Using CORBA Middleware in Finite Element
Software
J. Lindemann, O. Dahlblom and G. Sandberg

Division of Structural Mechanics, Lund University
strucmech@byggmek.lth.se

Abstract. Distributed middleware technologies, such as CORBA can
enable finite element software to be used in a more flexible way. Adding
functionality is possible without the need for recompiling client code.
Transfer of data can be done directly, without the need for intermedi-
ate input and output files. The CORBA software components can be
easily configured and distributed tranparently over the network. A sam-
ple structural mechanics code, implemented in C++ is used to illustrate
these concepts. Some future directions, such as placing CORBA enabled
finite element software on HPC centres are also discussed.

1 Introduction

A complex hardware product often consists of many exchangeable components.
As long as a component fits into the product, the internal implementation can
differ. Software components are analogous to hardware components. Compo-
nents in programs can be exchanged without the need for recompilation, as long
as the component interface is unchanged. The use of components in software de-
velopment has increased during the last few years. The reason for this is the need
to reduce the size of the client programs. When the first client/server systems
appeared, the client software were often large programs. Most of the processing
was done in the client program and the database server was used as data storage.
The problem with these systems was the cost of installing and maintaining the
client software. New systems developed today often use a thin client with little or
no data processing capabilities. Instead of calling the database servers directly,
they use a set of components placed on central servers for data processing. These
components then access the database servers. The advantage of this approach is
that the components can be placed on powerful systems, reducing the amount
of processing needed at the client. This approach has been successfully applied
to database applications. It is of interest to apply this technique to analysis
software as well. Using the technique of distributed computing, clients can use
components as if they were located on the same machine, making it possible to
create integrated programs with transparent access to computational resources,
such as available workstations on the network or resources at High Performance
Computing (HPC) centres. This would make high performance computing more
available to a wider user group.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 701-710, 2002.
© Springer-Verlag Berlin Heidelberg 2002

702 J. Lindemann, O. Dahlblom, and G. Sandberg

The present work describes structural analysis software, where the compu-
tational parts of analysis codes can be placed as components on remote servers.
Before describing the structural analysis code, a brief overview of client/server
architecture will be given.

2 Client/server architecture

Three-tier and n-tier applications emerged from the need to shield the client
program from changes at the server side by placing a layer between the client and
the server. The history of the client/server architecture is described by Schussel
[15]. For a more detailed description over the client/server architecture, see Orfali
and Harkey [12]. The logical three-tier or n-tier model divides an application
into three or more logical components. Each component is responsible for a well-
defined task. In a database application there would be a presentation layer for
displaying data and modifying data, a logic and rules layer and a database layer
responsible for storing the data.

The components of the logical model can be grouped together in different
configurations to form a physical model. One of the most interesting combination
of the logical model is when the three logical services are placed as separate
applications on different computers, forming a physical three-tier application.
This implementation enables developers to have a greater flexibility in the choice
between different hardware and software configurations.

3 Distributed computing

Distributed computing is defined as a type of computing in which different com-
ponents and objects comprising an application can be located on different com-
puters connected to a network; for an overview see [10].

Currently, there are today three coexisting technologies for distributed object
computing DCOM [2], RMI [14] and CORBA [1]. Microsoft’s distributed COM
(DCOM) extends the Component Object Model to be used over the network.
RMI or Remote Method Invokation [14] is a distributed technology based on
the Java language. CORBA is the Object Management Group’s [1] specification
for interoperability and interaction between objects and applications. Objects
and applications can be placed on any platform and accessed from any platform.
CORBA is a specification, and therefore platform-independent.

This paper describes an implementation in CORBA. In a previous paper [7]
a DCOM based implementation has been studied.

4 CORBA

4.1 Concepts and Terminology

To describe a CORBA based implementation, it is important to understand
some terminology and concepts of a CORBA implementation. A more thorough

Using CORBA Middleware in Finite Element Software 703

description can be found in Henning and Vinoski [6]. Some of the more important
concepts and terminology is shown below.

