
Krister Ahlander and Kurt Otto

Department of Scientific Computing, Uppsala University,
Box 120, 751 04 Uppsala, Sweden,

{krister , kurt)@tdb. uu. se

Abstract. A formulation of finite difference schemes based on the in-
dex notation of tensor algebra is advocated. Finite difference operators
on regular grids may be described as sparse, banded, "tensors". Espe-
cially for 3D, it is claimed that index notation better corresponds to the
inherent problem structure than does conventional matrix notation.
The transition from mathematical index notation to implementation is
discussed. Software support for index notation that obeys the Einstein
summation convention has been implemented in the C++ package Ein-
Sum. The extension of EinSum to support typical data structures of finite
difference schemes is outlined. A combination of general index notation
software and special-purpose routines for instance for fast transforms is
envisioned.

1 Introduction

Basic finite difference schemes for partial differential equations on structured
grids are, in principle, simple t o implement. If we oversimplify, the process is as
follows. The derivative at a certain point of the grid is approximated with a par-
ticular finite difference stencil. For example, if we consider the Laplace equation
in 2D, a second-order finite difference scheme yields the well-known five-point
stencil. If curvilinear grids are used, the stencil weights vary at every point of the
grid. A relation between grid functions (discrete approximations of fields) is thus
obtained. This relation is usually expressed as a matrix vector multiplication,
where each row of the matrix corresponds t o a stencil a t a specific grid point.
The resulting matrix is a band matrix, whose structure can be exploited in order
to develop efficient algorithms. Since linear algebra is such a well-developed area
of research, both with respect to mathematical aspects as well as t o efficient
computer programs, the restructuring of the original formulation into a matrix
vector multiplication has several advantages.

However, the original formulation relates two grid functions through a stencil
a t each point of the grid. This data structure can be described as a "grid stencil".
Such a grid stencil may of course be implemented as a sparse band matrix,
but in this process the conceptual picture of the grid stencil is obscured. This
potential risk of missing information makes it more difficult to express finite

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 711−718, 2002.
 Springer-Verlag Berlin Heidelberg 2002

On Software Support for Finite Difference
Schemes Based on Index Notation

difference schemes mathematically, particularly in 2D and 3D. It also makes the
implementation of finite difference schemes more awkward.

In this paper, we discuss an alternative approach to finite difference schemes,
which better takes into account the inherent structure of the problem. This
formulation is based on index notation, including the Einstein summation con-
vention. We also study software design based on this formulation. Particularly,
we discuss the extension of EinSum to support typical data structures of finite
differences.

EinSum is a C++ package for index notation. It allows index notation ex-
pressions to be written as plain code, thereby avoiding a notational gap between
index notation and implementation code. The EinSum package is well suited for
tensor algebra. It has been presented in more detail in [I], and its support of ten-
sors with general symmetries is described in [2]. In the present paper, we focus
on an extension to general sub and super diagonals (bands) in multi-dimensional
arrays (tensors).

The remainder of this paper is outlined as follows. In Section 2, we exemplify
index notation for finite differences. In Section 3, we discuss software support
for index notation. Finally, in Section 4, we discuss future work and the rela-
tion between different software implementation strategies. We find that general
index notation support is useful, for instance for expressing the finite difference
operator. To address performance, it should be combined with special-purpose
software for performance critical tensor operations.

2 Index notation and finite differences

2.1 Introductory examples

Band matrices arise in finite difference schemes, for instance for solving PDEs in
one space dimension. In higher dimensions, a more appropriate data structure
is a "band tensor". For instance, the well known five-point stencil D can be
interpreted as a (2; 2) "tensor", i.e., a multi-dimensional array with 2 upper and
2 lower indices. It operates on a gridfunction x with two upper indices, i.e., a
(2; 0) tensor, to produce another (2; 0) tensor y. In index notation, where the
Einstein summation convention is adopted, this operation reads

Here, the summation convention implies summation over k and l , since they are
repeated indices (see Section 3).

The nonzero elements of D are:

~ 2 5 = -4, i = k and j = l ,
. .

D ; > = l , i = k a n d j = l f 1,

~ 2 % = 1, i = k f 1 a n d j =l .

712 K. Ahlander and K. Otto°

Using the conventions (see Section 3) that summation is always suppressed on
the left-hand side in assignments, and that free indices vary over their range, we
may assign the nonzero elements of D as

Another way of forming the five-point stencil is as follows. Let the nonzero
elements of A+ and A- be

The five-point stencil is then given by

For curvilinear grids, the band tensors are no longer constant along the diag-
onals. As an illustration, consider a two-dimensional transformation (x, y) =
(x(J, q), y((, 7)) and let J, denote dJ/dx etc. By the chain rule,

Using the centred difference A. = (A+ + A-) the corresponding differentiation
operator Ax may be expressed as:

In summary, finite difference operators may often conveniently be expressed as
band tensors. Moreover, index notation provides a useful way to manipulate with
the operators as well as the "grid functions".

2.2 Band tensors for the Helmholtz equation

In this subsection, we illustrate the use of index notation as an efficient tool for
realistic problems. This section is based mainly upon results in [8-lo].

