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Abstract. A unilateral contact problem without friction in quasi-coupled
thermo-elasticity and with uncertain input data is analysed. The worst
scenario method is used to find the most ”dangerous” admissible input
data.

1 Introduction

In this contribution we deal with contact problems without friction (see [4], [5], [6])
in quasi-coupled thermo-elasticity considering uncertain input data representing
extension of problems solved in [5] and [6]. By uncertain input data we mean
physical coefficients, right-hand sides, etc., which cannot be determined uniquely
but only in some intervals determined by the measurements. The reliable solu-
tion is defined as the worst among a set of possible solutions, and the degree
of badness is measured by a criterion-functional (see [1]). The main aim of our
contribution will be to find maximal values of this functional. We prove the
solvability of the corresponding maximization (worst scenario) problems.

2 Formulation of the Problem

Let us assume a union {2 of bounded domains §2*, + = 1,...,s, with Lipschitz
S
boundaries 9§2*, occupied by elastic bodies such that 2 = |J 2* C R?. Let the

boundary 02 = UJ_,; 92" consist of three disjoint parts I, L]“ul and I, such that

0N=T, Ul UT, I.=UI* " =00kno 1<k, 1<s,fork+#I, and
Kl

IT',, T, IT'. denotes the closures in 912.

Let the heat sources W*, the prescribed temperature 77, the body forces F,
the surface forces P, displacements ug, elastic coefficients c;;1;, coefficients of
thermal expansion 3;; and the reference temperature T be given. Throughout
the paper we use the summation convention, i.e. a repeated index implies sum-
mation from 1 to 2. Furthermore, n* = (n¥), i = 1,2,1 < k < s, denotes the
unit normal with respect to 962, n* = —n’ on I'*". Assume that x* and C* are

positive definite symmetric matrix functions,
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0< kg < /igjgigj\q* < KY < 4ooforaa.x € 2°, ¢ € R?,
0<cy< céjkl&jfkﬂ&r? <cf <+ooforaa.xe 2 €€ R*, &j =&ij,

where kg, K, cf, ¢f are constants independent of x € €. Let xf; € L>(£2"),
Wt e L2(Y), Ty € HY(2Y), TF = T} on HF“, i € L®(2"), Ff € L*(2),

P, € L*(I7), Bi; € L>(£2'), uy € [H(024)]2.
We will deal with the following problem:

Problem (P): Find a pair of functions (7, u) satisfying

a L aTL L a L L L 3 L -
a—xz<:‘€2]£)+w :O7 %jTij(u,T)-f—Fi:OIHQ,1§L§8,121,2
(1)
(W, TY) = éem(ut) — B5(T = Tg) in ', 1<1<s, i=1,2 (2)
oT
nij%nizo, u=ugy onl,, (3)
T:Tl, Tij(u,T)TLj:PZ‘ on FT, (4)
or \" ar \'
TF = T! ) — (ki=—n; ) =0 IMo1<k 1< 5
, (K‘Z] Oscj nz) <KJZ] a.’Ej nz) on H y LS RS S, ( )
ub —ul <0, 78 <0, (uf —ul)rh —OonUFkll<kl<s (6)
k.l
F=—1l=0 onUFkl,lgk,lgs, (7)
k.l
where eij(u) = %(g;‘ + auf L), ub = ubnk ul = ulnl = —uFnk (no sum over k
or l) = (ufy), uf, = U’“ ugng, up = (ug), up = ug —upng, i = 1,2, 75 =
Sk, o = (rk), 7 = ot vkt ot = ot ot = oL o, = tnd bt

SII’ICG the stress and strain tensors and coefﬁ01ent of thermal expansion are
symmetric then the entries of any symmetric 3x 3 matrices {7;;} can be rewritten
in the vector notation {7;}, j = 1,2,3 and similarly the symmetric matrices
{ei;}, {Bi;} by vectors {e;}, {3;}. Then (2) can be rewritten as

