
An Online Environment Supporting High

Quality Education in Computational Science

Luis Anido, Juan Santos,
Manuel Caeiro, and Judith Rodŕıguez

Grupo de Ingenieŕıa de Sistemas Telemáticos
ETSI Telecomunicación
University of Vigo, SPAIN

{lanido, jsgago, mcaeiro, jestevez}@det.uvigo.es

Abstract. Education in Computational Science is a demanding task,
especially when online support is required. From the learner’s point of
view, one of the most challenging issues is to get used to the supporting
tools, especially with the computing devices employed (e.g. DSPs). For
this, students need to understand concepts from the Computer Archi-
tecture area. This paper presents a WWW-based virtual laboratory that
provides learners with a suitable environment where Computer Archi-
tecture concepts, needed to face Computational Science education, can
be acquired. Our contribution can be described as an open distributed
platform to provide practical training. Services offered support the seam-
less integration of simulators written in Java, and include features like
student tracking, collaborative tools, messaging, task and project man-
agement, or virtual file repositories. A CORBA-based distributed archi-
tecture to access real computer systems, available in labs at University
facilities, is also described.

1 Introduction

Computer Architecture has some specific properties that makes it a challenging
matter when trying to provide adequate supporting tools for e-learning. While
the implementation of the first phases of the learning process in this field, typi-
cally through theoretical lectures, poses no major problems today given the help
provided by available authoring systems and course tools and resources, remote
laboratory settings are far more demanding. Student interaction with virtual
equipment (i. e. simulators) or remote devices like Digital Signal Processors
(DSPs) and complex computing equipment should be guaranteed to adequately
support virtual presence, which demands efficient transmission protocols. Note
that, to acquire the skills needed to adequately interact with Computational Sci-
ence related equipment, hands-on experience is a must. Additionally, to provide
an adequate learning environment, interactions among students and lecturers
should be also supported, which poses a need for distributed communication
services.

With respect to the target equipment themselves, typically virtual devices or
remotely accessed laboratory premises, their implementation and configuration

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 872−881, 2002.
 Springer-Verlag Berlin Heidelberg 2002



is not a simple task either. They should be robust beyond their standard, non
pedagogical versions, and they should support educational-oriented features like
guided operation, improved fault tolerance or activity logging for further study
by lecturers.

In this paper we describe our approach to virtual laboratories in the field
of Computational Science, whose main objective is to make students gain ac-
quittance with the complex hardware and software tools used in the field. Our
contribution can be described as an open distributed platform to support prac-
tical training. Services are offered to easily integrate third-party developed ed-
ucational simulators. More specifically, they support the seamless integration of
simulators written in Java, and include features like student tracking, collabora-
tive tools, messaging, task and project management, or virtual file repositories.

Additionally, we propose a CORBA-based distributed architecture to access
real computer systems, available in labs at University facilities, which can be
seen as a complementary approach to that based on simulation.

All these approaches can be easily integrated to provide a true practical
distance learning experience.

2 Teaching Computer Architecture

Distance practical training in Computer Architectures is not straightforward.
Hands-on practice is a must to adequately grasp the fundamental concepts in
this field. Skills on machine and assembly programming, microprocessor architec-
tures and low-level computer communications can only be adequately obtained
when the students test their own developments and see how computers evolve as
directed by them. For this, we have to develop an adequate environment to offer
practical training, taking into account lessons learnt from previous experiences.
Current approaches to practical training over the Internet can be classified into
two groups [1]: (1) those based on educational simulations and (2) settings that
provide access to real laboratory equipment. In our case, for the former approach
students would be provided with simulators of computer systems to study the
simulated behaviour of the real equipment. In the latter case, students would
control real computer systems, placed in academic institutions, via the Internet.

In our case, distance learning in this field is intended to provide students the
needed skills to take the most of available equipment in Computational Science
labs (e.g. DSPs, Single Board Computers, etc.). As a general rule, simulation
is adequate for first- and second- year students. There are many educational
simulators of many different architectures available, and for this target group
a simulator provides additional pedagogical advantages, like a safe, controlled
environment, ability to easily reconstruct student activities to analyze errors, or
guided simulation.

On the other side, access to the real thing is targeted to more advanced
students. For them, practice with real computer systems is a natural step ahead
after introductory courses on the matter.

