
Space Tree Structures for PDE Software

Michael Bader1, Hans-Joachim Bungartz2, Anton Frank3, and Ralf Mundani2

1 Dept. of Informatics, TU München, D-80290 München, Germany
2 IPVR, Universität Stuttgart, D-70565 Stuttgart, Germany

3 4Soft GmbH, D-80336 München, Germany

Abstract. In this paper, we study the potential of space trees (bound-
ary extended octrees for an arbitrary number of dimensions) in the con-
text of software for the numerical solution of PDEs. The main advantage
of the approach presented is the fact that the underlying geometry’s
resolution can be decoupled from the computational grid’s resolution,
although both are organized within the same data structure. This allows
us to solve the PDE on a quite coarse orthogonal grid at an accuracy
corresponding to a much finer resolution. We show how fast (multigrid)
solvers based on the nested dissection principle can be directly imple-
mented on a space tree. Furthermore, we discuss the use of this hierar-
chical concept as the common data basis for the partitioned solution of
coupled problems like fluid-structure interactions, e. g., and we address
its suitability for an integration of simulation software.

1 Introduction

In today’s numerical simulations involving the resolution of both time and space,
we are often confronted with complicated or even changing geometries. Together
with increasing accuracy requirements, this fact is responsible for some kind
of dilemma: On the one hand, orthogonal or Cartesian grids are simpler with
respect to mesh generation, organization, and changes, but need very or even
too high levels of refinement in order to resolve geometric details in a sufficient
way. Unstructured grids, on the other hand, are clearly better suited for that,
but entail costly (re-) meshing procedures and an often significant overhead for
grid organization.

For the Cartesian world, one possibility to get out of this dilemma is to de-
couple the resolutions of the geometric grid (used for geometry representation
and discretization) and of the computational grid (used for the (iterative) solu-
tion process). This seems to be justified by the fact that orthogonal grids come
along with an O(h) error concerning geometry, but are able to produce O(h2)
discretization errors for standard second order differential operators. Hence, for
a balance of error terms, it is definitely not necessary to iterate over all those
tiny cells needed to resolve geometry, if some way is found to collect geometric
details from very fine cells for the discrete equations of a surrounding coarser
cell. Space trees provide this possibility, and they do it within the same data
structure. This aspect is important, since the accumulation of geometric details

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 662−671, 2002.
 Springer-Verlag Berlin Heidelberg 2002

is not some kind of a “once-and-for-all” process, but there will be situations
where the fine world has to be revisited (in case of adaptive refinement of the
computational grid, for example).

In the following, we first summarize the principal ideas and properties of the
hybrid space tree concept. Then, we demonstrate how space trees can be directly
used for grid organization and representation in a PDE context by implement-
ing a nested-dissection-based fast iterative solver. Afterwards, the use of space
trees as the common geometry representation in a software environment for the
partitioned solution of coupled problems and their potential for an embedding
of PDE software into a broader context (integration of CAD and numerical sim-
ulation, for example) are discussed. Finally, we give some conclusions and an
outlook over future work in this field.

2 Space Trees

Space trees [3, 6] are generalized quad- or octrees [5, 9–11]. The first generaliza-
tion refers to the now arbitrary number d of dimensions. A second generalization
is their ability to associate data not only with d-dimensional cells (i. e. volumes),
but also with the d − 1-dimensional hypersurfaces representing the boundary
of a cell (and so on, recursively) – which is important if we think of boundary
value problems. Hence, the basis is a successive spatial partitioning of a square
(cube) in four (eight) attributed congruent subsquares (subcubes). Among the
fields of application for such hierarchical structures, there are image processing,
geometric modelling, computer graphics, data mining, and many more. For our
purposes, the most interesting features of space trees are the reduced complexity
(the boundary of an object determines its storage requirements, see the left part
of Fig. 1), the availability of efficient algorithms for set operations, neighbour

Q

Q Q

Q00

01 11

10
0000 0010

0001 0011

0100 0110

0101 0111 1101 1111

11101100

1001 1011

10101000

Fig. 1. Quadtree: successive refinement (left) and relations to Morton ordering and
Lebesgue’s space-filling curve (centre and right; helpful for a simple and efficient par-
allelization of computations on very heterogeneous grids)

detection, or movement, the inherent information for data sequentialization (see
the right part of Fig. 1; this is especially important for a simple parallelization),
and, finally, the possibility of compact implementations via bit coding, as long as

663Space Tree Structures for PDE Software

we are only interested in the merely geometric information. For the remainder,
the discussion is restricted to 2D without loss of generality.