7i(u", TY) ZA — 6T —T5) in 2, 1 <1 <5, 1<4,5<3, (8)

where A" is a symmetric 3 x 3 matrix, A%, € L*(2),t =1,...,s. Since 7yj¢;; =
2

> Tie; + 213es, we can write

i=1
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L — L oo
CijkiCijCkl = Z Bjjeie;j
ij=1

where B* is a symmetric 3 x 3 matrix such that B}, = A;; for ¢, = 1,2,

B}, 3AL fori=1,2, j =3 and Bj; = 24}, fori,j = 3.
In What follows, we denote

=

Wy = ﬂleHl(Qb)v ||w||W1 =

1<s

W=y [HY (2P, lollw = [ DD e |

1<s 1<2

Vi=<(zlzeWi, z=00n I, 2F =zt on Ufkl ,
k.l

V={vlveW,v=0onl,}, K={vlveV, v —v) <0on Ufkl

k.l

Definition 1. We say that the pair of functions 7" and u is a weak solution of

problem (P), if T — Ty € V4,

b(T,z)=s(z) VzeVq,
u—ug € K,
a(u,v—u)>Sv—-uT) YWeu+K,

where
, oT* 8z
b(T, E = E Wtz
2 / S 8% R Zdx,

a(u,v) Z/ ZBM ey (vV)dx,

1,j=1

S(v,T) = Z/ F{véder/F Pvids — Z ; Bi(T" — Tg)vidx.
=1 ‘ T =1 '

(9)

(10)

(11)

(12)

(13)

Remark 1. In S(v,T') we insert the weak solution T of (9). Moreover, we assume

that ug satisfies

uk —aub, =0 on Uf’kl.
k.l

(14)
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3 Worst Scenario Method for Uncertain Input Data

Let us assume that the input data

A:{BL,KLaFibawLaﬁ;aP)iauOiaTlaL: 17"'78, 22172}

are uncertain, and belong to some sets of admissible data, i.e.

A€Upe B eUB, weUs, FreUl, weUl', g eUl,
PeUd,uOZeU;d,TleUaT;

We will assume that all the bodies {2 are piecewise homogeneous, so that
partitions of 12° exist such that

ﬁ\

Q
|

2, 2N =0 forj#k 1<1<s, (15)
1
le—kl
:qu,FflmF;l:@forq;ép, Vk, L. (16)
=1

.
I

Let the data B*, k*, F*, W*, 3" be piecewise constant with respect to the corre-
sponding partitioning (15) and let us denote

I,=I,Nno8 '=1,...;s and IV =1,N08", +<s. (17)

Further, we define the sets of admissible matrices:

UB = {3 x 3 symmetric matrices B" : B, (j) < B, Koy = = const. < B (),
j<rt, i k=1,...,3} (18)
where B*(j) and B'(j) are given 3 x 3 symmetric matrices, ¢t = 1,..., s, and let

there exist positive constants ¢z (j) such that

i (3G + B0 =0 (556) - BG) ) = )

forj=1,....r, t=1,...,s, (19)

where Apin and p denotes the minimal eigenvalue and the spectral radius, re-
spectively,

UL, = {2 x 2 symmetric matrices &' : %, (j) < "%k\m = const. < Ri(4),

J<rt ik <2} (20)
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where £'(j) and ®*(j) are given 2 x 2 symmetric matrices, j = 1,...,7r*, ¢+ =
1,...,s, and let there exist positive constants ¢iz(j) such that

1 1
i (50 + D) ) = 0 (500) - £0) ) =) fori <1 <5,
(21)
where Apin and p denotes the minimal eigenvalue and the spectral radius, re-
spectively. If (18) and (19) are satisfied, then the matrices B'(j) = B[, are

positive definite for any B* € UB/, 1 =1,...,s and any j < 7* (see [8]) and the
matrices k'(j) = “\er; are positive definite for any x* € U, 1 <5, j < 7.

