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Abstract. A nonoverlapping domain decomposition algorithm of Neu- 
mann-Neumann type for solving variational inequalities arising from 
the elliptic boundary value problems in two dimensions with unilat- 
eral boundary condition is presented. First, the linear auxiliary problem, 
where the inequality condition is replaced by the equality condition, is 
solved. In the second step, the solution of the auxiliary problem is used in 
a successive approximat ions method. In these solvers, a preconditioned 
conjugate gradient method with Neumann-Neumann precondit ioner is 
used for solving the interface problems, while local problems within each 
subdomain are solved by direct solvers. A convergence of the iterative 
method and results of computational test are reported. 

1 Equilibrium of a system of bodies in contact 

We consider a system of elastic bodies decomposed into subdomains each of 
which occupies, in reference configuration, a domain in Kt2, i = 1, . . . , IM, 
hl = 1, . . . , 3, with sufficiently smooth boundary aQY. Suppose that bound- 

3 ary UM=' aQM consists of four disjoint parts ru, r,, rc and To and that the 
displacements u : ru + Kt2 and forces P : r, + Kt2 are given. The part rc de- 
note the part of boundary that may get into unilateral contact with some other 
subdomain and the part To denote the part of boundary on that is prescribed 
the condition of the bilateral contact. 

We shall look for the displacements that satisfy the conditions of equilibrium 
in the set K = {v E V vk + v! 5 0 on rc} of all kinematically admissible 
displacements v E V, V = {v E 7i1(Q)l v = uo on ru ,v ,  = 0 on To}, 7i1(Q) = 

[H' (Q: )] x . . . x [H' ( f i g ) ]  is standard Sobolev space. The displacement u E K 
of the system of bodies in equilibrium then minimizes the energy functional 
L(v) = ia(v,  v) - L(v): 

L(u) 5 L(v) for any v E K. (1) 

Conditions that guarantee existence and uniqueness of the solution may be ex- 
pressed in terms of coercivity of L and may be found, for example, in [I]. 

We define riM = 8QY \ aQM and the interface r = u$=, ufz1 riM. Let us 
introduce 
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The number of a separate subset rc is PC, i.e. rc = U ~ Z ,  r c j .  Further, we denote 

@ = { [ i , M ] :  8 f l y n r c j # 0 ) ,  j = I ,  . . . ,  PC, (4) 

i.e. Q*J = U[i,Mltzli  fly, j = I , .  . . , P,. We suppose that r n rc = 0 then 

Vr = y K r  = y V r  for trace operator y  : [ ~ ' ( f l F ) ] ~  + [L2(aflF)I2. We 
suppose that y-' : Vr + V is arbitrary linear inverse mapping for which 

After denoting restrictions R? : Vr + riM, L? : L" + fly, a?(., .) : 
aM(. ,  .) + fly,  fly) : v(flM) + fly and introduction 

we can formulate the theorem 1. 

Theorem 1. A function u  E K  is  the solution of the global problem ( I )  if and 
only if the function u  satisfies: 

for the trace ii = yu l r  on  the interface r .  
2. Its restriction u y  (ii) = u 1 nM satisfies following conditions: 

Z 

a)  
a y  ( u y  (ii) , $ y )  = LF ( $ y )  V$F t v0 (fly),  

U F ( ~ )  E  fly), Y~y(a) l r iM = R ~ U ,  

such that 
u + $ E K ;  

for j = 1,.  . . ,PC.  



2 The Schur complements 

We now want to write the interface problem (6) in operator form. For this 
purpose, we first introduce additional notation. We introduce the local trace 

and the extension Tr;& : yM + v ( Q ~ )  defined by 

For subdomains Q*j , j = 1, . . . , PC, we completed definition TrZ; with bound- 
ary condition 

C ( T ~ ~ G i i y ) ~  = O on rcj, for j = 1 , .  . . ,PC, 
[i, MI €63' 

x ay(TT;iiy, v y )  = 0 'i(vy, [i, MI t @ )  : v y  t VO(QY), 
[i, MI €63' 

so that x (v?), = 0 on rcj, j = 1, . . . , PC. 
[i, MI €63' 

(11) 

Definition 1. The local Schur complement, for i t TM, M = 1 , .  . . , 3 ,  is ope- 
rator SF : yM + (yM)* defined by 