For some given geometry, which may be a technical object in a CAD rep-
resentation or a measured or analytically described domain, the first step is to
generate a space tree to hold the complete geometric information, but nothing
else. This means that we have to choose a very high characteristic resolution hg
(the resolution of the input data, for example), but that we can use a compact
implementation like a bit-coded linearized tree. Note that, if nevertheless too big
for main memory, the space tree does not have to be kept there at one time as
a whole. As a next step, the computational grid with characteristic mesh width
hc, i. e. the set of cells which will be related to degrees of freedom later, has to
be built up. This will typically be a small subset of the above space tree, but
can also contain finer cells than the geometric grid (in subdomains without any
geometric details and, hence, coarse geometric cells, for example). Concerning
the concrete implementation, think of a standard tree structure with several
floating point variables in the nodes, which is explicitly generated and kept in
main memory. Hence, following the maxim that the problem’s physics and not
its geometry should determine the level of detail during computations, we now
have a hybrid or decoupled overall representation within the space tree concept.
Figure 2 illustrates the relations between geometric and computational grid.

macro cells

micro cells
(geometry description)

(calculation elements)

Fig. 2. Hybrid concept: macro and micro layer in the data structure (left) and applied
to a simple example (right)

Obviously, the crucial part is the interplay between both grids: How can geo-
metric details influence the discrete equations on coarse cells (and, thus, improve
the quality of the computed results) without being stored or visited during an it-
erative solution process? For that, we need some accumulation step during which
details from the micro cells to be neglected later are used to assemble (modified)
discretization stencils in the macro cells. Such a global accumulation has to be
done as a pre-processing once at the beginning, and it may have to be repeated
partially each time the computational grid changes due to local adaptive refine-
ment. Apart from these accumulation steps, the micro layer is not needed for
the solution of the discretized equations.

The accumulation starts at the leaves of the micro layer with some atomic
stencils or element matrices which, of course, depend on the given PDE, on the
chosen discretization scheme (finite differences or elements, e. g.), and on the
local geometry (a cell’s corner outside the problem’s domain will influence the
atom and, hence, the following). Next, four neighbouring atoms are assembled

664 M. Bader et al.

– in the sense of both stencils and matrices. Figure 3 shows such an atom and
the assembly for the simple case of the standard finite difference approach for
the Laplacian with all involved points lying within the domain. Since we do not

1

−1/2

−1/2 A B

C D0
A
B
C
D

(
1 − 1

2
− 1

2
0

− 1
2

1 0 − 1
2

− 1
2

0 1 − 1
2

0 − 1
2

− 1
2

1

)
1 −1/2

−1/2 0

1 −1/2

−1/2 0

1−1/2

−1/20

1−1/2

−1/20

4

−1

−1−1

−1

0 0

00

Fig. 3. Atoms (left, associated with cells or elements) as stencils or matrices (centre)
and their assembly (right)

want to keep the fine grid points as degrees of freedom for the computations on
the macro layer, a hierarchical transformation separating coarse and fine points
is applied. The fine points are eliminated as in a nested dissection process (see
Sect. 3) and even explicitly removed. Now, we have again atoms – related to
larger cells than before, but again with four grid points involved. The whole
process is illustrated in Fig. 4.

hierarchical transformationassembly elimination removal assembly

Fig. 4. Accumulating geometric detail information: assembly, hierarchical transforma-
tion, elimination, removal, and next assembly

This completes the description of the geometry accumulation process. Now,

insert

macro layer

micro layer

direct solution

iterative solution

iterative solution with adaption

accumulate,
eliminate, and remove

... ...

total system

and eliminate
accumulate

Fig. 5. Accumulation of geometric details and following direct or iterative solution on
the computational grid

665Space Tree Structures for PDE Software

666 M. Bader et al.

the system (with the local stencils or matrices derived above) must be solved
on the cells of the macro layer. For that, principally, a direct or an iterative
algorithm can be used (see Fig. 5). The design of suitable solvers will be studied
in the next section. Here, we just present some numerical results for a Poisson
equation on the domain shown in Fig. 6. Obviously, the coarse grid with h, = T4