Furthermore, we define
Uyi ={f € L®() : Fi(j) < fis = const. <F;(5), 5<r'},  (22)

for i <2, 1< s, where F'(j) and F,(j) are given constants;

wi = {w € L™(2) : W'(j) < wjg = const. <W'(j), j <r'}, (23)

for . < s, where W*(5) and W'(j) are given constants;

UL ={T e L™(I) : T, (1) < Tjre = const. <T1(1), ¢ < s}, (24)
where T, (¢) and T (1) are given constants;

Upd' = {u € L= (I) = ug;(¢) < wypy = const. < Tgi(t), ¢ < s}, (25)
where u,(¢) and To;(¢), @ = 1,2, are given constants;

Uﬁ ={pe L>(I}): P;(t) < pjr: = const. < Pi(1), t < s}, (26)
where P;(1) and P;(t), i = 1,2, are given constants;

Usi = {b€ L®(2) : f1(j) < by = const. <By(4), j <}, (27)
for i <3, ¢ < s, where 3(j) and B,(j) are given constants.

Finally, we define the set of admissible data by

. . F .
Upa = HLSSUaBd X I_ILSSU:d X I_ILSS,iSQUadL X HLﬁsUavg X
X My<sica Ut X MicaUP X MicoU%% x M, UT . (28)
Further, instead of b(T), z), a(u, v), s(z), S(v,T) we will write b(A; T, z), a(A4;u, v),

s(A; z), S(A;v,T) for any A € Uygq.
The next results are parallel to those of [3] for the general case with friction.
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Lemma 1. There exist positive constants ¢;, ¢ = 0,1,...,5 independent of A €
Ugad, such that

b(A;2,2) > col|z||3 V2 €V, (29)
b(A; 2,y)| < allzllwllyllw Vz,y € Wh, (30)
a(A;v,v) > eo||v|E eV, (31)

la(A; v, w)| < cs|v|w|wlw Yv,weW, (32)
|s(A4;2)| < euallzllo,e Vz € VL, (33)
1S(A; v, T)| < es([[vllo,2 + [IVllo,r, + T = Tollo,ellvliw) Vv,w e W. (34)

Proposition 1. There exists a unique weak solution (T'(A4), u(A)) of the problem
(P) for any A € Uyq. Moreover, ||T'(A)|lw, < ¢, where ¢ is independent of A.
To find the most “dangerous” input data A in the set U,q4, we will introduce
a criterion, i.e. defined a functional, which depends on the solution (T'(A), u(A4))
of the problem (P). Such criteria can be as follows:
Let G. C |J 2,7 =1,...,7, be subdomains adjacent to the boundaries 92"
1<s

Then we define

&1(T) = max ¢, (T) = max _(measz Gr)fl/ Tdx| ; (35)

r<r r<r G,

let G. C Iy, r <7 and

&y (T) = m<az<1pr(T) = max (meas; G’r)fl/ Tds| ; (36)
and
P3(u) = max xr(u) = max [(measz Gr)_l/ uini(Xr)dx] ; (37)
r<7 r<7 G,

where n(X,) is the unit outward normal at a fixed point X, € 92" N IG, (if
G, C 2%) to the boundary 02;

Py(u) = m<ag<x;(u) = max [(measl G;)_l/ uini(Xr)ds] : (38)
r<r r<r a

’
r

where G, = |J 92*\I,. Since the weak solution u(A) of our problem (10)
1<s

depends on T(A), then u(4) = u(4;T(A)) and instead of &;(u) we write

®;(A;u,T). Thus we may define

&5(A;u,T) = m<ag<wr(A; u,T) = max [(measz GT)_l/ I3(1(A; u,T))dx} ;
r<r rsrT (e
(39)
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1
2

here Ir(7) = ( jzl i 2]> is the intensity of shear stress, where 7/ =

%Tkkéij and 7(4;u,T) is defined by (2). Finally, we may choose

= Tij

P6(A;u,T) = m<ag<,ur(A; u,T) = max [(measz GT)_l/ (=mn(4;u,T))dx]| ;
r<r G

r<r
(40)
where G, is a small subdomain adjacent to I.
Now we formulate the worst scenario problems as follows:
find
A% = arg max &;(T(A)), i=1,2 (41)
AE ad
and
A% = arg max &;(u(A),T(4)), i=3,4,56, (42)
€U ad

where (T(A),u(A)) is weak solution of the problem (P).

