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Abstract. A stochastic discrete fracture netw orkmodel of Darcy's un-

derground w ater ÿowin disruptedrock massifsis introduced.Mixed þnite

element method and hybridization of appropriate low est orderRa viart{

Thomas appro ximationis used for the sp ecial conditions of the ÿow

through connected system of 2-D polygonsplaced in 3-D.Model problem

is tested.

1 Introduction

We consider a steady saturated Darcy's law g overned üo wof an incompressible
üuid through a system of 2-D p olygons placed in the 3-D space and connected
under certain conditions in to one net w ork.This may simulate underground w a-
ter üo wthrough natural geological disruptions of a rockmassif, fractures, e.g.
for the purposes of ûnding of suitable nuclear w asterep ositories.Note that in-
tersection of three or more triangles through one edge in the discretization is
p ossible owing to the sp ecial geometrical situation, see Fig. 1. We study the ex-
istence and uniqueness of w eakand discrete mixed solutions, and ûnally use the
hybridizationof the low est orderRaviart-Thomas mixed approximation, see [3],
[4] resp ectiv ely. For technical details of the follo wing,see [5].

2 Mathematical-physical F ormulation

We suppose that we h ave

S =
{ ⋃
#∈L

α# \ ∂S
}
, (1)

where α# is an op ened2-D p olygon placed in a 3-D Euclidean space; w ecall
α# as a fracture. We denote as L the index set of fractures, |L| is the numbe r
(ûnite) of consideredfractures. We suppose that all closuresof thesep olygonsare
connected in to one \fracture net w ork",the connection is p ossible only through
an edge, not a p oin t.Moreover, w erequire that if αi

⋂
αj -= ∅ then αi

⋂
αj ⊂

∂αi
⋂
∂αj , i.e. the connection is p ossible only through fracture b oundaries, cf.
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Fig. 1 (we state this requirement in order to be able to deÿne correct function
spaces).

Let us have a 2-D orthogonal coordinate system in each polygon α#. We are
looking for the fracture þow velocity u (2-D vector in each α#), which is the
solution of the following problem

u = −K
(
∇p+∇z

)
in S , (2)

∇ · u = q in S , (3)

p = pD in ΛD, u · n = uN in ΛN , (4)

where all variables are expressed in appropriate local coordinates of α# and
also the diýerentiation is always expressed towards these local coordinates. The
equation 2 is Darcy's law, 3 is the mass balance equation and 4 is the expression
of appropriate boundary conditions. The variable p denotes the modiÿed þuid
pressure p (p = p

&g ), g is the gravitational acceleration constant, + is the þuid

density, q represents stationary sources/sinks density and z is the elevation,
positive upward taken vertical 3-D coordinate expressed in appropriate local
coordinates. We require the second rank tensorK to be symmetric and uniformly
positive deÿnite on each α#. ΛD is a part of ∂S where Dirichlet's type boundary
conditions is given and similary ΛN is a part of ∂S where Neumann's type
boundary condition is given. Of course ∂S = ΛD ∪ Λn holds.

3 Function Spaces

We start from L2(α#), ‖u‖0,α!
= (
∫
α!
u2 dS)

1

2 and L2(α#) = L2(α#)×L2(α#) in
order to introduce

L2(S) ≡
∏
#∈L

L2(α#) , L
2(S) ≡ L2(S)× L2(S) . (5)

We begin with classical Sobolev space H1(α#) of scalar functions with square
integrable weak derivatives, H1(α#) = {ϕ ∈ L2(α#); ∇ϕ ∈ L2(α#)}, ‖ϕ‖1,α!

=

(
∫
α!
[ϕ2 +∇ϕ · ∇ϕ] dS)12 , so as to introduce

H1(S) ≡ {v ∈ L2(S) ; v|α!
∈ H1(α#) ∀& ∈ L , (6)

(v|αi)|f = (v|αj )|f ∀ f = αi
⋂
αj , i, j ∈ L } .

We note that this is possible even for the investigated geometrical situation. We
then have the spaces H

1

2 (∂S) and H−
1

2 (∂S) and the surjective continuous trace

operator γ : H1(S)→ H
1

2 (∂S) as in the standard planar case.
We denote as H(div, α#) the Hilbert space of vector functions with square

integrable weak divergences, H(div, α#) = {v ∈ L
2(α#) ; ∇ · v ∈ L2(α#)},

‖u‖H(div,α!) = (‖u‖20,α!
+ ‖∇ · u‖20,α!