Fig. 6. 2 D star domain: used geometric grid (adaptive, finest occurring h is h, = 2T8;
left) and used computational grid (regular, h, = 2T4; right)

is not able to produce reasonable results without the collected micro details.
With our hybrid approach, however, the quality of the obtained solution is of
the same order as the quality of the solution computed on the fine grid with
h, = h, = 2T8 - with the hybrid solution being less costly w. r. t . both memory
and computing time (see Fig. 7).

Fig. 7. Solutions of Poisson's equation on the star domain: fine level h, = h, = 2T8
for geometric and computational grid (left), coarse level h, = h, = 2T4 for both grids
(centre), and hybrid approach h, = 2T8, hc = T4 (right)

3 Fast Solvers on Space Trees

The above accumulation process stops on the macro layer. Thus, it provides
element matrices in the finest computational cells. Now, we have a closer look at
the solver for the linear system of equations corresponding to this macro element
information. Since the space tree idea is based on a recursive substructuring of
the domain, a nested dissection approach [7] turns out to be a quite natural

choice. In order to make nested dissection’s successive bisections of the domain
consistent with the space tree subdivision into 2d successor nodes, we have to
perform and combine d alternate bisections (one for each dimension). Hence, in
the following, we can restrict the presentation to the standard case of a bisection
in 2D.

On each node of the space tree between its root and the macro leaves where
geometry accumulation has provided element stencils or matrices, we define local
sets I and E of unknowns related to grid points inside or on the boundary of the
local cell (subdomain), resp. Due to the recursive bottom-up elimination of the
nested dissection scheme, I is restricted to points on the so-called separator, the
line separating the two subdomains of the local cell. For the precise definition of
the iterative solver, we introduce a further set G of coarse grid unknowns, which
will form the coarse grid in the sense of a multilevel solver. If the local system
of equations is restricted to the unknowns in G (which is actually what is done
during the geometry setup), we should get a system that describes physics on
this coarser level sufficiently well. Figure 8 illustrates this classification.

Fig. 8. Recursive substructuring by alternate bisection: Unknowns in E are painted in
white, unknowns in I in grey. If the unknowns are also in G, they are painted as black
nodes. The little crosses indicate unknowns that are no longer present on the local
subdomain due to their elimination on the child domains.

Starting at the leaves of the macro layer, we perform a block elimination on
each local system of equations based on the partitioning of the unknowns:(

Id −AEIA−1
II

0 Id

)
︸ ︷︷ ︸

=: L−1

(
AEE AEI
AIE AII

)
︸ ︷︷ ︸

= A

(
Id 0

−A−1
IIAIE Id

)
︸ ︷︷ ︸

=: R−1

=

(
ÂEE 0
0 AII

)
︸ ︷︷ ︸

=: Â

, (1)

where ÂEE := AEE − AEI · A−1
II · AIE is the so-called Schur complement. Thus,

the full information from I is preserved in ÂEE . The submatrix ÃEE is then
transferred to the father who collects and assembles the local systems of his two
sons and proceeds recursively with block elimination and assembly until the root
of the space tree, i. e. the cell representing the overall domain of our problem,
is reached. After this bottom-up assembly of equations, we start from the root
and use the unknowns in the local E (available from the boundary conditions

667Space Tree Structures for PDE Software

or from the respective father node) to compute the unknowns in the local I on
every subdomain in a top-down traversal.

So far, the approach leads to a direct solver quite similar to the original nested
dissection method from [7]. Likewise, its computing time grows like O(N3/2)
with the number of unknowns N (2D). Since this, of course, is too expensive,
the block elimination (1) should be replaced by some iterative scheme (a suitable
preconditioner, e. g.). Then, the single top-down solution pass is replaced by a
sequence of top-down (compute approximations based on the current residuals)
and bottom-up (collect updated residuals from the leaves to the root) traversals,
see also Fig. 5.