4 Stability of Weak Solutions

To prove the solvability of worst scenario problems (41), (42), we have to study
the mapping A — T(A), A — u(A,T(A)). We introduce the decomposition of
A€ Uyg as A= {A’, A"}, where

A" ={M<s Mj<re £(5), Mugs My<e W), MixsTi}, A” € RPY, pr = 4ZTL+87
1<s

and

A" = {N<s Mj<r BY(5) Mgs Mj<re F(4), MugsPY, Mu<sutg, Mugs My<m B(5) 1

A" € R, py =Dt [942(1+2s)].

1<s

We are going to show the continuity of the mappings A - TAY, Aw—
u(A, T(A")) for A" € U/d = HL<9U(’;; X HL<9Uad X Ud and A" € U/, =
I_IL<SUad X < 1<2Uad‘ X M,<s ’L<2Uad X HZQUad X Mi<2U 9", respectively. Since

the problem discussed is quasi-coupled, we will prove the following theorems and
lemma:
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Theorem 1. Let A" € U.,, Al, — A" in RP' as n — oo. Then
T(A) —T(A) inW;.
Sketch of the proof: Since

. of?
b(A;z,z) > <L<Isrljlr<17" cy. > Z/ |grad z*" dx, (43)

1<s

for T,, := T(A}) we obtain ||T,|lw, < ¢ for all n. Then a T € Wi and a
subsequence {T;,} C {7} exist such that

Tm — T weakly in W1 . (44)
By definition

b(AL T, z) =s(Al;2) Vze Vi, Vm. (45)

Since

b(AL; Ty z) — (AT, 2)] — 0, asm — o0,
|s(Al;2) —b(A";2)] = 0,asm — o,

we prove that

b(Al,; Tm,z) — b(A;T,z) asm — oo, (46)
s(AlL;z) — s(A5z) asm — oo (47)

Then we pass to the limit with m — oo in (45). Using (46), (47) we prove that
T =T(A’) is a weak solution of thermal part of the problem. Since it is unique,
the whole sequence {T,,} tends T'(A’) weakly in W;. O

Remark 2. Tt can be proved that T,, — T converges also strongly in Wj.
Lemma 2. If A € Uyq, Al — A” in RP2, and u,, — u weakly in W, then
a(Aliu,,v) — a(A";u,v) Y eWw, (48)
S(Ala,, T) — S(A";u,T) VT € W;. (49)
Sketch of the proof: The proof follows from the fact that

la(A);a,,v) —a(A”;u,v)] — 0 forn — oo,
|S(A)su,,T) — S(A”;u,T)| — 0 forn — oo.
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Theorem 2. Let A, € Uyq, A, — Ain U = RP2. Then

u(A,) —u(A) nW. (50)

Sketch of the proof: Let us denote u, := u(4,), u := u(4), ug, = ug(A4,),
ug :=ug(A), Tp, := T(A4,), T := T(A). Inserting u := uy + w(A), w(A) € K,
u, = ug, + w,(4), w,(A) € K, v:i=uy+worv:=ugy, +w,w € K into the
variational inequality (10), we obtain

a(Ap; W, W —wy) > S(An;w — Wy, T,) — a(Ap; Uon, W — W) . (51)

Hence, putting w =0, using Lemma 1, Theorem 1, definition of U,\*, after some
modifications we find that
collwallfy < erllwnllw +cs .-

As a consequence, w,, are bounded in W and there exists a subsequence {wy}
and a function w € W such that

wi — w weakly in W, as k — oo. (52)
It can be shown that w = w(A4). Thus, since w € K and since a(Ay; wi —w, wy —
w) > 0, after some modification and using Lemma 2, we obtain lim inf a(Ag; wi, wi—
w) > lima(Ag; w, w;, —w) = 0. Inserting w := w into (51) we arrive at

a(Ag; wi, w — wy) > S(Ag;w — wi, Tk) — a(Ag; uok, w — wg)

and

lim sup a(Ay; Wi, wi—w) < limsup S(Ag; wi—w, Tk )+lim sup a(Ag; uok, w—wg) .

