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Abstract. A formulation of finite difference schemes based on the in- 
dex notation of tensor algebra is advocated. Finite difference operators 
on regular grids may be described as sparse, banded, "tensors". Espe- 
cially for 3D, it is claimed that index notation better corresponds to the 
inherent problem structure than does conventional matrix notation. 
The transition from mathematical index notation to implementation is 
discussed. Software support for index notation that obeys the Einstein 
summation convention has been implemented in the C++ package Ein- 
Sum. The extension of EinSum to support typical data structures of finite 
difference schemes is outlined. A combination of general index notation 
software and special-purpose routines for instance for fast transforms is 
envisioned. 

1 Introduction 

Basic finite difference schemes for partial differential equations on structured 
grids are, in principle, simple t o  implement. If we oversimplify, the process is as 
follows. The derivative at a certain point of the grid is approximated with a par- 
ticular finite difference stencil. For example, if we consider the Laplace equation 
in 2D, a second-order finite difference scheme yields the well-known five-point 
stencil. If curvilinear grids are used, the stencil weights vary at every point of the 
grid. A relation between grid functions (discrete approximations of fields) is thus 
obtained. This relation is usually expressed as a matrix vector multiplication, 
where each row of the matrix corresponds t o  a stencil a t  a specific grid point. 
The resulting matrix is a band matrix, whose structure can be exploited in order 
to develop efficient algorithms. Since linear algebra is such a well-developed area 
of research, both with respect to mathematical aspects as well as t o  efficient 
computer programs, the restructuring of the original formulation into a matrix 
vector multiplication has several advantages. 

However, the original formulation relates two grid functions through a stencil 
a t  each point of the grid. This data structure can be described as a "grid stencil". 
Such a grid stencil may of course be implemented as a sparse band matrix, 
but in this process the conceptual picture of the grid stencil is obscured. This 
potential risk of missing information makes it more difficult to  express finite 

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 711−718, 2002.
 Springer-Verlag Berlin Heidelberg 2002

On Software Support for Finite Difference
Schemes Based on Index Notation



difference schemes mathematically, particularly in 2D and 3D. It also makes the 
implementation of finite difference schemes more awkward. 

In this paper, we discuss an alternative approach to finite difference schemes, 
which better takes into account the inherent structure of the problem. This 
formulation is based on index notation, including the Einstein summation con- 
vention. We also study software design based on this formulation. Particularly, 
we discuss the extension of EinSum to support typical data structures of finite 
differences. 

EinSum is a C++ package for index notation. It  allows index notation ex- 
pressions to be written as plain code, thereby avoiding a notational gap between 
index notation and implementation code. The EinSum package is well suited for 
tensor algebra. It has been presented in more detail in [I], and its support of ten- 
sors with general symmetries is described in [2]. In the present paper, we focus 
on an extension to general sub and super diagonals (bands) in multi-dimensional 
arrays (tensors). 

The remainder of this paper is outlined as follows. In Section 2, we exemplify 
index notation for finite differences. In Section 3, we discuss software support 
for index notation. Finally, in Section 4, we discuss future work and the rela- 
tion between different software implementation strategies. We find that general 
index notation support is useful, for instance for expressing the finite difference 
operator. To address performance, it should be combined with special-purpose 
software for performance critical tensor operations. 

2 Index notation and finite differences 

2.1 Introductory examples 

Band matrices arise in finite difference schemes, for instance for solving PDEs in 
one space dimension. In higher dimensions, a more appropriate data structure 
is a "band tensor". For instance, the well known five-point stencil D can be 
interpreted as a (2; 2) "tensor", i.e., a multi-dimensional array with 2 upper and 
2 lower indices. It operates on a gridfunction x with two upper indices, i.e., a 
(2; 0) tensor, to produce another (2; 0) tensor y.  In index notation, where the 
Einstein summation convention is adopted, this operation reads 

Here, the summation convention implies summation over k and l ,  since they are 
repeated indices (see Section 3). 

The nonzero elements of D are: 

~ 2 5  = -4, i = k and j = l ,  
. . 