In our solver, we use the transformation to hierarchical bases or generating
systems [8] as a preconditioner,

HTAH︸ ︷︷ ︸
=: Ā

x̄ = HT b︸︷︷︸
=: b̄

, (2)

the latter leading to a true multigrid method. In both cases, the preconditioning
can be further improved by introducing an additional partial elimination based
on the set G of coarse grid unknowns:

L−1ĀR−1︸ ︷︷ ︸
=: Ã

x̃ = L−1b︸ ︷︷ ︸
=: b̃

. (3)

The elimination matrices L−1 and R−1 are chosen such that all couplings be-
tween unknowns in G are eliminated explicitly in the resulting system matrix
Ã. The set G should consist of those unknowns that are expected to be strongly
coupled. Hence, a good heuristics for choosing G can often be derived from the
underlying physics of the respective PDE.

For Poisson equations, it is usually sufficient to choose just the unknowns on
the corners of the subdomains. This is consistent with the accumulation process
from Sect. 2 and leads to a multilevel method close to standard multigrid with
uniformly coarsened grids. For other PDEs, however, this simple choice may no
longer be appropriate. For convection diffusion equations, for example, especially
in the case of increasing strength of convection, additional unknowns on the
boundary of the local subdomain should be used for G. This corresponds very
much to using semi-coarsening in classical multigrid methods. In [2], we present
a method that increases the number of coarse grid unknowns proportionally to
the square root of the number of local unknowns in the cell. This approach
balances the influence of both diffusion and convection in each cell. If convection
is not too strong (mesh Péclet number bounded on the finest grid), the resulting
algorithm has a complexity of O(N) with respect to both computing time and
memory requirements [2].

Figure 9 (right) shows the convergence rates for the Poisson equation on the
star domain from Fig. 6 and for a convection diffusion problem with circular
convection field and varying strength of convection (centre). The streamlines of
the convection field are given in the leftmost picture. Homogeneous Dirichlet

668 M. Bader et al.

convection
strength of

Bi−CGSTAB

Richardson
0.8

0.6

0.4

0.2

1 4 16 64 256 1024

unknowns/dim.

Richardson

Bi−CGSTAB

0.8

0.6

0.4

0.2

32 64 128 256 512

Fig. 9. Convergence rates for the convection diffusion problem (centre) with corre-
sponding convection field (left) and for the Poisson equation on the star domain

boundary conditions were used in both examples. The results indicate that the
convergence rates are generally independent of the number of unknowns and
also constant for increasing strength of convection. However, this holds only up
to a certain upper bound which depends on the mesh size of the finest grid.
At least to some extent, the rates are also independent of the geometry of the
problem’s domain (see [1] for a more detailed discussion). In both examples,
using the method as a preconditioner for Bi-CGSTAB can further improve the
overall performance of the algorithm.

With the presented iterative solver, we are now able to efficiently solve a
PDE on complicated domains with simple Cartesian grids. Due to the logical
separation of the resolution of geometry and computations, there are no draw-
backs concerning accuracy compared to more complicated unstructured grids.
The further potential of space trees is studied in the next section.

4 Coupled Problems, Software Integration

Coupled or multi-physics problems involve more than one physical effect, where
none of these effects can be solved separately. One of the most prominent exam-
ples is the interaction of a fluid with a structure – think of a tent-roof construc-
tion exposed to wind, or of an elastic flap in a valve opened and closed by some
fluid. The numerical simulation of such interactions, which is not in the centre of
interest here, is a challenging task, since expertise and model equations from dif-
ferent disciplines have to be integrated, and since the problem’s geometry is not
stationary (see [12], e. g.). In order to profit from existing models and code for
the single phenomena and, hence, to reduce necessary new developments to the
mere coupling of the different parts, the partitioned solution strategy based on
a more or less sophisticated alternate application of single-effect solvers is very
widespread. Figure 10 shows the basic structure of a possible modular frame-
work that has been developed for the partitioned solution of problems with
fluid-structure interactions [4, 6]. Input, output, the two solvers, and the cou-
pling itself are strictly separated. The direct interplay of different codes entails
the necessity to switch from one geometry representation of the common domain

669Space Tree Structures for PDE Software

loop
control

(loop_ctrl)

geometry num. / phys.
parameters

control
parameters

extraction
pressure diff.
(extr_stm.pl)

flap
correction

(insdspflap)

STM−IF CFD−IF

output interface

st
r.