For any A € Uyy, T € Wiy we can show that lim S(Ax; wi — w,T;) = 0
and lima(Ag; Wi, wr —w) = 0 as limsup a(Ag; Wi, wi, — w) < 0, from which
it follows that lim a(Ag; Wi, Wi, — w) = 0. It can be shown that |a(Ak; wi, w —
wi) —a(4A;w, w —w)| — 0; then

lima(Ag; wi,w —wg) = a(A;w, w — w)

and since |S(Ag;w — wy, Tg) — S(A;w —w, T)| — 0, then

lim S(Ag;w — wy, Ti) = S(A;w —w,T).

Moreover, we have |a(Ag; W —wyg, uor) —a(A; w —w, ug)| — 0, where Lemma 1,
Lemma 2 and the convergence ugy, — ug in W were used. Thus

lima(Ak; w — Wi, ugr) = a(4A; W —w, ug) .

Passing to the limit with k — oo, we obtain
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a(Aiw,w—w) > S(AWwW—-—wT)—alAd;w—w,up) . (53)

Since the variational inequality (10) has a unique solution, w = w(A) follows
from (53) and moreover, the whole sequence {w(A,)} tends to w(A) weakly
in W.

Furthermore, the strong convergence can also be proved.

5 Existence of a Solution of the Worst Scenario Problem

To prove the existence of a solution of the worst scenario problem, we will use
the following lemma.

Lemma 3.
(i) Let @;(T), ¢ = 1,2, be defined by (35), (36) and let T,, — T in Wi, as
n — 0o. Then

lim &;(T,) = &;(T), i=1,2. (54)

n—oo

(ii) Let ®;(u), i = 3,4, be defined by (37), (38) and let u,, = uin W, as n — oc.
Then

lim &;(u,) = &;(u), i=3,4. (55)
n—oo

(iii) Let ®;(A;u,T), i = 5,6, be defined by (39), (40) and let A, — A in U,
A, € Uggy up, —»uin Wand T,, — T in L?(£2), as n — oo. Then

lim &;(An,u,,T,) = P;(A,u,T), i=56 (56)

n— o0

The proof is a modification of that of [3].

As the main result of the paper we present the following theorem:

Theorem 3. There exists at least one solution of the worst scenario problems (41),
(42),i=1,...6.
The proof is a modification of that of [3].

6 Conclusion

Mathematical models connected with the safety of construction and of opera-
tion of the radioactive waste repositories involve input data (thermal conduc-
tivity and elastic coefficients, body and surface forces, thermal sources, coeffi-
cients of thermal expansion, boundary values, coefficient of friction on contact
boundaries, etc.) which cannot be determined uniquely, but only in some in-
tervals, given by the accuracy of measurements and the approximate solutions
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of identification problems. The notation “reliable solution” denotes the worst
case among a set of possible solutions where the degree of badness is measured
by a criterion functional. For the safety of the radioactive waste repositories
we seek the maximal value of this functional, which depends on the solution
of the mathematical model. Then for the computations of such problems (some
mean values of temperatures, displacements, intensity of shear stresses, princi-
pal stresses, stress tensor components, normal and tangential components of the
displacement or stress vector on the contact boundaries, etc.) we have to for-
mulate a corresponding maximization (worst scenario) problem. Then methods
and algorithms known from ”optimal design” can be used.

To construct a model of structures under the influence of critical conditions
the influence of global tectonics onto a local area, where the critical structure
is built as well as the influence of the resulting local geomechanical processes
on a critical structure must be taken into account ([6]). Problems of this kind
with uncertain input data are problems with high level radioactive waste repos-
itories. In the case of the high level radioactive waste repositories the effects of
geodynamical processes in the sense of plate tectonics must be taken into con-
sideration, namely in regions near tectonic areas (e.g. the Japan island arc, the
Central and South Europe, etc), but also in the platform regions (as in Sweden,
Canada, etc.). Another example is represented by modelling an interaction be-
tween a tunnel wall and a rock massif in the radioactive waste repository tunnels
or by modelling of a tunnel crossing by an active deep fault(s), respectively.
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