)
1

2 . We can deÿne now

H(div,S) ≡ {v ∈ L2(S) ; v|α!
∈ H(div, α#) ∀& ∈ L ,∑

i∈If 〈v|αi · ni, ϕi〉 = 0} (7)

∀f such that |If | ≥ 2 , If = {i ∈ L ; f ⊂ ∂αi} , ∀ϕi ∈ H1
∂αi\f .
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Again, such \local" deÿnition is necessary, since we do not deal with a standard
planar case. It naturally expresses the continuity of the normal trace of functions
from H(div,S) even for the given geometrical situation. We have the surjective

continuous normal trace operator ζ : u ∈ H(div,S) → u · n ∈ H−
1

2 (∂S)
as in the standard planar case. We further deÿne the space H0,N (div,S) =
{u ∈ H(div,S) ; 〈u · n, ϕ〉∂S = 0 ∀ϕ ∈ H1

D(S)}. (where H1

D(S) = {ϕ ∈
H1(S) ; γϕ = 0 onΛD } ) Naturally, the norms on the spaces deÿned by 5, 6, 7
are given as

‖ ‖2·,S =

|L|∑
#=1

‖ ‖2·,α!
. (8)

Remark 31 Note that deÿnitions 5, 6, 7 are essential. The system S, however
consisting of plane polygons, is not planar by oneself. Moreover, one edge can be
common to three or more polygons α# creating the system S.

4 Weak Mixed Solution

Let us denote A = K−1 on each α#, characterizing the medium resistance. Let
us now consider such ~u that ~u · n = uN on ΛN in appropriate sense.

Deÿnition 41 As a weak mixed solution of the steady saturated fracture þow
problem described by 2 { 4, we understand a function u = u0 + ~u, u0 ∈
H0,N (div,S), and p ∈ L2(S) satisfying

(Au0,v)0,S − (∇ · v, p)0,S = −〈v · n, pD〉ΛD + (∇ · v, z)0,S − (9)

−〈v · n, z〉∂S − (A~u,v)0,S ∀v ∈ H0,N(div,S) ,

−(∇ · u0, φ)0,S = −(q, φ)0,S + (∇ · ~u, φ)0,S ∀φ ∈ L2(S) . (10)

Our requirements are Aij ∈ L∞(S), q ∈ L2(S), pD ∈ H
1

2 (ΛD) and uN ∈
H−

1

2 (ΛN ).

Theorem 41 The problem (9), (10) has a unique solution.

Proofs of this and all following theorems and lemmas can be found in [5].

5 Mixed Finite Element Approximation

Let us suppose a triangulation Th of the system S from now on. We deÿne
an index set Jh to number the elements of the triangulation, |Jh| denotes the
number of elements. We deÿne a 3-dimensional space RT0(e) of vector functions
linear on a given element e with the basis vei , i ∈ {1, 2, 3}, where

v
e
1
= ke

1

[
x− αe

11

y − αe
12

]
, v

e
2
= ke

2

[
x− αe

21

y − αe
22

]
, v

e
3
= ke

3

[
x− αe

31

y − αe
32

]
.
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Concerning its dual basis, we state classically Ne
j , j = 1, 2, 3, Ne

j (uh) =
∫
fej
uh ·

n
e
j dl, with each functional Ne

j expressing the ÿux through one edge for uh ∈
RT

0(e); we have Ne
j (v

e
i ) = δij after appropriate choice of αe11 − αe32, k

e
1 − ke3.

The local interpolation operator is then given by

πe(u) =
3∑
i=1

Ne
i (u)v

e
i ∀ u ∈ (H1(e))2 . (11)

We start from the Raviart{Thomas spaceRT0

−1(Th) of on each element linear
vector functions without any continuity requirements,

RT
0
−1(Th) ≡ {v ∈ L2(S) ; v|e ∈ RT0(e) ∀e ∈ Th} ,

to deþne the \continuity assuring" space RT0

0(Th) by
RT

0

0(Th) ≡ {v ∈ RT0

−1(Th) ;
∑

i∈If v|ei · nf,∂ei = 0 ∀f such that

|If | ≥ 2 , If = {i ∈ Jh ; f ⊂ ∂ei} = RT
0

−1(Th) ∩H(div,S) .
We set furthermore

RT
0

0,N (Th) ≡ {v ∈ RT0

0(Th) ; v · n = 0 in ΛN} = RT
0

−1(Th) ∩H0,N(div,S)
and

M0
−1(Th) ≡ {φ ∈ L2(S) ; φ|e ∈M0(e) ∀e ∈ Th} ,

where M0(e) is the space of scalar functions constant on a given element e.
Looking for the basis, appropriate dual basis, and global interpolation operator
for RT0

0(Th), we have the following deþnitions and lemmas:

We setNh = {N1, N2, . . . , NINh} as the dual basis ofRT0

0(Th), where for each
border edge f , we have one functional Nf deþned by Nf (uh) =

∫
f uh|e · n∂e dl,

and for each inner edge f common to elements e1, e2, . . . , eIf , we have |If | − 1
functionals given by

Nf,j(uh) =
1

|If |
∫
f

uh|e1 ·n∂e1dl−
1

|If |
∫
f

uh|ej+1 ·n∂ej+1dl, j = 1, . . . , |If |−1 .