— A client is an entity that invokes a request on a CORBA object.

— A CORBA object is a “virtual” entity capable of being located by an ORB
and having client requests invoked on it.

— A server is an application with one or more CORBA objects.

— An object reference is a handle used to identify, locate and address a CORBA
object. Object references is the only way for a client to access CORBA
objects.

— A servant is a programming language entity that implements one or more
CORBA objects.

Communication in CORBA is done by a client invoking requests on a CORBA
object through either a statically linked stub in the client application or through
the dynamic invocation interface (DII). The requests are dispatched to the local
ORB which in turn dispatches these requests to an ORB on the remote machine.
The remote ORB then dispatches the request to an object adaptor, which then
directs the request to the servant implementation code.

4.2 Interface definition language

To access a CORBA object the client must know which methods and properties
it contains. This description is called an interface. To describe such interfaces
CORBA uses the Interface Definition Language (IDL). In this language the
object interfaces are described. Using a separate language for describing the
objects makes CORBA language neutral. This enables CORBA applications to
be implemented in a variety of different languages. To implement CORBA clients
and objects the IDL definition is compiled using an IDL compiler. This compiler
takes the interface definition and generates the implementation code for both
client and server, in the desired implementation language.

The following code shows an example of a simple IDL interface, declaring an
interface to an Echo object. In this case the object echoes the string word back
to the calling client.

interface Echo {
string Shout(in string word);

}

Compiling this example using a C++ IDL compiler, will generate a header
file and an implementation source file for accessing the object described from
a C++ based application and the skeleton code for implementing the servant
object in C++.

704 J. Lindemann, O. Dahlblom, and G. Sandberg

4.3 Name service

One of the biggest benefits of CORBA is location transparency. Information
about server location is often not included in the client application. This makes
it easy to configure a client server setup. A client only needs an object reference
to connect to an object. Object references are unique identifiers, which also
include information about the location of objects. To connect to objects the
client needs a way of retrieving an object reference. Before the introduction of
CORBA 2.3, object references were often transferred using files over a network
file system or using a non-standard method of name lookup. In CORBA 2.3
a name service was introduced. The name server stores object references in a
human readable form. When a server is started, it creates an entry in the name
server for the object reference. The client then queries the server by name to
receive the object reference. By using a name server, client/server configuration
can be done transparently. Name server location is the only thing that has to be
configured for the servers and the clients. Clients and servers get the location of
the name server by specifying special command line options.

4.4 Object creation and destruction

Before request to an object can be made, the object implementation (servant)
must be instantiated and activated. In CORBA this is done by the object adap-
tor. Earlier CORBA specifications only included a limited basic object adapter
(BOA). To enhance the functionality of this object adaptor many ORB vendors
added non-standard extensions. The consequence of this was that the server side
of a CORBA application became ORB dependent. With CORBA 2.3 this limi-
tation was removed by the introduction of the Portable Object Adaptor (POA).

Different types of policies for the creation and destruction of objects can
be specified using lifetime policies for the portable object adaptor (POA) in
CORBA. Figure 1 illustrates the typical lifetime of a CORBA object. The default

Object exists

Objectacive Y " Object nacive
Servant Servant
@ —creation—>| created destroyed —Destruc(lon@

Fig. 1. Object creation and destruction

policy is TRANSIENT. In this policy the object can not be reactivated, when it
has been deactivated. The object reference of an TRANSIENT object is only valid
when the object is active. The PERSISTENT lifetime policy enables objects to be
activated and deactivated multiple times. This requires that the object servants
are able to store their state in a persistent form between the activations.
Because CORBA is a distributed technology, the creation of objects must
be handled in a different way than it is handled when creating local objects.

