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Abstract. Early suggested difference schemes with splitting according
to the physical processes are used and applied for a plane filtration prob-
lem in a multilayer system. Parallel algorithm connected with the solving
of the filtration problem (one water-carrying layer on one processor) is
constructed. Program realization on the multiprocessor system SPP2000
is discussed. Some results of sequential and parallel programs are com-
pared with regard to the used time MPI Wtime() procedure.

1 Introduction

Modeling of the water filtration in practical applications of hydro-geology dy-
namics is based very often on the using of models of plane filtration [1],[2],[3],[4]
with homogenization of filtration flows in the direction of the layer thickness. A
typical situation occurs when horizontal water-carrying layers are alternated by
the horizontal weakly permeable ground layers. Mathematical models of filtra-
tion in a multilayer system were constructed provided that a longitudinal flow
of water takes place mainly in the water-carrying layers and cross flow of water
takes place through separated layers (Mityaev-Girinski model [5]). These math-
ematical models can be valid by the homogenization theory [6] and represent a
complex system.

Various methods [7] were used for numerical solution of the plane filtration
problems. The simplest of them consists of using of common difference schemes
with weights [8]. For example, the implicit scheme for a parabolic constrained
system of equations for the piezometric head in each water-carrying layer can
be used. After some suitable iteration process based on the idea of determining
of piezometric head in each separate water-carrying layer can be applied. Dif-
ference schemes with splitting in space variables were constructed in [7]. But
realization of such approach for a multilayer system even for one dimensional
problems (the dependence only on one longitudinal variable) is constrained with
using of three diagonal matrix inversion that, certainly, substantially complicates
computational schemes.
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In this paper according to [9] we formulate a problem of the plane filtration
in the multilayer systems and we use, suggested in [9], difference schemes with
splitting that are free of mentioned inconvenience. The used difference schemes
are splitted according to the physical processes when two processes – filtration
along the water-carrying layers and flows between the layers are separated. More-
over, the schemes are additive and absolutely stable.
The formulation of the problem and difference schemes for its solution are pre-
sented in Section 2. Parallel algorithms for solution of the used difference schemes
of filtration problems in multilayer systems are constructed in Section 3. In Sec-
tion 3 we also suggest the most natural approach that consists of the solution
when the filtration problem in each water-carrying layer is processed by one pro-
cessor. Program realization of such approach is discussed for the multiprocessor
system SPP2000 in Section 3 as well.
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Fig. 1 A Multilayer System of Water-carrying and Weakly Permeable Layers

2 Formulation of the Problem and Difference Schemes

Let us consider, according to [9], the plane filtration in a multilayer system which
consists (see Fig. 1) of p water-carrying layers that are separated by weakly
permeable layers. Let us suppose all layers are horizontal. We denote the hydro-
dynamical piezometric head Hα(x, y, t) in the point (x, y) of the layer α, α =
1, 2, . . . , p at the moment t. Let kα = kα(x, y) be filtration coefficients, mα –
thickness of a water-carrying layer α, Tα = kαmα – conductivity of layer and
µα = µα(x, y) – elastic capacity of layer. Correspondingly, kα,β = kα,β(x, y), β =
α+1,α−1 are filtration coefficients and mα,β – thickness of a weakly permeable
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layer, χα,β = kα,β/mα,β – coefficients of the cross flow. If the conditions of the
cross flow (kα/mα << kα,β/mα,β) hold then we use for description of filtration
in each water-carrying layer α, α = 2, 3, . . . , p− 1 the following equation

µα
∂Hα

∂t
=

∂

∂x
Tα

∂Hα

∂x
+

∂

∂y
Tα

∂Hα

∂y
+ (1)

+χα,α+1(Hα+1 −Hα) + χα,α−1(Hα−1 −Hα) + fα(x, y, t),

where fα(x, y, t) is a water source and/or a water sink. We have for lower and
upper layers

µ1
∂H1

∂t
=

∂

∂x
T1

∂H1

∂x
+

∂

∂y
T1

∂H1

∂y
+ (2)

+χ1,2(H2 −H1)− χ1,0H1 + f1(x, y, t),

µp
∂Hp

∂t
=

∂

∂x
Tp

∂Hp

∂x
+

∂

∂y
Tp

∂Hp

∂y
+ (3)

+χp,p−1(Hp−1 −Hp)− χp,p+1Hp + fp(x, y, t),

Equations (2), (3) for χ1,0 = 0, χp,p+1 = 0 correspond to assumption that upper
and lower layers are bounded by waterproof. Due to the mass conservation law
we have in (1)− (3)

χα,α+1 = χα+1,α, α = 1, 2, . . . , p− 1. (4)

The equations system (1) − (3) is considered on a calculation domain D. For
simplicity we suppose the domain D is a rectangle

D = {(x, y) | 0 < x < a, 0 < y < b}.
We take boundary conditions in the simplest form

Hα(x, y, t) = 0, (x, y) ∈ ∂D, α = 1, 2, . . . , p. (5)

Finally, initial conditions must be written

Hα(x, y, 0) = H0
α(x, y), (x, y) ∈ D, α = 1, 2, . . . , p. (6)

