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Abstract. The generalized Navier-Stokes equations for incompressible viscous 
flows through isotropic granular porous medium are considered. First Stokes 
problem is solved applying Laplace transform with respect to time variable and 
evaluating the inverse transform integrals by the residue calculus. The derived 
analytical solution includes the classic one as a particular case, that is, it can be 
obtained from the generalized solution by putting the porosity parameter equal 
to 1. The use of the derived exact solutions for benchmarking purposes is 
described. 

1. Introduction 

Due to nonlinearity of the Navier-Stokes equations only a small number of exact 
solutions have been found. The most recent reviews of analytical solutions of the 
Navier-Stokes equations and its classification were given by Wang [7,8]. These 
solutions are important because they represent some fundamental fluid flows and 
serve for checking the accuracy of approximate methods, in particular, numerical 
schemes. We consider one model of laminar flows through granular porous medium 
which can be represented in the form of the generalized Navier-Stokes equations. It is 
useful to generalize some known analytical solutions of the Navier-Stokes equations 
to the case of the considered model. Couette-Poiseuille, Hagen-Poiseuille and 
Beltrami generalized solutions were obtained by Bourchtein et al. [I] .  Here we derive 
the Stokes generalized solution and show its possible application for benchmarking. 

2. Differential problem 

The generalized Navier-Stokes equations applied to the description of incompressible 
viscous laminar flows through a rigid isotropic granular porous medium have been 
developed by DuPlessis and Masliyah [3]. The advantages of their model are its 
applicability to granular porous media over the entire porosity range and simple 
adaptability to numerical simulations. These equations have the following form: 
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Here, the common denotations are used for fluid and porous medium characteristics: 
V is a fluid velocity vector, p is a pressure; g is the gravitational force. The fluid is 

specified by definition of density p and dynamic viscosity p. The characteristics of 

porous medium are porosity n and porosity function F. Porosity n is defined as a 
ratio of volume of the void space to the bulk volume of a porous medium and it 
changes from zero to one ( n E (0,1]). Function F represents an additional drag force, 

which describes influence of porous medium on flow. This function depends on 
porosity n only, it is continuous, decreasing and positive on interval (0,1]. F 
becomes infinite as n approaches zero and its limit is equal to 0 as n approaches 1. 
Comparing this system with the usual incompressible Navier-Stokes equations, one 
can see that the latter is the particular case of model (1) when n = 1 . 

Considering the primitive system in 4D domain [ o , T ] x ~  , where fi = Q+aQ is a 

3D space bounded domain with boundary T=a.f2, we have to specify the initial and 
boundary conditions to define the unique solution: 

(initial condition, Vo is the given function of spatial variables), 

V = V, on r= for all t E [o,T] (3) 

(no-slip boundary condition, V, is the given function of the time variable and two 

spatial variables). These conditions have to subject to some constraints specified in 
[ 2 , 5 ] .  We assume that the last constraints are satisfied by the appropriate choice of 
initial and boundary conditions, so we will not mention these conditions anymore. 

3. Solution of Stokes problem 

We consider the problem of unsteady flow of a semi-infinite fluid, which is caused by 
a plate moving in its own plane. There are two independent variables in this problem: 
the time t and the spatial variable y (a figure can be found in [9]). Using the 
simplification conditions v=O,w=O, primitive system (1) can be reduced to the 

following initial boundary value problem involving velocity component u : 

Here v= p/p is the kinematic viscosity. In the classic case (when F = O )  the 

solution of this problem can be found by the similarity method, defining the only 
independent variable of the problem and reducing the primitive bivariate partial 
differential equation to an ordinary one [7,9]. Unfortunately, an introduction of 

814 A. Bourchtein and L. Bourchtein



additional porous drag force eliminates this way of derivation of solution, because 
there are two dimensionless combinations of primitive variables in this case. So we 
have been forced to choose another method. Due to linearity and parabolicity of the 
u -component equation (4) the Laplace transform with respect to variable t 

is suitable to be applied. This transfora reduces (4) 
problem: 

(5 )  

to an ordinary differential 

A solution of (6) is 

S 

Applying inverse transform we obtain solution of (4) in the form 

1 -ey 
u ( t , y ) = ~  [ u ( ~ , ~ ) ]  E- ju(s,~)."ds=- J --e e "'ds . 

2f i  c-+ 27t "-+ S 

To evaluate the integral on the right hand side of (8) we change variable s and 
parameter y : 

and we get 

where 

Function & can be made a single-valued regular function of z ,  if a cut along the 

negative real axis is applied to the z -plane. In this case, function e-& will also be a 

single-valued regular function. We choose the branch of for which f i  =l . 
Let us consider a closed contour C = C, UC+ UC- UCr U C, shown in Fig. 1, where 

C, is the part of the circular arc with radius R > c, lying on the left of line Re z = c, , 

Cr is a circular arc with radius r < c, , C+ and C- are the parts of upper and lower 

edges of the cut along the negative real axis, connecting the circular arcs with radius 
R and r , C, is the part of line Rez =c, inside the circle with radius R .  
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Figure 1. Closed contour C and its partition C =CR UC+ UC- U Cr U C' . 

The chosen branch of the function g(z) is regular in the simply-connected domain 

D bounded by closed contour C except at a point z =IF where it has a simple pole. 
Therefore, by the residue theorem, 

On the other hand, we can represent the integral along C as the sum of the integrals 
along respective parts of contour C (see Fig. 1): 

Formulas (1 2) and (1 3) are true for any radius R and r such that R > c, > r . 
Let us evaluate each integral in (13) separately, as R approaches - and r 

approaches 0: 

1) The chosen single-valued branch of function & has value &@I2 at the points of 
CR . Then 
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because 

Therefore, by Jordan's lemma [6], 

2,3) Now we evaluate together the second and third integrals in (13) 

Making the substitution a = x2, we obtain 

The last integral can be found in [4]: 

where 

is the probability integral. 
4) Since the chosen branch of g(z) is regular in neighborhood of the point z =0  

cutting along negative real axis, there exists a number M such that lg(z] <M for all 

z in this neighborhood. Therefore 

5) It is evident that 
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Finally, putting the right hand sides of (1 2) and (1 3) to be equal, calculating limits as 
R approaches = and r approaches 0 and using the results (1 6), (1 9), (21), (22), we 
obtain 

Therefore, returning to (S), we can express the solution of (4) in the following form 

or, simplifying, 

It is evident that the initial condition is satisfied in limit form as t approaches 0 
because 

To transform this generalized solution to classic one it is sufficient to set F = 0 ( n =I). 
There are detailed tables and different programs for calculating the probability 

integral values, so the derived solution can be evaluated with any order of precision. 
The application of this solution to benchmarking is simple. It is sufficient to 

introduce bounded domain with respective boundary conditions. For example, 
considering equation (1) in rectangular parallelepiped and using Cartesian 
coordinates, we can complete it by initial conditions (2) and boundary conditions (3) 
specified as follows: 

4. Conclusion 

First Stokes problem for generalized Navier-Stokes equations is considered. Laplace 
transform is applied to reduce this problem to the set of ordinary differential problems 
which permit simple solutions. Inverse transform is calculated using some results of 
the theory of complex variable functions. A possible application of obtained exact 
solution to benchmarking is discussed. 
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