Using CORBA Middleware in Finite Element Software 705

In a CORBA system, objects are created by special factory objects. These fac-
tory objects can be seen as the equivalent of an object constructor in the C++
language.

The destruction of a CORBA object is not done by the factory, instead a
special method is declared in the object interface for removing the object. If
the factory was responsible for destroying the object, the client referencing the
object would also have to reference the factory when destroying the object. This
can be quite complex if the object reference has been passed from object to
object. The process of creating and destroying is discussed in detail in Henning
and Vinoski [6].

5 Finite element CORBA implementation

The educational software ForcePAD [4] was modified to use a CORBA based fi-
nite element solver. The ForcePAD application is an intuitive tool for visualising
the behaviour of structures subjected to loading and boundary conditions. For-
cePAD uses a bitmap canvas on which the user can draw the finite element model
using standard drawing tools. When the calculation is executed the bitmap im-
age is transferred to a finite element grid, which is then solved. The main win-
dow is shown in Figure 2. The application consists of four components divided

CETT T .o
2]
%)
» o
N L]
¥ %
had)
Iy o
2 X

-

L

Cauintn Mess | Dirplacamants | v | Varsien

fﬂ?ﬂb Ciai ek

Fig. 2. Sample CORBA application

into three layers, as shown in figure 3. The user interface is responsible for in-
teractively defining the problem. The ForcePadSolver component contains the
interfaces used to describe the finite element model used in the application. The
name server components handles the location of available CORBA ForcePAD-
Solver components in the network. The FE solver components are responsible
for executing the calculations. By providing the functionality of the application

706 J. Lindemann, O. Dahlblom, and G. Sandberg

User interface

Presentation layer

ForcePadSolver Name server

server Middle layer

FE Solver
Implementation layer

Fig. 3. Application components

in a component based form the application can be configured and maintained in
a more flexible way.

5.1 ForcePadSolver server

The middle layer of the application is implemented in a single server. The ORB
used in the implementation is ORBacus [11], which is a commercial ORB avail-
able with source for multiple platforms including Microsoft Windows and many
Unix dialects. It can also be used without cost for non-commercial use. The FE
solver is implemented in C++ using the newmat09 [8] library, which is freely
available with source code. In this version of the application, the FE solver is
statically linked into the ForcePadSolver server, but it is possible to implement
the FE Solver as a separate CORBA object or use a standard FE code.

The interface of the ForcePadSolver was designed to reduce the number of
requests needed to be made on the CORBA objects. Every request on a CORBA
object has cost determined by the latency and marshalling rate. The latency is
the cost of sending a message. The marshalling rate is the cost of sending the
input and return variables. For a more detailed discussion see chapter 22.3 in
Henning and Vinoski [6]. One of the most critical factors for performance is
the latency. The latency time of invoking a request on a CORBA object is
approximately 500-5000 times higher than doing a function call in C++. The
main interface in the server is the FemSystem interface. Every time a client
connects to the server it will create this object, using the FemSystemFactory
factory object. The factory object is instantiated and registered in the name
server when the server is started. The FemSystem object, when instantiated will
create an instance of a FemSolver object and a FemGrid object. These objects
are returned from the FemSystem object. A ForcePadSolver server can hold one
instance of FemSystem objects for each client connected to the server, as shown
in figure 4.

The code below shows how a FemSystem object is created from C++ using
the FemSystemFactory object.

femSystemFactory = ... Get from name server ...
femSystem = femSystemFactory->create();

femGrid = femSystem->getFemGrid();

femSolver = femSystem->getFemSolver();

Using CORBA Middleware in Finite Element Software 707

Client 1 Client 2

Presentation layer 1. create() 5. create()
Middle layer
FemSystemFactory
2. Creates 6.Create
FemSyste 1 FemSystem 2

3.Creates 4.Creates 7.Create 8.Create

|
|

Fig. 4. Object creation using the FemSystemFactory object

The FemGrid object defines the finite element model and the FemCalc is used
to control the calculation of the finite element model.