Lemma 1. For all uh ∈ RT
0

0(Th), from Nj(uh) = 0 ∀ j = 1, . . . , INh
follows

that uh = 0.

We set Vh = {v1,v2, . . . ,vINh}, where for each border edge f , we have one
base function vf deþned by vf = v

e
f with v

e
f being the local base function

appropriate to the element e and its edge f , and for each inner edge f common
to elements e1, e2, . . . , eIf , we have |If | − 1 base functions given by

vf,i =

|If |∑
k=1, k %=i+1

v
ek
f − (If − 1)v

ei+1
f , i = 1, . . . , |If | − 1 .
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Lemma 2. For the bases Nh and Vh, Nj(vi) = δij, i, j = 1, . . . , INh
holds.

We introduce ÿrst a space smoother than H(div,S), corresponding to the
classical (H1(S))2,

H(grad,S) = {v ∈ L2(S) ; v|α!
∈ (H1(α#))

2 ∀& ∈ L ,∑
i∈If v|αi · nf,∂αi = 0

∀f such that |If | ≥ 2 , If = {i ∈ L ; f ⊂ ∂αi} ,
in order to set the global interpolation operator

πh(u) =

INh∑
i=1

Ni(u)vi ∀ u ∈ H(grad,S) . (12)

Lemma 3. Concerning the local and global interpolation operators given by 11,
12 respectively, we have their equality on each element, i.e.

πh(u)|e = πe(u|e) ∀ e ∈ Th, ∀ u ∈ H(grad,S) .
Lemma 4. Even for the considered special function spaces and their ÿnite di-
mensional subspaces, we have

H(grad,S) div−→ L2(S)!πh
!Ph

RT
0
0(Th) div−→M0

−1(Th)
, (13)

i.e. the commutativity diagram property, where πh is the global interpolation op-
erator deÿned in (12), and Ph is the L2(S)-orthogonal projection onto M0

−1(Th).
Deÿnition 51 As the lowest order Raviart{Thomas mixed approximation of
the the problem (9), (10), we understand functions u0,h ∈ RT0

0,N (Th) and ph ∈
M0
−1(Th) satisfying

(Au0,h,vh)0,S − (∇ · vh, ph)0,S = −〈vh · n, pD〉ΛD + (∇ · vh, z)0,S − (14)

−〈vh · n, z〉∂S − (A~u,vh)0,S ∀vh ∈ RT0
0,N (Th) ,

−(∇ · u0,h, φh)0,S = −(q, φh)0,S + (∇ · ~u, φh)0,S ∀φh ∈M0
−1(Th) . (15)

Theorem 51 The problem (14), (15) has a unique solution.

6 Error Estimates and Hybridization of the Mixed

Method

If the solution (u0, p) of (9), (10) is such that (u0, p) ∈ H(grad,S)×H1(S) and
∇ · u0 ∈ H1(S) and if (u0,h, ph) is the solution of (14), (15), then

‖u0 − u0,h‖H(div,S) + ‖p− ph‖0,S ≤ Ch(|p|1,S + |u0|1,S + |∇ · u0|1,S) ,
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where the constant C does not depend on h and |ϕ|1,S = ‖∇ϕ‖0,S , |u|21,S =∑
2

i=1 |ui|21,S (see [4], Theorem 13.2).
Intending to hybridize the mixed approximation, we deÿne two sets of edges,

Λh = ∪e∈Th∂e , Λh,D = ∪e∈Th∂e− ΛD .

If f ∈ Λh, we deÿne ÿrst the space M
0(f) of functions constant on this edge and

ÿnally

M0

−1(Λh,D) ≡ {µh : Λh → R ; µh|f ∈M0(f) ∀f ∈ Λh ,

µh|f = 0 ∀f ∈ ΛD} .
It now follows immediately that if vh ∈ RT0

−1(Th), then vh ∈ RT0

0,N (Th) if and
only if ∑

e∈Th
〈vh · n, λh〉∂e∩Λh,D = 0 ∀λh ∈M0

−1(Λh,D) ,

which allows us to state the hybrid version of the lowest order Raviart{Thomas
mixed method:

Deÿnition 61 As the lowest order Raviart{Thomas mixed-hybrid approxima-
tion of the the problem (9), (10), we understand functions u0,h ∈ RT

0

−1(Th),
ph ∈M0

−1(Th) and λh ∈M0

−1(Λh,D) satisfying

∑
e∈Th

{(Au0,h,vh)0,e − (∇ · vh, ph)0,e + 〈vh · n, λh〉∂e∩Λh,D} =

=
∑
e∈Th

{−〈vh · n, pD〉∂e∩ΛD + (∇ · vh, z)0,e − 〈vh · n, z〉∂e − (A~u,vh)0,e}

∀vh ∈ RT0

−1(Th) , (16)