 m
ec

h.
 s

ol
ve

r

(solve_stm)

fl
ui

d
dy

n.
 s

ol
ve

r

pa
rs

er

visualization
(IDL)

visualization

processing

create flag array
(rgb2flag)

 merge input
(merge_flp.pl)

 insert flaps
(insertflaps)

input
interface

central unit

central unit

process control
(gen_ctrl)

UI

UI

UIUI

progress
indicator

(IDL/Explorer/AVS)

(NaSt2D)

extraction
CFD data
(split_cfd.pl)

insertion
CFD data

(merge_cfd.pl)

Fig. 10. Modular software environment for fluid-structure interactions (see [6])

to another. In our approach, we use space trees as the central data format. That
is, if one of the solvers is to be exchanged, only a transformation between this
solver’s internal geometry representation and the central space tree has to be
provided, which supports modularity. Again, the space tree allows us to keep
geometric information at a very high resolution and to easily process changes of
the geometry. Figure 11 shows the application of our software environment for
coupled problems to the flow through a valve-driven micropump.

Finally, note that space trees are well-suited as general data basis for the
integration of CAD, simulation, and visualization software [4]. For example, the
bit-coded tree keeps the whole geometric information and allows for efficient
CAD operations (affine transforms, collision tests, and so on).

5 Concluding Remarks

Space trees combines the simplicity, flexibility, and universality of Cartesian grids
with the superior approximation properties of unstructured grids. In this paper,
their main features as well as a fast linear solver and some attractive fields of
application have been studied. Future work will cover the use of space trees for
more complicated PDEs like the Navier-Stokes equations.

670 M. Bader et al.

Fig. 11. Cross-section through a valve-driven micropump (left) and visualization of the
simulated fluid-structure interaction at its valves (right; pump in octree representation
and stream bands)

References

1. M. Bader. Robuste, parallele Mehrgitterverfahren für die Konvektions-Diffusions-
Gleichung. PhD thesis, TU München, 2001.

2. M. Bader and C. Zenger. A robust and parallel multigrid method for convection
diffusion equations. ETNA, 2002 (accepted).

3. P. Breitling, H.-J. Bungartz, and A. Frank. Hierarchical concepts for improved
interfaces between modelling, simulation, and visualization. In B. Girod, H. Nie-
mann, and H.-P. Seidel, editors, Vision, Modelling, and Visualization ’99, pages
269–276. Infix, St. Augustin, Bonn, 1999.

4. H.-J. Bungartz, A. Frank, F. Meier, T. Neunhoeffer, and S. Schulte. Efficient
treatment of complicated geometries and moving interfaces for CFD problems.
In H.-J. Bungartz, F. Durst, and C. Zenger, editors, High Performance Scientific
and Engineering Computing, volume 8 of LNCSE, pages 113–123. Springer-Verlag,
Heidelberg, 1999.

5. R. A. Finkel and J. L. Bentley. Quad trees: a data stucture for retrieval on com-
posite keys. Acta Informatica, 4:1–9, 1974.

6. A. Frank. Organisationsprinzipien zur Integration von geometrischer Modellierung,
numerischer Simulation und Visualisierung. PhD thesis, TU München, Herbert
Utz Verlag, München, 2000.

7. A. George. Nested dissection of a regular finite element mesh. SIAM Journal on
Numerical Analysis, 10, 1973.

8. M. Griebel. Multilevelmethoden als Iterationsverfahren auf Erzeugendensystemen.
Teubner Skripten zur Numerik, Stuttgart, 1994.

9. C. L. Jackins and S. L. Tanimoto. Oct-trees and their use in representing 3D
objects. Computer Graphics and Image Processing, 14:249–270, 1980.

10. D. Meagher. Geometric modelling using octree encoding. Computer Graphics and
Image Processing, 19:129–147, 1982.

11. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, 1989.

12. S. Schulte. Modulare und hierarchische Simulation gekoppelter Probleme. PhD
thesis, TU München, VDI Reihe 20 Nr. 271. VDI Verlag, Düsseldorf, 1998.

671Space Tree Structures for PDE Software

	Introduction
	Space Trees
	Fast Solvers on Space Trees
	Coupled Problems, Software Integration
	ConcludingRemarks