Consider the Helmholtz equation,

for a 2D duct, see Figure 1. Using an orthogonal transformation, the equations
may be rewritten for computational coordinates (t, q):

(au& + (a-'u,), + eu = g.

713On Software Support for Finite Difference Schemes Based on Index Notation

Fig. 1. The Helmholtz equation for the following duct is an application of interest in
underwater acoustics.

Here, a and e are coefficients that depend on the transformation. A fourth-order
Numerov scheme may be used (see [9]), to express the finite difference scheme

In the interior, B is a band tensor with nine diagonals.
The system may be solved iteratively using a Krylov subspace method with

a normal block preconditioner. Here, we sketch the process of forming the pre-
conditioner, using index notation. The theory is developed in [8], using the con-
siderably more complex matrix notation.

Choose a unitary (1; 1) tensor Q with components Qf. Consider partially
diagonal (2; 2) tensors A such that

Compose a (2; 2) preconditioner M;$ t Q~A::: [Q*]:.
The choice of A that minimizes the Frobenius norm of (B - M) is given by

(Note that summation over i is suppressed due to the range and the assignment
conventions, see Section 3.)

Equation (5) may now be solved efficiently using M as a preconditioner. The
preconditioning step can be performed cheaply, using fast transforms [lo].

3 Software support

The conclusion of the previous section is that index notation and tensor-like data
structures are convenient for expressing finite difference methods. Consequently,
we investigate software support for such operations. This allows for a smooth
transition from the mathematical formulation to the implementation of finite

714 K. Ahlander and K. Otto°

difference methods. In this section, we focus on index notation support in the
EinSum package. The design of EinSum has been presented in more detail in [I ,

21.
Firstly, EinSum grammar is based on the following well-known conventions

(see, e.g., [Il l):

1. The summation convention: If an index is repeated, both as an upper index
and as a lower index, summation is understood.

2. The range convention: A free index is understood as a loop index, ranging
over all its values.

EinSum is originally developed for supporting common tensor algebra opera-
tions. For example, a contraction of a (3; 1) tensor D may be assigned to a (2; 0)
tensor C as

c i , j + ~ i , k , j
k '

In EinSum, the corresponding assignment is straightforward. First, some indices
are declared, with an approriate range N according to the dimension.

Next, the tensors are declared with references to appropriate index spaces. In-
dex spaces (without symmetry properties) may be described by Ltjuxtaposing"
indices, using the operator I. See [2] for more details on index space construc-
tion. Below, D is associated with an index space of rank 4, whose elements range
from (1 ,1 ,1 ,1) . . . (N, N, N, N) and C with an index space of rank 2, whose el-
ements range from (1, l) . . . (N, N) . Furthermore, D and C are declared as (3; l)
and (2; 0) tensors, respectively.

After data initialization, the assignment may now be carried out:

EinSum requires tensors to be indexed according to their rank. For C, as a tensor
with no lower indices, o p e r a t o r 0 accepts one argument. D must be indexed
with two arguments, "multi-indices" of rank three and one, respectively. Again,
operator I is used for juxtaposition. When the assignment is carried out, EinSum
interprets the expression and recognizes that there is an implicit loop over indices
I and J, as well as an implicit summation over L. See [I] for more details on the
interpretation of the EinSum notation. This includes more complex cases, and
also the introduction of a third convention:

3. The assignment convention: Summation is suppressed in the left-hand side
of assignments.

This convention yields a natural and intuitive notation for assignments along
diagonals. Consider, for instance, the assignments

715On Software Support for Finite Difference Schemes Based on Index Notation

According to the conventions, all these assignments have different meaning. The
first statement assigns the diagonal values of B to the corresponding diagonal
elements of A. The second statement assigns the trace of B , i.e., B! . The third
statement assigns all elements of B to all elements of A, a "block assignment".
All three statements are readily coded in EinSum:

Compare with for instance Matlab or Fortran notation, or other libraries
with some kind of index abstraction, for instance [5,6,12]. In these languages
or libraries, only the block assignment is directly supported. We argue that the
notation supported in EinSum is more powerful, in particular concerning the
ability to address diagonals for tensors of higher order.

In the present contribution, we extend these ideas so that we are also able
to treat generalized sub and super diagonals, as motivated for instance by equa-
tion (2). A crucial point in the implementation is the identification of indices.
To this end, each index has a unique ID, automatically generated. In order to
handle sub and super diagonals, we need to slightly modify this technique. For
instance, i and i + 1 are two expressions which refer to the same ID, but whose
ranges differ. It is achieved by overloading operator+ to take an integer value
and return a new index object with the same ID as the original, but with the
range properly adjusted. This makes it possible to initiate the five-point stencil
according to equation (2) as follows:

EinTensor D(IIJIKIL,2,2);

D(IIJ, I I J) =-4;
D(I+IIJ, IIJ = I; D(I-IIJ, I I J) = I;
D(IIJ+lI IIJ) = 1; D(IIJ-I, IIJ) = 1;

Of course, equation (3) provides another way of creating D (assuming that A+
and A- are properly initiated):

Application of the difference operator, see equation (I), may be carried out using
the already implemented interpretation mechanisms of EinSum. It reads:

Generalized tensor diagonals are also present when simulating the Helmholtz
equation. The difference operator B is a banded tensor, and the computation of
A, see equation (6)) can be written as one line of EinSum notation:

The summation is over a and ,8, in accordance with the conventions.