873An Online Environment Supporting High Quality Education



3 SimulNet: Simulators over the Network

SimulNet [2] provides students with a teleteaching environment where the ”learning-
by-doing” paradigm is possible. Unlike other distance teaching systems whose
aim is to achieve a virtual classroom, SimulNet provides a virtual laboratory
to put theoretical knowledge into practice. Because SimulNet is a 100% pure
Java system, our labware can be run on any computer and operating system.
Our approach is based on the simulation of the actual laboratory tools that are
delivered through the Internet (Java applets) or by CD-ROM technology (Java
applications). Although SimulNet can be used in a remote access way, Java al-
lows us to provide always the highest level of interactivity, which is an essential
feature in any distance education system. In addition, SimulNet also provides a
set of communication and tutoring tools for learners and instructors, providing
a full cooperative learning atmosphere. We believe distance education should
not mean to study alone and, therefore, we made an extra effort to provide an
environment where students and teachers feel as is they were in a virtual lecture
room.

3.1 Architecture

The implementation of SimulNet is based on currently available Internet tech-
nologies, especially in the Java computing. Thanks to the Java computing tech-
nology we have achieved several important features in SimulNet:

– Platform independence. SimulNet client and server applications may be run
on any computer whatever its operating system or architecture is.

– Java eases the development of WWW-based applications. SimulNet provides
a WWW client (based on Java applets) and a stand alone client (based on
Java applications) delivered by CD-ROM, see Fig. 1.

Fig. 1. Simplez Structural Model

874 L. Anido et al.



The simulators are interactive. There is no network overhead as the simula-
tors run on the student’s own computer. This is an essential feature to provide
to trainees the same feeling as if they indeed were in the laboratory using the
real training tools.

Users access SimulNet using a standard WWW browser, which presents an
HTML document provided by the HTTP server at the server side. This document
contains an embedded Java applet that would start and stop any other Java
application provided by the server side through the Internet. In this way, no
additional software is required apart from the browser itself.

Alternatively, students can use a fully independent Java application delivered
by CD-ROM. In this case, the SimulNet simulators could be used in a standalone
way. At the same time, the user could connect the Java application to the server
side to benefit from the virtual laboratory advantages: communication channel,
trainees’ traces, etc.

3.2 Collaborative Learning

SimulNet provides several communication tools to support cooperative learning.
All of them were developed from scratch by our team, and they can be easily
included in new simulators thanks to the SimulNet API. In this way, students
are provided with an easy-to-use set of collaborative facilities to ease learning
on Computational Science or any other field. On the one hand, there is no
need to set up or use additional software at client computers, which may be
difficult for trainees. The needed software is automatically downloaded from the
network and can be run wherever the user may be, regardless of the particular
hardware platform or operating system. The developed communication tools
are (c.f. Fig. 2): Mail Tool, Bulletin Board, Talk, Multi-Talk, Whiteboard and
Project Management Tool.

3.3 First steps in Online Computational Science Education:
acquiring experience with supporting and related concepts

Our platform provides a set of tools to acquire the needed experience with com-
putational devices. For this, we have used pedagogical computers that are good
enough to explain and practice with the fundamental concepts needed to manage
more elaborated artifacts used in Computational Science Education.

We have developed simulators of the computers described in [3], from the
simplest one to the most complex. Thus, students are guided in the right way,
starting from a simple assembler language and ending with the complex world
of microinstructions, firmware and datapaths. In the following subsections we
introduce the main features of three pedagogical computers: Simplez, Simplez+i4
and Algoritmez.

All of our simulators have several common features: an editor, an assembler
and the simulator of the computer itself. Programs written by students in assem-
bler code using the editor are transformed into object code that can be run by the
computer model. This task is done by the assembler. It also offers information

875An Online Environment Supporting High Quality Education



Fig. 2. SimulNet Communication Tools

about different labels and constants used by the student. The simulator of the
computer model executes the object code, which can also be displayed through
the memory viewer. It has several execution modes: complete run, trace, step
by step. Students can also use breakpoints or modify memory or registers at
any time. All of these are common features the student must be familiar with in
order to be able to manage himself properly in Computational Science labs.

Simplez Simplez has 512 memory locations, 1 register, 8 instructions, I/Omech-
anism via memory mapped I/O and 1 addressing mode (direct addressing mode).
With this architecture, trainees are shown how to implement basic algorithms
and how difficult could be to implement the more complex ones. The Simplez
simulator embodies an editor, an assembler, the processor simulator itself, a code
viewer and the Simplez monitor.

