the least number of unused units. However,
the genetic algorithm has much higher time requirements.

The second step was realized by a gradient minimization of the error function (see
section 1.1), 200 iterations (17 seconds for Euclidean norms, 90 seconds for weighted
norms) were needed. For the determination of weights a linear least squares method
was used (16 seconds for Euclidean norms, 90 seconds for weighted norms). The errors
of the RBF nets learned by the three step learning are 1.101 for Euclidean norm, and
0.051 for the weighted norm.

We used two different methods to learn the Two Spirals problem. In both of them
we saw the difference between the RBF net using Euclidean norms and the RBF net
using weighted norms. In both of them the RBF net using weighted norm has a smaller
error. We can interpret a use of a weighted norm as a transformation of a radial field of
an RBF unit to an oval one. Then covering an input space by ovals is easier than using
circles.

2.2 Iris

In the second experiment we used a well-known data set Iris Plants. It contains 3 classes
of 50 instances each, where each class refers to a type of an iris plant. One class is
linearly separable form the others, the other are not linearly separable from each other.

We used a net with three output neurons, one neuron for each class. The class num-
ber is then coded by three binary values, value 1 on the position corresponding with the
number of class and zeros on the others. So each training sample consists of 4 input
values describing some features of a plant and 3 output values coding its class.

We split The Iris Plants data set into two parts. The first containing 120 instances
(40 per class) is used as a training set, the second containing other 30 instances (chosen
randomly) is used for testing.

We applied all three methods (the gradient learning,the three step method and the
genetic learning) on an RBF net with 3, 6 and 9 hidden units, all with weighted norms.

Gradient learning The gradient algorithm was run five times and the average, the
minimum and the maximum computation was picked up. Figure 3 compares the fall of
the average gradient algorithm error function. The number of iterations needed to reach
a given error is shown in Table 3. Table 4 shows the error of the learned RBF net on the
training set and the testing set with the number of misclassified samples.

Three step learning The three step learning consisted of a vector quantization using
both the Lloyd algorithm and the genetic algorithm, the gradient minimization in the
second step and the linear least squares.

Figures 3 and 4 show the fall of the vector quantization error function for the Lloyd
algorithm and the genetic learning. 100 iterations of the genetic algorithm needs 3 sec-
onds, 1000 iterations of the Lloyd algorithm need 2 seconds. Table 5 you see the result-
ing error (the average, the minimum, the maximum of five computations). 10 iterations
of the Lloyd algorithm or 2000 iterations of the genetic algorithm were needed. The
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genetic algorithm is better than the Lloyd algorithm, which is highly dependent on
its random initialization. However, the time requirements of the genetic algorithm are
much higher.

In the second step a gradient minimization was used (1000 iterations, 1s) and in the
third step the linear least squares (1s). In Table 6 you see the resulting errors and the
numbers of misclassified samples.

Because of the resulting error of the three step learning is much worse than the
one of the gradient learning, we decided to add a fourth step. Specifically we used the
RBF net learned by the three step learning as the initialization for the gradient learning.
Then the fourth step consists of some iterations of gradient learning, we practiced 5 000
iterations. The fall of the error function is shown on Figure 4, the number of iterations
and the time needed to reach the given error is in Table 7. The review of the resulting
errors is in Table 8.

Although the results of the three step learning were not the best, its time require-
ments are very low and so it can be used successfully as initialization of the gradient
learning.

Genetic learning We ran the genetic algorithm five times and consider the average, the
minimum and the maximum computation. All computations worked with a population
of 50 individuals, an elite of 2 individuals and the mutation rate 0.2, the crossover rate
0.7. The average time of 100 iterations was 32.8 s using 3 units, 114 s using 6 units
and 149 s using 9 units. In Figure 5 see the fall of the error function, Table 9 shows
the number of iterations and time needed to reach a given error. The review of resulting
errors is in Table 10.

The genetic algorithm is a little bit worse than previous methods. Its great disadvan-
tage are its time requirements.

All three methods described in section 1 were demonstrated on the Iris Plants task.
The genetic learning ended with a higher error and the highest time requirements. The
gradient learning converged to the lowest error. The three step method has the very low-
est time requirements. We showed that the best way is to apply the three step learning
followed by the gradient learning.
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1. K. Hlaváčková and R. Neruda. Radial basis function networks. Neural Network World,
3(1):93–101, 1993.

2. J. Moody and C. Darken. Learning with localized receptive fields. In D. Touretzky, G. Hinton,
and T. Sejnowski, editors, Proceedings of the 1988 Connectionist Models Summer School, San
Mateo, CA, 1989. Morgan Kaufmann.