We rewrite the imposed initial boundary value problem (1)− (6) in the brief
form. Let us introduce some denotations. Let the vector

U = U(x, y, t) = {H1, H2, . . . , Hp}
be a solution of the problem (1)− (6), and

F = F (x, y, t) = {f1, f2, . . . , fp}.
Let us define the diagonal matrices M and θ

M = {µα(x, y)δα,β}, α,β = 1, 2, . . . , p, (7)

806 M. Pavlus and E. Hayryanv



θ = {Tα(x, y)δα,β}, α,β = 1, 2, . . . , p,

where δα,β be the Kronecker’s symbol. Now, let K is a three diagonal matrix
that corresponds to cross flow through separating layers

K = {κα,β}, α,β = 1, 2, . . . , p, (8)

in which connection

κα,α−1 = −χα,α−1, κα,α+1 = −χα,α+1, κα,α = χα,α−1 + χα,α+1. (9)

Finally, we define

LU = − ∂

∂x
θ
∂U

∂x
− ∂

∂y
θ
∂U

∂y
. (10)

Taking into account (7)− (10) we write the system of equations (1)− (3) in the
form

M
∂U

∂t
+ LU +KU = F (x, y, t), (x, y) ∈ D. (11)

Using analogical denotations the boundary and initial conditions (5), (6) have
the following form

U(x, y, t) = 0, (x, y) ∈ ∂D, (12)

U(x, y, 0) = U0(x, y), (x, y) ∈ D. (13)

Next, we introduce difference schemes with weights for solution of the brief
formulated problem (11)− (13). Let us introduce the equidistant net

ωτ = {t | t = tn = nτ, n = 0, 1, . . .}

with respect to time variable the time step of which is τ > 0. We also examine
the approximated equations (11)− (13) with respect to the space variables dis-
cretization. We introduce an equidistant rectangle net in the rectangular domain
D with discretizing parameters hx and hy

ωh = ωh + γh = {(x, y)|(x, y) = (xi, yj),

xi = ihx, i = 0, 1, . . . , Nx, yj = jhy, j = 0, 1, . . . , Ny,

Nxhx = a,Nyhy = b},
where ωh means the set of inner nodes and γh means the set of boundary nodes
of defined net. We denote V n the approximate solution of the problem (11)−(13)
at the moment tn. Note, the constructed operators M, L and K are constant
(do not depend on n). Now, the used difference schemes are the following

M
V n+1/4 − V n

τ
+ Lhx[σ1V

n+1/4 + (1− σ1)V
n] = Fn, (14)

M
V n+1/2 − V n+1/4

τ
+ Lhy[σ1V

n+1/2 + (1− σ1)V
n+1/4] = Fn, (15)
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M
V n+3/4 − V n+1/2

τ
+K+[σ2V

n+3/4 + (1− σ2)V
n+1/2] = Fn, (16)

M
V n+1 − V n+3/4

τ
+K−[σ2V

n+1 + (1− σ2)V
n+3/4] = Fn, (17)

where

Lh = Lhx + Lhy, LhxVh = −(θ1Vhx)x, LhyVh = −(θ2Vhy)y,

K = K+ +K−, (K+)∗ = K−,

i.e. the three diagonal matrix K is splitted to lower and upper triangular matri-
ces. Generally speaking the existence of the inverse operator K−1 doesn’t take
place in our case (see equations (1)-(3) and condition (4)). We observe a more
pleasant situation when upper and lower layers are not bounded by waterproof
but also by weakly permeable layers i.e. χ1,0 and χp,p+1 are positive. The schemes
(14)− (17) were constructed in [9] and are additive. It was proven in [9] that if
Fn = 0, σ1 ≥ 0.5 and σ2 = 1 then the schemes are stable with regard to the
initial condition V 0 = U0. The stability according to the right hand side Fn

can be also established. Moreover, the schemes are economical (the number of
arithmetical operations related to one node when moving to a next time layer
doesn’t depend on the general number of nodes). The schemes possess the fol-
lowing important property. The transfer of water in the water-carrying layers are
described by the first two time quarter-steps (see (14), (15)) and by the last two
time quarter-steps (see (16), (17)) the transfer between weakly permeable layers
are described. In this context the schemes (14)− (17) of sum approximation can
be treated as schemes of splitting according to the physical processes.

3 Parallel Realization of Difference Schemes

Let us consider the difference scheme (14) − (17) of splitting of the problem
according to the physical processes. On the first time half-step ((14), (15)) we
consider the water transfer in the horizontal water-carrying layers and on the
second time half-step ((16), (17)) we consider the flow of the water in the ver-
tical direction through the weakly permeable layers. The equations (14), (15)
represent systems of linear algebraic equations with symmetric three diagonal
matrices on the each water-carrying layer α. Equations (16), (17) tie together
unknowns on the water-carrying layers and represent systems of linear algebraic
equations with upper and lower triangle two diagonal matrices, respectively.