Simplez+i4 Simplez+i4 is a more complex computer. It is the next step in our
students learning process. This computer is based on Simplez but adding three
different addressing modes: indirect (the first i), indexed (the second i) and
indexed+indirect (the third i). It also includes a simple interrupt mechanism
(the fourth i) to implement communication with two peripherals (keyboard and
monitor). Its conventional machine level incorporates an index register, 4096
memory locations and a more elaborated format for the eight instruction set.
After students have acquired the fundamental concepts of Simplez operation,

876 L. Anido et al.



they are able to be introduced to new ones with a higher level of difficulty such
as computer interruptions and addressing modes.

Fig. 3. The Simplez+i4 simulator

Algoritmez Algoritmez is a pedagogical computer closer to commercial ones.
Its structural model presents a 64K local memory (including a stack), 256 I/O
ports, 16 different registers (two of them used as the program counter and the
stack pointer), a status register with several flags and 54 different instructions
(related to the arithmetic and shift units, access to stack and memory locations,
I/O and, of course, flow control). Through the functional model that we set up
over this structural model, students gain further insight into the actual behavior
of computers.

Furthermore, the simulator of Algoritmez gives the possibility of micropro-
graming. The implementation of a computer model at micromachine level can be
internally microprogrammed allowing designers to easily change its contents and,
thus, adapting the system to different instruction sets or data paths. Students
are allowed to use the Algoritmez’s data path and microprogram the instruction
set. In this way, a higher degree of abstraction is offered and the student is not
restricted to a fixed model. We usually redefine many of the characteristics of our
pedagogical computer to let students interact with different (virtual) machines
that are emulated using the own Algoritmez (simulated) hardware.

We include a datapath viewer, see Fig. 4, that shows the connections among
the different parts of the computer and let the user to check the signals that
are being generated by the control unit, how data flows through the buses and

877An Online Environment Supporting High Quality Education



Fig. 4. The Algoritmez simulator

arrive to registers, memory locations, etc. This machine is complex enough to
let students understand the more elaborated concepts behind the computational
resources used in most Computational Science labs.

3.4 Tutoring

The most experienced teachers provide information about what actions per-
formed on the simulator should be considered as important from a pedagogical
point of view. These action will be reflected in students’ traces. Whenever a
student performs a given task, a report is sent to the tutor responsible for mon-
itoring his or her actions (c.f. Fig. 5). So, without being in the same room, the
teacher is able to follow students’ performance and, if necessary, to teach how
to do the training practice via several available communication tools, see section
3.2.

4 Accessing to real equipment

Although it is possible to use simulation to teach many practical skills to stu-
dents, there exist several situations where the use of the real equipment is com-
pulsory: either the development of a simulator from scratch is not feasible or
real industry equipment is too complex to simulate. In this case, in order to
design a distance education environment, we need to manage real instruments

878 L. Anido et al.



Fig. 5. Monitoring students’ behaviour

and equipment remotely. We have developed a system that is centered in this
remote operation context: we have to carry out the experiment as if students
were in the actual laboratory, and we need to provide them with the output and
results of every action, command or modification, as the experiment takes place.

In our introductory laboratory to Computational Science, students are pro-
vided with a Java/CORBA-based environment [4] where real DSP devices can
be controlled remotely via the Internet. Apart from student accessibility advan-
tages, this solution generates important savings for the institution responsible
for maintaining laboratory facilities, both in equipment and staff.

4.1 Description of the environment

In order to acquire the needed experience in DSP programming, students have
full access to the real computer where Flite Electronic’s DSP25 Cards [6] are
used. These cards includes a TMS320C25 DSP chip programmed by students to
put theoretical concepts into practice.

DSP programming learning would not be feasible without a proper theoretical
introduction. For this, we have included as part of our environment an online
course. After this introduction, learners are supposed to be able to deal with the
real DSP using the virtual lab.

