
OpenMP versus MPI for PDE Solvers

Based on Regular Sparse Numerical Operators ?

Markus Nordén, Sverk er Holmgren, and Michael Thuné

Uppsala University, Information Technology, Dept. of Scienti�c Computing, Box 120
SE-751 04 Uppsala, Sweden

{markusn, sverker, michael}@tdb.uu.se

Abstract. Tw o parallel programming models represented b y OpenMP
and MPI are compared for PDE solvers based on regular sparse numerical
operators. As a typical representative of such an application, the Euler
equations for �uid �ow are considered.
The comparison of programming models is made with regard to UMA,
NUMA, and self optimizing NUMA (NUMA-opt) computer architec-
tures. By NUMA-opt, we mean NUMA systems extended with self opti-
mizations algorithms, in order to reduce the non-uniformity of the mem-
ory access time.
The main conclusions of the study are: (1) that OpenMP is a viable alter-
nativ e to MPI on UMA and NUMA-opt architectures, (2) that OpenMP
is not competitive on NUMA platforms, unless special care is taken to get
an initial data placement that matches the algorithm, and (3) that for
OpenMP to be competitive in the NUMA-opt case, it is not necessary to
extend the OpenMP model with additional data distribution directives,
nor to include user-level access to the page migration library.

Keywords: OpenMP; MPI; UMA; NUMA; Optimization; PDE; Euler;
Stencil

1 Introduction

Large scale simulations requiring high performance computers are of importance
in many application areas. Often, as for example in �uid dynamics, electromag-
netics, and acoustics, the simulations are based on PDE solvers, i.e., computer
programs for the numerical solution of partial di�erential equations (PDE). In
the present study, we consider parallel PDE solvers involving regular sparse op-
erators. Such operators typically occur in the case of �nite di�erence or �nite
volume methods on structured grids, either with explicit time-marching, or with
implicit time-marching where the resulting algebraic systems are solved using
an iterative method.

In the present article, we compare tw o programming models for PDE solver
applications: the shared name space model and the message passing model. The

? The work presented here was carried out within the framework of the Parallel and
Scien ti�c Computing Institute. Funding was provided by Sun Microsystems and the
Sw edish Agency for Innovation Systems.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 681−690, 2002.
 Springer-Verlag Berlin Heidelberg 2002



question we pose is: will recent advances in computer architecture make the shared

name space model competitive for simulations involving regular sparse numerical

operators? The tentative answer we arrive at is �yes�.

We also consider an additional issue, with regard to the shared name space
model, viz., whether it requires explicit data distribution directives. Here, our
experiments indicate that the answer is �no�.

The state-of-the-art for parallel programming of large scale parallel PDE
solvers is to use the message passing model, which assumes a local name space
in each processor. The existence of a default standard for this model, the Mes-
sage Passing Interface (MPI) [5], has contributed to its strong position. However,
even more important has been its ability to scale to large numbers of processors
[6]. Moreover, many major massively parallel computer systems available on the
market present, at least partly, a local name space view of the physically dis-
tributed memory, which corresponds to the assumptions of the message passing
model.

However, with recent advances in SMP server technology has come a renewed
and intensi�ed interest in the shared name space programming model. There is
now a de facto standard also for this model: OpenMP [1]. However, it is still an
open question how well OpenMP will scale beyond the single SMP server case.
Will OpenMP be a viable model also for clusters of SMPs, the kind of computer
architecture that is currently dominating at the high end?

Clusters of SMPs typically provide non-uniform memory access (NUMA) to
the processors. One approach to OpenMP programming in a NUMA setting is
to extend the model with directives for data distribution, in the same spirit as
in High-Performance Fortran. By directing the initial data placement explicitly,
the same way as an MPI programmer would need to do, the user would be able
to ensure that the di�erent OpenMP threads get reasonably close to their data.
This argument was put forward in, e.g., [4].

Another, more orthodox approach, was taken by Nikolopoulos et al. [2, 3],
who claim that data distribution directives should not be added to OpenMP,
since that would contradict fundamental design goals for the OpenMP standard,
such as platform-independence and ease of programming. Moreover, they claim
that directives are not necessary for performance, provided that the OpenMP
implementation is supported by a dynamic page migration mechanism. They
have developed a user-level page migration library, and demonstrate that the in-
troduction of explicit calls to the page migration library into the OpenMP code
enables OpenMP programs without distribution directives to execute with rea-
sonable performance on both structured and non-structured scienti�c computing
applications [2, 3].