3. R. Neruda. Functional Equivalenece and Gentic Learning of RBF Networks. PhD thesis,
Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech
Republic, 1998.
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Fig. 1. Two spirals: a) Te gradient learning error function. b) The network output partitioning the
intput space.

Euclidean norm Weighted norm
ε iterations time iterations time

10 1011 19 min 23 s 353 21 min 17 s
1 1192 22 min 51 s 441 26 min 35 s

0.5 1272 24 min 24 s 470 28 min 20 s
0.1 1929 37 min 0 s 689 41 min 32 s

0.01 – – 3829 3 hour 50 min 49 s

Table 1. Two spirals: The average number of iterations and time to reach a given ε.

Table 2. Two spirals: Vector quantization, 1st step.

error number of passes through the trainset time
Lloyd alg. 0.1296 8 1 s

K-means clustering 0.1066 50 9 s
K-means cl. with local memory 0.0940 200 1 min 6 s

Genetic algorithm 0.1183 50 × 2 500 4hours 31 min

3 units 6 units 9 units
ε iterations time iterations time iterations time

100 1 < 1s 1 < 1s 1 < 1s
50 5 1s 2 1s 176 38s
10 1832 1 min 49s 141 14s 427 1 min 33s
5 1833 1 min 49s 695 1 min 9s 445 1 min 37s
3 — — — — 1380 5 min 3s

Table 3. Iris: Average number of iterations and time to reach a given ε.

Error on trainset Error on test set
average minimum maximum average minimum maximum

3 units 0.029 (0) 0.026 (0) 0.034 (1) 0.092 (2) 0.089 (2) 0.099 (2)
6 units 0.037 (0) 0.017 (0) 0.065 (4) 0.100 (2) 0.087 (2) 0.123 (2)
9 units 0.020 (0) 0.010 (0) 0.025 (0) 0.106 (2) 0.090 (2) 0.123 (2)

Table 4. Iris: The error divided by the number of samples and the number of misclassified sam-
ples.
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Fig. 2. Lloyd algorithm. K-means clustering. K-means clustering with local memory. Genetic
algortihm.
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Fig. 3. Iris: a) The gradient learning error function using an RBF net with 3, 6 and 9 units. b) The
VQ learning error function – 1st step (3, 6 and 9 units)
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3 units 6 units 9 units
average min max average min max average min max

Lloyd alg. 0.748 0.497 1.000 0.460 0.355 0.498 0.416 0.340 0.497
Genetic alg. 0.650 0.499 0.977 0.449 0.326 0.666 0.343 0.243 0.425

Table 5. Iris: The error of 1st step using the Lloyd algorithm and the Genetic algorithm

Error on trainset Error on testset
3 units 0.14 (13) 0.20 (6)
6 units 0.14 (18) 0.18 (6)
9 units 0.12 (14) 0.17 (5)

Table 6. Iris: The three step learning error divided by the number of samples.

3 units 6 units 9 units
ε iterations time iterations time iterations time

10 2 < 1 61 6s 1 < 1
5 111 6s 201 20s 171 37s
1 – – 1687 2 min 48s 813 2 min 58s

0.5 – – – — 3537 12 min 58s

Table 7. Iris: The gradient learning (after the three steps) – the number of iterations needed to
reach a given ε

Error on trainset Error on trainset
3 units 0.0244 (0)) 0.092 (2)
6 units 0.0078 (0) 0.136 (2)
9 units 0.0018 (0) 0.109 (2)

Table 8. Iris: 4th step gradient learning error divided by number of samples
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Fig. 5. a) The genetic learning error function using an RBF net with 3, 6 and 9 units.b) An indi-
vidual representing an RBF net.

3 units 6 units 9 units
ε iterations time iterations time iterations time

100 5 1s 317 6 min 4s 963 24 min 4s
50 468 2 min 29s 5443 1hour 46 min 14s 7515 3hours 7 min 52s
40 2325 12 min 24s 7835 2hours 30 min 10s 15990 6hours 39 min 45s
30 8859 47 min 14s 15925 5hours 5 min 13s 39819 16hours 35 min 28s
20 — — 52753 16hours 51 min 5s — —

Table 9. The average number of iterations and time to reach a given ε.

Error on trainset Error on test set
average minimum maximum average minimum maximum

3 units 0.249 (11) 0.134 (5) 0.361 (17) 0.225 (3) 0.182 (1) 0.292 (6)
6 units 0.161 (6) 0.089 (0) 0.284 (8) 0.272 (3) 0.165 (2) 0.429 (5)
9 units 0.242 (10) 0.205 (6) 0.335 (16) 0.399 (4) 0.223 (1) 0.662 (7)

Table 10. The error divided by number of samples, number of misclassified samples.
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