716 K. Ahlander and K. Otto°

4 Discussions and future work

We have discussed index notation as an alternative to matrix formulation in
order to express finite difference algorithms for simulating PDEs. For structured
grids, we find that index notation better corresponds t o the data structures
of the problem. These data structures are multi-dimensional arrays and may
be compared with tensors. For finite differences, the sparsity pattern of typical
stencils generates band tensors.

Support of tensor notation has already been developed in the EinSum pack-
age. In the present paper, we stress that it can be used also for expressing finite
difference schemes. In particular, the support for an intuitive notation for gener-
alized sub and super diagonals has been presented. The current implementation
does not utilize the sparsity patterns of the band tensors, though. This may
be addressed firstly by extending the index space hierarchy of EinSum. As ex-
plained in [2], index spaces contain information for instance about structurally
implied zero elements. It should not be difficult to develop a new index space
with relevant information for banded tensors. The idea of banded index spaces
is actually similar to the stencil structures found in for instance PETSc, [4]. An
advantage with banded index spaces is the potential for tailoring them according
to the particular stencil.

It is, however, more difficult to exploit the sparsity pattern of band tensors
with respect to algorithms, when a notation as general as index notation is used.
In addition, for some operations other performance improving techniques may
be available, which are difficult to cater for in a general package. For example,
as part of the preconditioning step for the Helmholtz equation, the following
unitary transformations are carried out (see [lo]) :

This is computed according to a fast transform algorithm, using special-purpose
software.

As often is the case in scientific computing, there is a trade-off between gen-
eral packages and specialized routines. Our aim is to utilize the best of both
worlds. We believe that the simulation of the Helmholtz equation (5), for ex-
ample, can benefit from a general index notation library, particularly in the
assembly process of the finite difference operator B. Also, as was noted in [7] ,
preconditioners for this and similar problems would gain from a general library
with index notation support. However, regarding the number-crunching, highly
optimized routines should be used. Even though these may be less general, their
design should still be based upon the data structures of the problem, see [3].
For finite differences, we believe that a general band tensor abstraction is such
a data structure.

References

1. K. Ahlander. Einstein summation for multi-dimensional arrays. In E. Munthe-
Kaas et al., editors, Norsk Informatikk Konferanse - NIK'2000, pages 67-78. Tapir,

717On Software Support for Finite Difference Schemes Based on Index Notation

Norway, 2000.
2. K. Ahlander. Supporting tensor symmetries in EinSum. Technical Report 2 12,

Dept. of Informatics, University of Bergen, Bergen, Norway, June 2001. To appear
in Computers and Mathematics with Applications.

3. K. Ahlander, M. Haveraaen, and H. Munthe-Kaas. On the role of mathematical
abstractions for scientific computing. In R. Boisvert and P. Tang, editors, The
Architecture of Scientific Software, pages 145-158. Kluwer Academic Publishers,
Boston, 2001.

4. S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management
of parallelism in object-oriented numerical software libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern Software Tools for Scientific Com-
puting, pages 163-202. Birkhauser, 1997.

5. J.C. Cummings et al. Rapid application development and enhanced code interop-
erability using the POOMA framework. In S. L. L. M. E. Henderson and C. R.
Anderson, editors, Object-oriented Methods for Interoperable Scientific and Engi-
neering Computing, Philadelphia, 1999. SIAM. ch. 29.

6. M. Lemke and D. Quinlan. P++, a parallel C++ array class library for
architecture-independent development of structured grid applications. A CM SIG-
PLAN Notices, 28(1):21-23, 1993.

7. E. Mossberg, K. Otto, and M. Thun6. Object-oriented software tools for the con-
struction of preconditioners. Sci. Programming, 6:285-295, 1997.

8. K. Otto. A unifying framework for preconditioners based on fast transforms. Re-
port 187, Dept . of Scientific computing, Uppsala Univ., Uppsala, Sweden, 1996.

9. K. Otto. Iterative solution of the Helmholtz equation by a fourth-order method.
Boll. Geof. Teor. Appl., 40 suppl.:104-105, 1999.

10. K. Otto and E. Larsson. Iterative solution of the Helmholtz equation by a second-
order method. SIAM J. Matrix Anal. Appl., 21:209-229, 1999.

11. J.G. Papastavridis. Tensor calculus and analytical dynamics. Library of engineering
mathematics. CRC Press LLC, 1999.

12. T. Veldhuizen. Arrays in Blitz++. In Proceedings of the 2nd International Scien-
tific Computing in Object-Oriented Parallel Environments (ISCOPE'98), Lecture
Notes in Computer Science. Springer-Verlag, 1998.

718 K. Ahlander and K. Otto°

	Introduction
	Index Notation and Finite Differences
	Introductory Examples
	Band Tensors for the Helmholtz Equation

	Software Support
	Discussion and Future Work
	References