D ; > = l ,  i = k a n d j = l f  1, 

~ 2 %  = 1, i = k f  1 a n d j  =l .  
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Using the conventions (see Section 3) that summation is always suppressed on 
the left-hand side in assignments, and that free indices vary over their range, we 
may assign the nonzero elements of D as 

Another way of forming the five-point stencil is as follows. Let the nonzero 
elements of A+ and A- be 

The five-point stencil is then given by 

For curvilinear grids, the band tensors are no longer constant along the diag- 
onals. As an illustration, consider a two-dimensional transformation (x, y) = 
(x(J, q), y((, 7)) and let J, denote dJ/dx etc. By the chain rule, 

Using the centred difference A. = (A+ + A-) the corresponding differentiation 
operator Ax may be expressed as: 

In summary, finite difference operators may often conveniently be expressed as 
band tensors. Moreover, index notation provides a useful way to manipulate with 
the operators as well as the "grid functions". 

2.2 Band tensors for the Helmholtz equation 

In this subsection, we illustrate the use of index notation as an efficient tool for 
realistic problems. This section is based mainly upon results in [8-lo]. 

Consider the Helmholtz equation, 

for a 2D duct, see Figure 1. Using an orthogonal transformation, the equations 
may be rewritten for computational coordinates (t, q): 

(au& + (a-'u,), + eu = g. 
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Fig. 1. The Helmholtz equation for the following duct is an application of interest in 
underwater acoustics. 

Here, a and e are coefficients that depend on the transformation. A fourth-order 
Numerov scheme may be used (see [9]), to express the finite difference scheme 

In the interior, B is a band tensor with nine diagonals. 
The system may be solved iteratively using a Krylov subspace method with 

a normal block preconditioner. Here, we sketch the process of forming the pre- 
conditioner, using index notation. The theory is developed in [8], using the con- 
siderably more complex matrix notation. 

Choose a unitary (1; 1) tensor Q with components Qf. Consider partially 
diagonal (2; 2) tensors A such that 

Compose a (2; 2) preconditioner M;$ t Q~A::: [Q*]:. 
The choice of A that minimizes the Frobenius norm of (B - M )  is given by 

(Note that summation over i is suppressed due to the range and the assignment 
conventions, see Section 3.) 

Equation (5) may now be solved efficiently using M as a preconditioner. The 
preconditioning step can be performed cheaply, using fast transforms [lo]. 

3 Software support 

The conclusion of the previous section is that index notation and tensor-like data 
structures are convenient for expressing finite difference methods. Consequently, 
we investigate software support for such operations. This allows for a smooth 
transition from the mathematical formulation to the implementation of finite 
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difference methods. In this section, we focus on index notation support in the 
EinSum package. The design of EinSum has been presented in more detail in [I ,  

21. 
Firstly, EinSum grammar is based on the following well-known conventions 

(see, e.g., [Il l):  

1. The summation convention: If an index is repeated, both as an upper index 
and as a lower index, summation is understood. 

2. The range convention: A free index is understood as a loop index, ranging 
over all its values. 

EinSum is originally developed for supporting common tensor algebra opera- 
tions. For example, a contraction of a (3; 1) tensor D may be assigned to a (2; 0) 
tensor C as 

c i , j  + ~ i , k , j  
k '  

In EinSum, the corresponding assignment is straightforward. First, some indices 
are declared, with an approriate range N according to the dimension. 

Next, the tensors are declared with references to  appropriate index spaces. In- 
dex spaces (without symmetry properties) may be described by Ltjuxtaposing" 
indices, using the operator  I. See [2] for more details on index space construc- 
tion. Below, D is associated with an index space of rank 4, whose elements range 
from (1 ,1 ,1 ,1) .  . . (N,  N,  N,  N )  and C with an index space of rank 2, whose el- 
ements range from (1, l ) .  . . (N, N) .  Furthermore, D and C are declared as (3; l) 
and (2; 0) tensors, respectively. 