−
∑
e∈Th

(∇ · u0,h, φh)0,e = −
∑
e∈Th

{(q, φh)0,e − (∇ · ~u, φh)0,e}

∀φh ∈M0

−1(Th) , (17)

∑
e∈Th

〈u0,h · n, µh〉∂e∩Λh,D =
∑
e∈Th

{〈uN , µh〉∂e∩ΛN − 〈~u · n, µh〉∂e∩Λh,D}

∀µh ∈M0

−1(Λh,D) . (18)

Due to the previously mentioned, the triple u0,h, ph, λh surely exist and
is unique, u0,h and ph are moreover at the same time the unique solutions of
(14), (15); moreover, the multiplier λh is an approximation of the trace of p
on all edges from Λh,D. Consequently, all error estimates are valid also for the
mixed-hybrid solution triple u0,h, ph, λh. Thus, we have the following theorem:

Theorem 61 The problem (16) { (18) has a unique solution.
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7 Model Problem

We consider a simple model problem with the system S viewed in Figure 1,

S = α1
⋃

α2
⋃

α3
⋃

α4 \ ∂S ,

u = −
(
∇p+∇z

)
in S ,

∇ · u = 0 in S ,

p = 0 in Λ1 , p = 0 in Λ2

u · n = 0 in Λ3 , u · n = 0 in Λ4 (19)

p = sin
(
πx1
2X

)
sinh

(
π(A+B)

2X

)
+ S · A in Λ5 , p = S · y1 in Λ6

p = 0 in Λ7 , p = 0 in Λ8

u · n = 0 in Λ9 , u · n = 0 in Λ10

p = sin
(
πx4
2X

)
sinh

(
π(B+B)

2X

)
in Λ11 , p = 0 in Λ12 .

The exact solutions in α1 can be easily found as
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Fig. 1. Considered Domain for the Model Problem
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pα1 = sin
(πx1
2X

)
sinh

(π(y1 +B)

2X

)
+ S · y1 ,

uα1 =

(
− π

2X
cos
(πx1
2X

)
sinh

(π(y1 +B)

2X

)
,

− π

2X
sin
(πx1
2X

)
cosh

(π(y1 +B)

2X

)
− S −∇zyα1

)
,

where ∇zα1 = (0,∇zyα1), S +∇zyα1 = ∇zyα2 .
The following table gives pressure, velocity, and pressure trace approxima-

tion errors in the ÿrst fracture α1. There is the expected O(h) convergence in

pressure and velocity, but only O(h
1

2 ) in pressure trace in ‖ · ‖0,Λh,D norm. All
the computations were done in double precision on a personal computer, the
resulting symmetric indeÿnite systems of linear equations were solved by the
solver GI8 of the Institute of Computer Science, Academy of Sciences of the
Czech Republic, see [2]. This is based on the sequential elimination onto a sys-
tem with Schur's complement and subsequent solution of this system by the
specially preconditioned conjugate gradients method. The solver accuracy was
set to 10−8.

N triangles ‖p− ph‖0,S ‖u − uh‖H(div,Th) ‖λ− λh‖0,Λh,D
2 8×4 0.4445 1.2247 1.4973

4 32×4 0.2212 0.6263 1.0562

8 128×4 0.1102 0.3150 0.7509

16 512×4 0.0550 0.1577 0.5332

32 2048×4 0.0275 0.0789 0.3779

64 8192×4 0.0138 0.0394 0.2676

128 32768×4 0.0069 0.0197 0.1893

256 131072×4 0.0034 0.0099 0.1339

Table 1. Pressure, Velocity, and Pressure Trace Errors in α1 for the Model Problem

8 Example of real-world problem

Results of model problem presented in previous section prooved correctness
of mathematical model as well as correctness of its numerical implementation.
Therefore we have tried to use the model for solving a real-world problem.

The problem was based on measurements in the boreholes PTP{3 and PTP{
4 situated in Krun Hory mountains, Czech Republic. Results of these measure-
ments have given us data for creating computer approximation of fractured en-
vironment in rock massif and, consequently, for its discretizing to FEM/FVM
mesh. Then, boundary contition was set and calculation has been started.
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Example of results of such calculation is shown at ÿgure 2. Mesh presented

of this ÿgure covers volume 5x10x10 meter. It consists of approx. 200 fractures

and 3000 triangle elements.

Fig. 2. Example of real-world problem calculation

9 Conclusion

Mathematical model of groundwater þow was described. This model is based

on assumption, that þow in particular fracture can be approximated by Darcy's

law. Mixed-hybride approximation of solution of problem was introduced and

error estimation for such approximation was derived. Practical tests prooved

correctness of presented approach.
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