Our contribution is in the same spirit, and goes a step further, in that we
execute our experiments on a self optimizing NUMA (NUMA-opt) architecture,
and rely exclusively on its built-in page migration and replication mechanisms.
That is, no modi�cations are made to the original OpenMP code. The platform
we use is the experimental Orange (previously known as Wild�re) architecture
from Sun Microsystems [7]. It can be con�gured, in pure NUMA mode (no page

682 M. Nordén, S. Holmgren, and M. Thuné



migration and replication), and alternatively in various self optimization modes
(only migration, only replication, or both). Moreover, each node of the system
is an SMP, i.e., exhibits UMA behavior. Thus, using one and the same platform,
we have been able to experiment with a variety of computer architecture types
under ceteris paribus conditions.

Our Orange system consists of two 16-processor nodes, with UltraSparc II
processors (i.e., not of the most recent generation), but with a sophisticated self
optimization mechanism. Due to the latter, we claim that the Orange system
can be regarded as a prototype for the kind of parallel computer platforms that
we will see in the future. For that reason, we �nd it interesting to study the issue
of OpenMP versus MPI for this particular platform.

The results of our study are in the same direction as those of Nikolopoulos
et al. Actually, our results give even stronger support for OpenMP, since they
do not presume user-level control of the page migration mechanisms. Moreover,
our results are in agreement with those of Noordergraaf and van der Pas [10],
who considered data distribution issues for the standard �ve-point stencil for
the Laplace equation on a Sun Orange system. Our study can be regarded as
a generalization of theirs to operators for non-scalar and non-linear PDEs, and
also including a comparison to using a message passing programming model.

2 The Stencil Operator

The experiments reported below are based on a stencil which comes from a
�nite di�erence discretization of the nonlinear Euler equations in 3D, describing
compressible �ow. The application of this stencil operator at a certain grid point
requires the value of the operand grid function at 13 grid points. This corresponds
to 52 �oating point numbers, since the grid function has four components.

Moreover, we assume that the physical structured grid is curvilinear, whereas
the computations are carried out on a rectangular computational grid. This
introduces the need for a mapping from the computational to the physical grid.
Information about this mapping has to be available as well, and is stored in a
3� 3-matrix that is unique for each grid point, which means nine more �oating
point numbers. In all, 61 �oating point numbers have to be read from memory
and approximately 250 arithmetic operations have to be performed at each grid
point in every iteration.

The serial performance of our stencil implementation is close to 100 M�op/s.
This is in good agreement with the expectations according to the STREAM
benchmark [9]. (See [11] for further discussion of the serial implementation.)

3 Computer System Con�gurations

On the Sun Orange computer system used here, there are a number of con�gura-
tions to choose between. First of all, there are two self optimization mechanisms,
page migration and replication, that can be turned on and o� independently in
the operating system.

683OpenMP versus MPI for PDE Solvers



Table 1. The computer system con�gurations used in the parallel experiments

Thread Memory Page Page Architecture

Con�guration scheduling allocation migration replication type

Con�guration 1 One node One node O� O� UMA

Con�guration 2 Default One node On On NUMA-opt

Con�guration 3 Default Matching On On NUMA-opt

Con�guration 4 Balanced One node On On NUMA-opt

Con�guration 5 Balanced Matching On On NUMA-opt

Con�guration 6 Balanced One node O� O� NUMA

Con�guration 7 Balanced Matching O� O� NUMA

Con�guration 8 Balanced One node O� On NUMA-opt

Con�guration 9 Balanced One node On O� NUMA-opt

Using these mechanisms it is possible to con�gure the Orange systems so as
to represent a variety of architecture types. First, using only one server of the
system gives a UMA architecture. Secondly, using both servers, but turning o�
the self optimization mechanisms, gives a NUMA. Finally, self optimizing NUMA
systems with various degrees of self optimization can be studied by turning on
the page migration and/or replication.

For the investigation of how OpenMP performs in di�erent environments, we
are interested in the variation not only in architecture type, but also in thread
placement and data placement. This variation can also be achieved in the Orange
system.

Table 1 summarizes the di�erent Orange system con�gurations that were
used in the parallel experiments reported below. With Con�guration 1 we only
use the resources in one node, i.e. we are running our program on an SMP server
and the number of threads is limited to 16.

Con�guration 2 and 3 both represent the default Orange system settings,
with all self optimization turned on. The di�erence is that for the former all the
data are initially located in one node, whereas for the latter they are distributed
in a way that matches the threads already from the beginning.