The most natural parallel realization of the difference scheme consists of the
solution of the filtration problem on one processor for each water-carrying layer.
In this case one time step of the difference scheme can be realized by the follow-
ing algorithm.
1. Each fixed processor α has values of the piezometric head vnα, α = 1, 2, . . . , p
on the net ωh on the water-carrying layer α e.i. processor α contains α-th com-
ponent of the vector V n.
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2. According to (14) we use Ny − 1 of the Gauss elimination in the direction x
on each water-carrying layer. As a result we receive values V n+1/4.
3. According to (15) we use Nx − 1 of the Gauss elimination in the direction y
on each water-carrying layer. As a result we receive values V n+1/2.
In cases 2. and 3. the Gauss eliminations are realized in parallel, need no data
exchange and represent well known ADI method [10], [11].
4. We solve the system (16) with the upper triangle matrix from the bottom
to the top (from the layer p to the first layer) for all nodes ωh. As a result we
receive values V n+3/4.
5. We solve the system (17) with the lower triangle matrix from the top to the
bottom (from the first layer to the layer p) for all nodes ωh. As a result we receive
values V n+1.

However, an effective parallel realization of the steps 4. and 5. requires data
exchange between processors. For this reason we divide the net ωh on p equal
parts choosing the value Nx in the form Nx = pkx+1 and we introduce auxiliary
nets (see Fig. 2)

ωα = {(xi, yj)|xi = i.hx, i = (α − 1)kx + 1, (α− 1)kx + 2, . . . ,αkx;

yj = j.hy, j = 1, 2, . . . , Ny − 1},

x

y 1 pr. 2 pr. α pr. p pr.

ω1 ω2 ωα ωp. . . . . .

kx kx kx kx

Nx = p.kx + 1ÿ
Fig. 2 Distribution of the Net Points between p Processors

We prescribe to processor α the processing of unknowns on the net ωα. The
processor α before the 4th step

– receives values v
n+1/2
1 , . . . , v

n+1/2
α−1 , v

n+1/2
α+1 , . . . , v

n+1/2
p , on the nets ωα from

processors 1, . . . ,α − 1,α + 1, . . . , p and puts them in stead of unknowns

v
n+1/2
α on the nets ωβ , β = 1, . . . ,α− 1,α+ 1, . . . , p

– transmits values v
n+1/2
α from nets ωβ , β = 1, . . . ,α− 1,α + 1, . . . , p to pro-

cessor β.
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For finishing one time step of difference scheme it remains ”to return” obtained
values V n+1 to correspondent processors.

Two codes for one and for p processors p = 3, 4, 5, 6 were written for multipro-
cessor system SPP2000 using FORTRAN’77 with application of MPI (Message
Passing Interface) [12]. The code for one processor (sequential program) pro-
cesses sequentially p water-carrying layers. The following coefficients of equa-
tions, initial and boundary conditions, parameters of difference scheme were
chosen

a = b = 1, τ = 0.1, σ1 = 0.5, σ2 = 1,

fα(x, y, t) = 0, V 0
α (x, y) = αx(a − x)y(b− y)/p, µα(x, y) = α/p,

θ1α(x, y) = α(x − hx
2

)y/p, θ2α(x, y) = αx(y − hy
2

)/p, χα,α−1 = χα,α+1 = 5,

α = 1, 2, . . . , p.

Calculations were carried out for three following nets

(Nx, Ny) = {(151, 100); (301, 200); (601, 400)},

where p and kx in the representation Nx = pkx + 1 were chosen according to
Table 1.

Table 1. p and kx parameters in representation Nx = pkx + 1

p kx1 kx2 kx3

3 50 100 200
4 38 75 150
5 30 60 120
6 25 50 100

The Fig.3 presents the dependence of work time of processors on the number
of layers. A ”plus” sign denotes the mean time of a processor work if the parallel
code was applied. A ”minus” sign denotes time of a single processor for compar-
ison with the sequential code. Both cases correspond to p water-carrying layers
p = 3, 4, 5, 6. We remind that in parallel code the number p also denotes the
number of used processors. The MPI Wtime() procedure for time counting out
was used. The values of time are in seconds. The Fig. 3 shows that calculation
time of parallel code inessentially increases when the number p of water-carrying
layers increases. This is a good evidence of parallelism of algorithm.
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Fig. 3 The Dependence of Processors Work Time on the Number of Layers

respectively on the Number of Processors

4 Concluding Remarks

At present the existence theorem was not proved neither for exact nor for weak
solution of the formulated problem (11)− (13) but the proof of existence follows
from the estimations given in [9].
Present paper deals with only parallel realization of the specific difference scheme.
The used ADI method (equations (14)-(15)) can be replaced by other methods
like FEM or a suitable modification of relaxation method. That means the sug-
gested parllelism does not depend on the Gauss eliminations in steps 2. and 3. of
parallel realization of difference schemes. A main advantage of the scheme con-
sists of the following. It reflects physical processes – a longitudinal flow of water
takes place mainly in the water-carrying layers and cross flow of water takes
place through separated layers. The parallel realization conserves this property
and can be used for modeling, for example, a water or naphtha movement in the
multilayer system. This realization speeds up the calculation process and opens
a new way for the multilayer systems modeling.
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