After data initialization, the assignment may now be carried out: 

EinSum requires tensors to  be indexed according to their rank. For C, as a tensor 
with no lower indices, o p e r a t o r 0  accepts one argument. D must be indexed 
with two arguments, "multi-indices" of rank three and one, respectively. Again, 
operator  I is used for juxtaposition. When the assignment is carried out, EinSum 
interprets the expression and recognizes that there is an implicit loop over indices 
I and J, as well as an implicit summation over L. See [I] for more details on the 
interpretation of the EinSum notation. This includes more complex cases, and 
also the introduction of a third convention: 

3. The assignment convention: Summation is suppressed in the left-hand side 
of assignments. 

This convention yields a natural and intuitive notation for assignments along 
diagonals. Consider, for instance, the assignments 
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According to the conventions, all these assignments have different meaning. The 
first statement assigns the diagonal values of B to the corresponding diagonal 
elements of A. The second statement assigns the trace of B ,  i.e., B! . The third 
statement assigns all elements of B to all elements of A, a "block assignment". 
All three statements are readily coded in EinSum: 

Compare with for instance Matlab or Fortran notation, or other libraries 
with some kind of index abstraction, for instance [5,6,12]. In these languages 
or libraries, only the block assignment is directly supported. We argue that the 
notation supported in EinSum is more powerful, in particular concerning the 
ability to  address diagonals for tensors of higher order. 

In the present contribution, we extend these ideas so that we are also able 
to treat generalized sub and super diagonals, as motivated for instance by equa- 
tion (2). A crucial point in the implementation is the identification of indices. 
To this end, each index has a unique ID, automatically generated. In order to 
handle sub and super diagonals, we need to slightly modify this technique. For 
instance, i and i + 1 are two expressions which refer to the same ID, but whose 
ranges differ. It is achieved by overloading operator+ to take an integer value 
and return a new index object with the same ID as the original, but with the 
range properly adjusted. This makes it possible to initiate the five-point stencil 
according to equation (2) as follows: 

EinTensor D(IIJIKIL,2,2); 

D( IIJ, I I J )  =-4; 
D( I+IIJ, IIJ = I; D( I-IIJ, I I J )  = I; 
D( IIJ+lI IIJ ) = 1; D( IIJ-I, IIJ ) = 1; 

Of course, equation (3) provides another way of creating D (assuming that A+ 
and A- are properly initiated): 

Application of the difference operator, see equation (I), may be carried out using 
the already implemented interpretation mechanisms of EinSum. It reads: 

Generalized tensor diagonals are also present when simulating the Helmholtz 
equation. The difference operator B is a banded tensor, and the computation of 
A, see equation (6)) can be written as one line of EinSum notation: 

The summation is over a and ,8, in accordance with the conventions. 
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4 Discussions and future work 

We have discussed index notation as an alternative to  matrix formulation in 
order to express finite difference algorithms for simulating PDEs. For structured 
grids, we find that index notation better corresponds t o  the data structures 
of the problem. These data structures are multi-dimensional arrays and may 
be compared with tensors. For finite differences, the sparsity pattern of typical 
stencils generates band tensors. 

Support of tensor notation has already been developed in the EinSum pack- 
age. In the present paper, we stress that it can be used also for expressing finite 
difference schemes. In particular, the support for an intuitive notation for gener- 
alized sub and super diagonals has been presented. The current implementation 
does not utilize the sparsity patterns of the band tensors, though. This may 
be addressed firstly by extending the index space hierarchy of EinSum. As ex- 
plained in [2], index spaces contain information for instance about structurally 
implied zero elements. It should not be difficult to develop a new index space 
with relevant information for banded tensors. The idea of banded index spaces 
is actually similar to  the stencil structures found in for instance PETSc, [4]. An 
advantage with banded index spaces is the potential for tailoring them according 
to the particular stencil. 

It is, however, more difficult to exploit the sparsity pattern of band tensors 
with respect to  algorithms, when a notation as general as index notation is used. 
In addition, for some operations other performance improving techniques may 
be available, which are difficult to cater for in a general package. For example, 
as part of the preconditioning step for the Helmholtz equation, the following 
unitary transformations are carried out (see [lo]) : 

This is computed according to a fast transform algorithm, using special-purpose 
software. 

As often is the case in scientific computing, there is a trade-off between gen- 
eral packages and specialized routines. Our aim is to  utilize the best of both 
worlds. We believe that the simulation of the Helmholtz equation (5), for ex- 
ample, can benefit from a general index notation library, particularly in the 
assembly process of the finite difference operator B. Also, as was noted in [7 ] ,  
preconditioners for this and similar problems would gain from a general library 
with index notation support. However, regarding the number-crunching, highly 
optimized routines should be used. Even though these may be less general, their 
design should still be based upon the data structures of the problem, see [3]. 
For finite differences, we believe that a general band tensor abstraction is such 
a data structure. 
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