In matrix form, we have 

where we decompose the degrees of freedom Ui of ui into internal degrees of 

freedom Gp and interface degrees of freedom uiM: 

With this decomposition, the matrix representation of a y  (. , .) on H' (QY ) take 
the form 
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Definition 2. The combined local Schur complement, for subdomains C.1, j = 

1, . . . , PC, is  operator 

S,.j : ( v , ~ ,  [ i , M ]  E @) ( y M ,  [ i , M ]  E @)*, j = 1 , .  . . , P C ,  

defined by 

( S ,  j ( i i y  , [i, MI E @ ) ,  (ay, [i, MI E @ ) )  = C a y  ( u y  ( i i y )  , TrZ;aM) 
[i, MI €63' 

V ( a f ' ,  [i, MI E t 9 j )  E ( K ~ ,  [ i , M ]  E @ ) ,  
(15) 

where u f '  ( i i f ' )  i s  the solution of the problem (8) and ~ f ' i i  = i i f ' ,  [i, MI E @ ' .  

Lemma 1. The condition (6) for the function ii on  interface r is  equivalent to 
the condition (16): 

by using the local Schur complements. 

We rewrite the condition (16) in the form 

where 

and 
R *.7 . a= ( R Y ~ ,  [ i , M ]  ~ 1 9 j ) ~ ,  E Vr ,  V j =  1  , . . . , P C .  

By reason that operator SKoN is nonlinear, we solve the equation (17) successive 
aproximations method. We choose the solution of the auxiliary linear problem 
as an initial aproximation UO. In the auxiliary problem we replace the set K  by 

K O = { V E V I  C ( v ~ ' ) , = o  0 n r c j }  
[i, MI €63' 

and we obtain 
uo = arg min L ( v )  , 

v € K O  

0 U0 = ?U ir. 

Now we come back to the equation (17) and we compute U%S the solution of 
the linear problem 

S O U L  F - sKoNUk- I ,  k = 1 ,2 , .  . . . (18) 



3 The linearized problem 

We solve the variational equation 

For problem (19) we can describe the analogy of theorem 1 with one different in 
case 2b) where inequality is replaced by equality on K O .  For solution of this vari- 
ational equality we define combined local Schur complement gj ,  j  = 1, . . . , PC 
same as in definition 2. 

Definition 3. W e  define a global Schur complement: 

and the condition (6) on the interface r has form 

in dual space (Vr)*. 

The equation (21) we solve by a conjugate gradient method with Neumann- 
Neumann preconditioner. This method does not require the explicit construction 
of the local Schur complement matrix S y  but does require an efficient precon- 
ditioner M p l .  Its inverse (SF)- ' ,  resp. (S!j)-l simply consists in associating 
to the generalized derivative g t ( v , ~ ) *  the trace ?$,n' on TiM of the solution 
$,n' of the corresponding Neumann problem. 

Definition 4. W e  define an injection 

D : ( y M , [ i , h l ]  t 19J) + Vr, D,j = (DM,[i ,hl]  E @), j =  1  , . . . ,PC,  

such that on each interface degree of freedom is  
( 2 2 )  

if the l th  degree of freedom of Vr corresponds to the k t h  degree of freedom of yM 
and 

~ , M a ( f i )  = 0, if not. (24) 

Here @? i s  a local measure of the stiflness of subdomain (for example an 
average Young modulus on fly) and 

is  the sum of ey on  all subdomains na fly containing 8 
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The Neumann-Neumann precoditioner supposes that the solution of each local 
Neumann problem is uniquely defined, whereas rigid body motions are possible. 
This weakness can be fixed by replacing (s?)-', resp. (S!j)-l by a regularized 

inverse (s?)-', resp. (s:~)-'. We introduce on each subdomain f l y ,  resp. fl*j 
a small local coarse space Zf', resp. z*J' containing all rigid body motion. 

The general trick to upgrade the original preconditioner then consists in 
adding to the initial local contribution $y,  resp. q5.j a "bad" z y  t z?, resp. 
zj t z*J' which is chosen in order to get the smallest difference (M-l - S-l).  