To reduce the marshalling times for the FE model, data will mainly be trans-
ferred using the CORBA data type sequence. This data type is a dynamic array
of a specified type. The following code illustrates a typical data transfer from
the client to a CORBA object in the ForcePAD client application.

// CORBA defined datatype:
// typedef sequence<double> TStiffnessVector;
ForcePadSolver::TStiffnessVector stiffnessVector(nStiffness);
stiffnessVector.length(nStiffness);
// Transfer internal fem model to stiffnessVector
1 = 0; float value;
for (i=0; i<rows; i++)
for (j=0; j<cols; j++)
for (k=0; k<2; k++) {
value = m_femGrid->getGridValue(i, j, k);
stiffnessVector[1++] = (double)value;
}
// Invoke request on femGrid CORBA object
femGrid->setStiffness(stiffnessVector);

When all input data has been transferred to the CORBA object FemGrid, the
finite element model can be solved. The execution of the finite element solver is
controlled by the FemCalc object. The following code from the client application
shows how the calculation is initiated:

femSolver->execute();
error = femSolver->getLastError();

In the ForcePadSolver server the execute() method is implemented as a
blocking call. This means that the execution of the client application will wait
until the server is finished. To solve this, the execute () could be implemented
as an asynchronous method call in CORBA. Additional methods for monitoring
the execution would have to be added to the interface as well.

708 J. Lindemann, O. Dahlblom, and G. Sandberg

The results from the calculation are also retrieved using the CORBA data
type sequence. The difference is that the sequence vectors now are preallocated
and must be transferred back to the C++ class CFemGrid. The following client
code shows how the results are retrieved from the FemGrid object.

// CORBA defined datatype:

// typedef sequence<double> TDisplVector;

ForcePadSolver::TDisplVector* displacements;

// Invoke request on femGrid CORBA object

femGrid->getDisplacements(displacements) ;

// Store displacement values in local class m_femGrid

m_femGrid->setDisplacementSize(displacements->length()); for (i=0;

i<displacements->length(); i++)
m_femGrid->setDisplacement (i+1, (*displacements)[i]);

// We are responsible for deleting the return values

delete displacements;

The lifetime policy used in the ForcePadSolver server is TRANSIENT. A calcu-
lation in ForcePAD does not execute over several days, so the policy PERSISTENT
will not be necessary in this case, it is better suited for applications executing
over several days. The client applications can then connect and disconnect to
object during the execution.

5.2 Server implementation

The ForcePAD solver server is implemented as a C++ console application using
the ORBacus [11] ORB. A skeleton implementation for the server is generated
using a special switch in the ORBacus IDL compiler.

To handle object creation and destruction automatically, each servant is also
derived from the RefCountServantBase base class. This class implements a ref-
erence counting scheme which automatically destroys the object servant when
there are no connections to the object. Depending on the implementation, more
complex schemes of object creation and destruction can be implemented, see [6]
for more details.

The process of executing a calculation starts with a request to the FemSolver
method execute(). The FemSolver reads the input model from the FemGrid
object and assembles the finite element model. The solver from the newmat09
[8] is then called. When the solution is found the results are stored back in the
FemGrid object. The results are now available to the client application.

5.3 Client/server configurations

The easiest configuration of the finite element system is to install the client ap-
plication together with the ForcePADSolver server and the finite element solver
on a single computer, see Figure 5. This configuration is typically used to do
calculations that fit into the memory of the local machine.

Using CORBA Middleware in Finite Element Software 709

Local computer

Presentation layer

ForcePadSolver Name server
server
Middle layer

Implementation layer

Fig. 5. Local configuration

In the first distributed configuration, the middlelayer and implementation
are moved to a separate computer. This configuration requires the server to
be able to run a CORBA ORB. If the server running the finite element solver
does not support running an ORB, the middlelayer can be placed on a separate
computer. Execution of the finite element solver can then be done using rexec,
rsh or ssh utilities. Figure 6 show two of the possible configurations. Many more
configurations are possible. By providing location transparency, the CORBA
objects can be configured in almost any way without needing to recompile the
clients and the servers.