In this virtual lab learners access DSP25 cards using a WWW browser. This
client provides a complete development environment, since it handles all appli-
cations used in the conventional laboratory (editor, assembler, debugger, etc.)
First practices are typically quite simple as its aim is just to familiarise with the
working environment [7]. Last steps consist of developing a small project cooper-
atively among a group of partners (SimulNet provides both communication and
task-based learning supporting tools). Typical practices would be the develop-
ment of digital filters. Eventually, in the very last phases they need to use the
conventional lab facilities where they test the programmes developed using the
analog instruments available at the lab (signal generators, oscilloscopes, etc.)

879An Online Environment Supporting High Quality Education



4.2 System Architecture

Our remote access system is based on the distributed objects paradigm, and
specifically in CORBA [4]. Using CORBA, we can create object-based dis-
tributed applications in a simple and easy way, with all the advantages of dis-
tributed object-based programming. The overall system architecture is depicted
in Fig. 6. There are several modules that can be clearly identified:

Fig. 6. System architecture

– Client. It is the application that wants to establish remote access to a DSP25
board. It must negotiate with server-side processes to get a free board, and
with board-control processes to actually access the board and use additional
features.

– Name server. It acts as a bridge used by clients and board-control processes
to access the system.

– System manager process. It is responsible for two different tasks. The first
one is registering new boards in the system. The second is guaranteeing that,
in case there is an available board, any authenticated client can use it.

– Board-control processes. Each of them controls a DSP25 board and other re-
sources accessible by the client in the server file system (files, I/O, execution
of programs, etc.).

– HTTP server. It is used as a main door to the system, used to download
WWW laboratory pages and also to access the name server.

With this configuration, we can obtain savings up to 84% comparing to the
real lab [5]. A reduction of the system availability allows this savings. We use the

880 L. Anido et al.



fact that in a virtual laboratory, with no schedules at all, students will not access
the system simultaneously. Although there might be some access rejections at
peak time, our experience demonstrates savings are worth enough as the rejection
rate is low.

5 Conclusions

We have presented our experience in designing practical training support for
remote learning in the field of Computational Science. The systems described
allow students to gain expertise in the use of complex computing devices, like the
ones they will encounter in laboratories in the field. Two approaches have been
discussed: training through educational simulators of real systems, and remote
access to the systems themselves, including additional supporting services to
provide pedagogical added value.

We think that this distance learning is particularly adequate in this case, be-
cause our main objective is to provide previous hands-on experience to students
that will have to interact with real computing equipment in regular courses in
Computational Science. In this sense, e-learning serves as a complement to the
target audience, where lectures can be taken independently of time constraints
or physical location. These complementary remote courses will enable students
to get the most from the corresponding regular courses.

References

1. Anido, L., Llamas, M., Fernández, M.J.: Internet-based Learning by Doing. IEEE
Transactions on Education, Vol. 44, No. 2, CD-ROM Folder 09. ISSN 0018-9359
(2001)

2. Llamas, M., Anido, L., Fernández, M. J.: Simulators over the Network. IEEE Trans-
actions on Education, Vol. 44, No. 2, CD-ROM Folder 09. ISSN 0018-9359 (2001)

3. Fernández, G.: Conceptos básicos de Arquitectura y Sistemas Operativos. Curso de
Ordenadores. Sistemas y Servicios de Comunicación, S.L. ISBN 84-605-0522-7.

4. Harkey, D., Orfali, R.: Client/Server Programming with Java and CORBA, 2nd
Edition. John Wiley & Sons. ISBN 047124578X.

5. Castaño, F.J., Anido, L., Vales, J., Fernández, M.J., Llamas, M., Rodŕıguez, P.S.,
Pousada, J.M.: Internet-based Access to Real Equipment at Computer Architecture
Laboratories using the Java/CORBA Paradigm. Computers & Education, Vol. 36,
No. 2, pp. 151-170, Elsevier Science. ISSN 0360-1315 (2001)

6. Flite Electronics Ltd. web page at http://www.flite.co.uk/index.html
7. Fuchiwaki, Y., Usuki, N., Arai, T., Murahara, Y.: The DSP Experiments for Under

Graduate Students. ICASSP (IEEE) 6:3526-3529 (2000)

881An Online Environment Supporting High Quality Education


	Introduction
	Teaching Computer Architecture
	imulNet:imulatorsover the Network
	Architecture
	Collaborative Learning
	First steps in Online Computational Science Education: acquiring experience with supporting and related concepts
	Tutoring

	Accessing to real equipment
	Description of the environment
	System Architecture

	Conclusions
	References