We suppose that L satisfies the invariance property 

(L,D,jyzj)= x ( L , D ~ ~ z ~ ) = o  V . Z ~ Z J E Z * ~ ,  j = l ,  . . . ,  PC. (27) 
[i, MI €63' 

We introduce a closed orthogonal complement space Q ( f l y )  of Z? in  fly) 
and a closed orthogonal complement space Q(fl*j) of Z*j in 6 where 

Let then &M E & ( f l y )  be the particular solution of the variational problem 
defined by 

and &! = (q5:M, [i, MI E @)  E Q(fl*j) be the particular solution of the varia- 
tional problem defined by 

Equations (28), (29) are well posed varitional problems set on &( f ly ) ,  &(fl*j). 

Definition 5. W e  define Neumann-Neumann preconditioner M-'(zO) by 

with the solution 2:" of the minimization problem 

z0 = arg min (s(M-'(2) - s-')L, (M-l (z) - S-')L), 
ZEIIZL V d 

(31) 

J G )  



4 Successive approximations method 

Now we solve, by the successive approximations method, the equation (18). We 
must effectively compute the solution Uk of the linear problem 

The equation (32) we solve by a preconditioned conjugate gradient method. 

Definition 6. W e  define an injection 

such that on each interface degree of freedom is  

~ f " a ( 8 )  = a ( P k ) ,  if P, t riM c i Q * j  for any j t {I,  . . . , PC}, (34) 

if the l th  degree of freedom of Vr corresponds to the k t h  degree of freedom of yM 
and 

D F V ( ~ )  = 0, if not. (36) 

Let @M E Q(Q?) be the particular solution of the variational problem defined 
by (28). Similarly to the linearized problem we define a preconditioner. 

Definition 7. W e  define Neumann-Neumann preconditioner Mi1 by 

with the solution 2:" of the minimization problem 

z0 = arg min (so(A4i1(z) - sc1)L,  (A4i1(z) - sc1)L) ,  
zEII,Z 

(38) 
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We introduce the coarse trace space 

a set V& c (Vr )*  given by 

A convergence theorem requires to introduce some definitions. Let O be an 
ortogonal complement of VoH in Vr. We introduce seminorms 

- 1 - M -  -1 -M-  
IR*jala*3' = af' ( T ~ G R ~  v, TriMRi v),  j  = 1, . . . , PC. 

[i, MI €63' 

Lemma 2. The expression 

is  a norm on  O where 

Definition 8. Let 7 : O + O be a mapping defined by 

Theorem 2. Assume that there exists a constant X < Jipc such that the fol- 
lowing condition hold: 

R * j ~ l a . ~  5 XIIUIQ,  K E O, V j  E { I , .  . . ,PC}. 

Then the mapping 7 i s  the contraction on  O. 1f U O  E O then the sequence of the 
iterations U" computed by (32), are convergent and the limit i s  a fixed point u 
of the mapping 7 .  The following error estimate holds 

5 Numerical experiments 

In this section, we illustrate the practical behavior of our algorithm on solution 
of the geomechanical model problem describing loaded tunnel which is crossing 
by the deep fault and based on the geomechanical theory and models having con- 
nection with radioactive waste repositories (see [3]). The introduced algorithm 
has been implemented in MPI version 1.2.0 by using FORTRAN 77 compiler. 
A geometry of the problem is in Fig. 1. 



Material parameters: 2 regions with Young's modulus E = 0.521°[~a] and 
Poisson's ratio v = 0,18. 

Boundary conditions: Prescribed displacement (-2,5 x lop2, 0) [m] on 3-4. 
Pressure 0 ,5  x 107[pa] on 1-4. Bilateral contact boundary: 1-2 and 2-3. Unilateral 
contact boundary: 5-6 and 7-8. 

Discretixation statistics: 12 subdomains, 5501 nodes, 9676 elements, 10428 
unknowns, 89 unilateral contact conditions, 466 interface elements. 

Convergence statistics: 19 iterations of the PCG algorithm for the auxiliary 
problem 14 iterations of the successive approximations met hod, total 38 itera- 
tions of the PCG algorithm for the original problem. 

Fig. 2 represents detail of deformations and Fig. 3 demonstrates detail of 
principal stresses in model problem. 

Fig. 1. A geometry of the problem 
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Deformations 
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Fig. 2. A detail of deformations in model problem (enlarge factor=lO) 

Fig. 3. A detail of principal stresses in neighbourhood of the tunnel. Figure show that 
maximal pressure is along right-hand side of the tunnel. 
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