Local computer

—
User interface
Local computer
—
Presentation layer

Presentation layer Remote computer 1

Remote computer ForcePadSolver Name server
server
ForcePadSolver Name server Middle layer
server

Middle layer

Remote computer 2

Implementation layer Implementation layer

Fig. 6. Remote configuration 1 and 2

5.4 Client application

To create a platform independent application, ForcePAD uses the fast light
toolkit (FLTK) [3]. FLTK [3] is a lightweight user interface toolkit written in
C++. The toolkit can be used on Windows 98/NT/2000 and most Unix dialects
with good performance. The 2D graphics in ForcePAD is implemented using
OpenGL [9].

710 J. Lindemann, O. Dahlblom, and G. Sandberg

One goal of the client application is to hide the CORBA implementation from
the user. The user should not be able to notice that the client is using CORBA
for interfacing with the ForcePADSolver server.

6 Conclusion

Using a three-tier implementation with interfaces and components, creates a very
flexible finite element application. The three-tier implementation protects the
client applications from changes in configuration and solver design. Components
are easily configurable and maintainable, reducing the need for further develop-
ment. By using interfaces when communicating with components, the need to
recompile client software when a new functionality is introduced in the solver
components is reduced. Interfaces can also be published enabling other software
to use the finite element application in an effective way. The CORBA specifica-
tions also enable new ways of using software. Client software can easily distribute
calculations over available workstations. High Performance Computing (HPC)
centres would be able to host a set of applications as CORBA objects. From a
web site, users can register themselves as users and download client applications
that connect to the objects. This would make high performance computing more
available to a wider user group.

References

1. Object Management Group, Inc., http://www.omg.org, 2000

2. Microsoft Corporation, DCOM Technical Overview, 1996

3. B. Spitzak, Fast Light Toolkit FLTK, http://www .fltk.org, 2000

4. Division of Structural Mechanics, Lund Univeristy, ForcePAD,
http://www.byggmek.lth.se/bmresources/forcepad, 2001

5. GNU Project, http://www.gnu.org, 2000

6. M. Henning and S. Vinoski, Advanced CORBA Programming with C++, Addison
Wesley Longman Inc., 1999

7. J.Lindemann, O. Dahlblom, G. Sandberg, An Approach For Distribution Of Re-
sources In Structural Analysis Software, ECCM 99, Miinchen, Germany, 1999

8. R. Davies, Newmat09: C++ matrix library, http://webnz.com/robert/cpp-lib.htm
#newmat09, 2001

9. OpenGL, http://www.opengl.org, 2000

10. The Open Group, http://www.opengroup.org/dce, 2000

11. Object Oriented Concepts Inc., ORBacus 4.0, http://www.ooc.com/ob, 2000

12. R. Orfali and D. Harkey, Client/server programming with Java and CORBA. - 2nd
ed., John Wiley and Sons Inc., 1998

13. G. Reilly, Developing Active Server Components with ATL, Microsoft Corporation,
1997

14. Sun Microsystems Inc., JavaTM Remote Method Invocation,
http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html, 2001

15. G. Schussel, Client/Server: Past, Present and Future,
http://www.dciexpo.com/geos/dbsejava.htm, 1996

16. S. Willliams and C. Kindel, Microsoft Corporation, The Component Object Model:
A Technical Overview, 1994

	Introduction
	Client/server architecture
	Distributed computing
	CORBA
	Concepts and Terminology
	Interface definition language
	Name service
	Object creation and destruction

	Finite element CORBA implementation
	ForcePadSolver server
	Server implementation
	Client/server configurations
	Client application

	Conclusion
	References