For Con�guration 4�9 the load of the SMP nodes is balanced, in that the
threads are scheduled evenly between the nodes. The con�gurations di�er, how-
ever, in the way that data are initialized and which self optimization mechanisms
are used. Con�guration 6 and 7, with no self optimization, represent pure NUMA
systems.

We used the Sun Forte 6.2 (early access, update 2) compiler. It conforms
to the OpenMP standard, with no additional data distribution directives. The
con�gurations with matching data distribution were obtained by adding code
for initializing data (according to the �rst-touch principle) in such a way that it
was placed were it was most frequently needed. In this way, the same e�ect was
obtained as if OpenMP had been extended with data distribution directives.

684 M. Nordén, S. Holmgren, and M. Thuné



0 5 10 15 20 25 30
0

5

10

15

20

25

30

Number of threads
Sp

ee
du

p

Conf. 1−5 and 7
Conf. 6

Fig. 1. Speedup per iteration for an OpenMP solver for the nonlinear Euler equations

in 3D. The speedup was measured with respect to the time needed to carry out one

iteration, once the system is fully adapted. Di�erent curves correspond to di�erent

con�gurations of the parallel computer platform, see Table 1

4 OpenMP and the E�ect of Self Optimization

The �rst series of experiments studies the performance of OpenMP for all the
con�gurations discussed above. In particular we are interested in evaluating the
e�ect of self optimization (in the computer system) on the performance of parallel
programs based on OpenMP.

The reason for introducing self optimization is to allow the system to scale
well even when more than one SMP node is used. Therefore, speedup is a good
measure of how successful the optimization is. However, it is important to let
the system adapt to the algorithm before any speedup measurements are done.
Consequently, we have measured speedup with respect to the time needed to
carry out one iteration once the system is fully adapted, i.e., after a number of
iterations have been performed, see below.

The time-per-iteration speedup results for our application are shown in Fig-
ure 1. As can be seen, all con�gurations scale well, except for Con�guration 6.
The latter corresponds to a NUMA scenario, with no self optimization, and
where data are distributed unfavorably. The con�gurations that rely on the self
optimization of the system show identical speedup as the con�gurations that rely
on hand-tuning. That is, after the initial adaption phase, the self optimization
mechanisms introduce no further performance penalty.

Next, we study how long it takes for the system to adapt. The adaption phase
should only take a fraction of the total execution time of the program, otherwise
the self optimization is not very useful.

We have measured the time per iteration for the di�erent con�gurations. As
can be seen in Figure 2, the adaption phase takes approximately 40�60 iterations
for our program. This is fast enough, since the execution of a PDE solver usually
involves several hundreds or even thousands of such iterations.

Consequently, the conclusion of the speedup and adaption-time experiments,
taken together, is that the self optimization in the Orange system serves its
purpose well for the kind of application we are considering.

685OpenMP versus MPI for PDE Solvers



0 20 40 60 80 100

1.5

2

2.5

3

Iteration number

It
er

at
io

n 
tim

e 
(s

)

Conf. 2
Conf. 3
Conf. 5
Conf. 7

(a) Di�erent thread scheduling,
data distribution and optimiza-
tion

0 20 40 60 80 100

1.5

2

2.5

3

Iteration number

It
er

at
io

n 
tim

e 
(s

) Mig. and rep.
No opt.
Only rep.
Only mig.

(b) Di�erent self optimization
mechanisms

Fig. 2. Time per iteration of our test program for di�erent con�gurations of the com-
puter system. The graphs refer to the 24 processor case, and similar results were ob-
tained for other numbers of processors. After 40�60 iterations the system has adapted
to the memory access pattern of the algorithm. This overhead is negligible in compar-
ison to the typical total number of iterations

With regard to OpenMP, the conclusion is that additional data distribution

directives are not needed for PDE solvers based on regular sparse numerical op-

erators. This holds provided that the computer system is equipped with e�cient

self optimization algorithms, as is the case with the Orange system prototype

used in our experiments.

In Table 2 we also show how many memory pages are migrated and replicated

when using the di�erent self optimization techniques. All the data were initialized

to reside on one node, and the thread allocation is balanced over the nodes.

When using both migration and replication, approximately half of the data

are migrated to the node where they are used. There are also some memory

pages that are replicated, probably those that are used to store data on the

border between the two halves of the grid, and therefore are accessed by threads

in both nodes.

When using only replication, approximately half of the data are replicated to

the other node and when only migration is allowed, half of the data are migrated.

With regard to the optimization modes, the conclusion of our experiments is

that migration is su�cient for the kind of numerical operators we consider here.

Combined replication and migration does not lead to faster adaption. The third

alternative, replication only, gives slightly faster adaption, but at the expense of

signi�cant memory overhead.

686 M. Nordén, S. Holmgren, and M. Thuné



Table 2. Iteration time and the number of pages that are migrated and replicated using
the di�erent optimization mechanisms. The threads are scheduled evenly between the
nodes but data initially resides in just one of the nodes. In these experiments 24 threads
were used and in all 164820 memory pages were used

Optimization Iter. time # Migrs # Repls

Mig. and rep. (4) 1.249 79179 149
Only rep. (8) 1.267 N/A 79325
Only mig. (9) 1.264 79327 N/A

4.1 OpenMP versus MPI

We now proceed to comparing OpenMP and MPI. We have chosen to use bal-
anced process/thread scheduling for both the MPI and OpenMP versions of
the program. Every process of the MPI program has its own address space and
therefore matching allocation is the only possibility. It should also be mentioned
that since the processes have their own memory, there will be no normal mem-
ory pages that are shared by di�erent processes. Consequently, a program that
uses MPI will probably not bene�t from migration or replication. This is also
con�rmed by experiments, where we do not see any e�ects of self optimization
on the times for individual iterations as we did in the previous section.1

The experiments below also include a hybrid version of the program, which
uses both MPI and OpenMP. There, we have chosen OpenMP for the paral-
lelization within the SMP nodes and MPI for the communication between the
nodes.

Now to the results. We have already seen that the OpenMP version scales
well for both the UMA and self optimizing NUMA architectures. The results for
Con�guration 1 and the di�erent NUMA-opt con�gurations were virtually iden-
tical. On the other hand, the speedup �gures for the NUMA type of architecture
(Con�guration 6) were less satisfactory.

Turning to MPI, that programming model is not aware of the di�erences
between the three architecture types, as discussed above. The same holds for
the hybrid version, since it uses one MPI process for each node, and OpenMP
threads within each such process. Consequently, the execution time was virtually
the same for all MPI cases, regardless of architecture type, and similarly for the
hybrid OpenMP/MPI cases.

1 Accesses are made to the same address by di�erent processes when we use MPI com-
munication routines. This communication is normally performed so that one process
writes the data to an address that is shared, and another process subsequently reads
from the same address. Since the memory access pattern for that memory page is
that one process always writes, after which another process reads, neither migration
nor replication would improve performance. The reason is that in the case of migra-
tion the page would always be remotely located, as seen from one of the processes,
and in the case of replication every new cache line that is to be read would result
in a remote access since it has been updated on the other node since it was fetched
last time.

687OpenMP versus MPI for PDE Solvers



0 5 10 15 20 25 30
0

5

10

15

20

25

30

Number of threads
Sp

ee
du

p

MPI and OpenMP
Only MPI
Only OpenMP
OpenMP, NUMA

Fig. 3. Speedup for di�erent versions of the non-linear Euler solver

Figure 3 shows the results in terms of time-per-iteration speedup. The MPI
and hybrid versions give the same performance for all three architecture types.
For OpenMP, the NUMA architecture gives signi�cantly lower performance.
However, for the UMA and NUMA-opt con�gurations OpenMP is competitive,
and even somewhat better than the other alternatives.

Most likely, the MPI and hybrid versions scale less well because of time
needed for bu�ering data during the communication. The reason why the hybrid
version does not scale better than the pure MPI version is that even though
there are fewer processes in the hybrid version than in the MPI version when
the same number of processors are used, the amount of data to be exchanged
is still the same for each process. The communication has to be done serially
within the processes. Therefore, while one of the threads of an MPI process is
busy sending or receiving data, the other threads of that process will be idle,
waiting for the communication to take place.

5 Conclusions and Future Work

The main conclusions of our study are:

1. OpenMP is competitive with MPI on UMA and self optimizing NUMA ar-
chitectures.

2. OpenMP is not competitive on pure (i.e., non-optimizing) NUMA platforms,
unless special care is taken to get an initial data placement that matches the
algorithm.

3. For OpenMP to be competitive in the self optimizing NUMA case, it is not

necessary to extend the OpenMP model with additional data distribution
directives, nor to include user-level access to the page migration library.

Clearly, there are limitations to the validity of these conclusions:

� They refer to applications involving regular sparse numerical operators. Such
operators exhibit a very regular memory access pattern with only local com-
munication, therefore it should be quite easy for the system to adapt to

688 M. Nordén, S. Holmgren, and M. Thuné



the algorithm. Further investigations are needed before the conclusions can
be extended to applications with a highly irregular memory access pattern.
However, the results reported by Nikolopoulos et al. [3], for OpenMP ex-
tended with user-level calls to a page migration library, give hope that our
conclusions will in fact generalize to such applications.

� The Orange system used in this study has only two nodes. A massively
parallel platform with a large number of nodes would be more challenging
for the self optimization algorithms. We expect such systems to appear in the
future, and we conjecture that it will be possible to generalize the migration
and replication algorithms of the Orange system in such a way that the
OpenMP model will be competitive on them as well. However, this remains
to be proven.

For the near future, the really large scale computations will be carried out on
massively parallel clusters of SMP (or heterogeneous clusters in a �grid� setting),
with a local name space for each node. Then MPI, or the hybrid OpenMP/MPI
model are the only alternatives. In fact, the results reported in [6] indicate that
for some applications, the hybrid model is to prefer for large numbers of proces-
sors.

Our results for the NUMA case show that even for an SMP cluster equipped
with an operating system that presents a shared name space view of the entire
cluster, the MPI and hybrid models are still the best alternatives, in comparison
with standard OpenMP. The data placement required for OpenMP to be com-
petitive indicates the need for additional data distribution directives. On the
other hand, since many platforms use the �rst-touch principle, an alternative
way to achieve such data placement is via a straightforward initialization loop.
Consequently, in our opinion, adding data distribution directives to OpenMP, in
order to address the NUMA type of architecture, would not be worth its prize
in terms of contradicting the design goals of OpenMP.

In the long term perspective, our results speak in favor of e�ciently self
optimizing NUMA systems, in combination with standard OpenMP, i.e., with
no additional data distribution directives. As mentioned, we conjecture that
self optimization algorithms of the type found in the Orange system can be
generalized to work e�ciently also for massively parallel NUMA systems. If this
turns out to be true, programming those systems with standard OpenMP will
allow for rapid implementation of portable parallel codes.

The work reported here is part of a larger project, �High-Performance Appli-
cations on Various Architectures� (HAVA). Other subprojects of HAVA consider
other kinds of applications, for example pseudospectral solvers [8, 12], and solvers
based on unstructured grids. The next phases of the present subproject will be to
consider �rst a �nite di�erence based multi-grid solver for the Euler equations,
and then structured adaptive mesh re�nement for the same application. The lat-
ter, in particular, provides additional challenges, for self optimization algorithms
as well as for user-provided load balancing algorithms.

689OpenMP versus MPI for PDE Solvers



References

1. OpenMP Architechture Review Board. OpenMP Speci�cations.

2. D. S. Nikolopoulos et al. Is Data Distribution Necessary in OpenMP? In SC2000
Proceedings. IEEE, 2000.

3. D. S. Nikolopoulos et al. Scaling Irregular Parallel Codes with Minimal Program-

ming E�ort. In SC2001 Proceedings. IEEE, 2001.
4. J. Bircsak et al. Extending OpenMP for NUMA Machines. In SC2000 Proceedings.

IEEE, 2000.

5. Message Passing Interface Forum. MPI Documents.

6. W. D. Gropp et al. High-performance parallel implicit CFD. Parallel Computing,
27:337�362, 2001.

7. E. Hagersten and M. Koster. WildFire: A Scalable Path for SMPs. In Proceedings
of the 5th IEEE Symposium on High-Performance Computer Architecture (HPCA),
1999.

8. S. Holmgren and D. Wallin. Performance of a pseudo-spectral PDE solver on a

self-optimizing NUMA architecture. In Proc. of Euro-Par 2001. Springer-Verlag,
2001.

9. J. D. McCalpin. Sustainable Memory Bandwidth in Current High Performance

Computers. Technical report, Advanced Systems Division, Silicon Graphics, Inc.,

1995.

10. L. Noordergraaf and R. van der Pas. Performance Experiences on Sun's WildFire

Prototype. In SC99 Proceedings. IEEE, 1999.
11. M. Nordén, S. Holmgren, and M. Thuné. OpenMP versus MPI for PDE solvers

based on regular sparse numerical operators. Report in preparation.

12. D. Wallin. Performance of a high-accuracy PDE solver on a self-optimizing NUMA

architecture. Master's thesis, Uppsala University School of Engineering, 2001.

Report No. UPTEC F 01 017.

690 M. Nordén, S. Holmgren, and M. Thuné


	Introduction
	The Stencil Operator
	Computer System Configurations
	OpenMP and the E˙ect of Self Optimization
	OpenMP versus MPI

	Conclusions and Future Work
	References

