
Teaching Parallel Programming
Using Both High-Level and Low-Level Languages

Yi Pan

Georgia State University, Atlanta, GA 30303, USA
pan@cs.gsu.edu

Abstract. We discuss the use of both high-level and low-level languages
in the teaching of senior undergraduate and junior graduate classes in
parallel and distributed computing. We briefly introduce several language
standards and discuss why we have chosen to use OpenMP and MPI in
our parallel computing class. Major features of OpenMP are briefly intro-
duced and advantages of using OpenMP over message passing methods
are discussed. We also include a brief enumeration of some of the draw-
backs of using OpenMP and how these drawbacks are being addressed by
supplementing OpenMP with additional MPI codes and projects. Several
projects given in our class are also described in this paper.

1 Introduction

Parallel computing, the method of having many small tasks solve one large
problem, has emerged as a key enabling technology in modern computing. The
past several years have witnessed an ever-increasing acceptance and adoption
of parallel processing, both for high-performance scientific computing and for
more “general-purpose” applications. The trend was a result of the demand for
higher performance, lower cost, and sustained productivity. The acceptance has
been facilitated by two major developments: massively parallel processors and
the widespread use of clusters of workstations.

In the last ten years, courses on parallel computing and programming have
been developed and offered in many institutions as a recognition of the growing
significance of this topic in computer science [1],[7],[8],[10]. Parallel computa-
tion curricula are still in their infancy, however, and there is a clear need for
communication and cooperation among the faculty who teach such courses.

Georgia State University (GSU), like many institutions in the world, has of-
fered a parallel programming course at the graduate and Senior undergraduate
level for several years. It is not a required course for computer science majors,
but a course designated to accomplish computer science hours. It is also a course
used to obtain a Yamacraw Certificate. Yamacraw Training at GSU was created
in response to the Governor’s initiative to establish Georgia as a world leader in
highbandwidth communications design. High-tech industry is increasingly per-
ceived as a critical component of tomorrow’s economy.

Our department offers a curriculum to prepare students for careers in Ya-
macraw target areas, and Parallel and Distributed Computing is one of the

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 888−897, 2002.
 Springer-Verlag Berlin Heidelberg 2002

courses in the curriculum. Graduate students from other departments may also
take the course in order to use parallel computing in their research.

Low-level languages and tools that have been used at GSU for the course
includes Parallel Virtual Machine (PVM) and the Message Passing Interface
(MPI) on an SGI Origin 2000 shared memory multiprocessor system. As we
all know, the message passing paradigm has several disadvantages: the cost of
producing a message passing code may be between 5 and 10 times that of its
serial counterpart, the length of the code grows significantly, and it is much less
readable and less maintainable than the sequential version. Most importantly,
the code produced using the message passing paradigm usually uses much more
memory than the corresponding code produced using high level parallel lan-
guages since a lot of buffer space is needed in the message passing paradigm. For
these reasons, it is widely agreed that a higher level programming paradigm is
essential if parallel systems are to be widely adopted. Most schools teaching the
course use low-level message passing standards such as MPI or PVM and have
not yet adopted OpenMP [1], [7], [8], [10]. To catch up with the industrial trend,
we decided to teach the shared-memory parallel programming model beside the
message passing parallel programming model. This paper describes experience
in using OpenMP as well as MPI to teach a parallel programming course at
Georgia State University.

2 About OpenMP

The rapid and widespread acceptance of shared-memory multiprocessor archi-
tectures has created a pressing demand for an efficient way to program these
systems. At the same time, developers of technical and scientific applications
in industry and in government laboratories find they need to parallelize huge
volumes of code in a portable fashion.

The OpenMP Application Program Interface (API) supports multi-platform
shared-memory parallel programming in C/C++ and Fortran on all architec-
tures, including Unix platforms and Windows NT platforms. Jointly defined
by a group of major computer hardware and software vendors, OpenMP is a
portable, scalable model that gives shared-memory parallel programmers a sim-
ple and flexible interface for developing parallel applications for platforms rang-
ing from the desktop to the supercomputer, [2]. It consists of a set of compiler
directives and library routines that extend FORTRAN, C, and C++ codes for
shared-memory parallelism.

OpenMP’s programming model uses fork-join parallelism: the master thread
spawns a team of threads as needed. Parallelism is added incrementally: i.e.
the sequential program evolves into a parallel program. Hence, we do not have
to parallelize the whole program at once. OpenMP is usually used to parallelize
loops. A user finds his most time consuming loops in his code, and splits them up
between threads. In the following, we give some simple examples to demonstrate
the major features of OpenMP.

Below is a typical example of a big loop in a sequential C code:

889Teaching Parallel Programming

void main()

{

double A[100000];

for (int i=0;i<100000;i++) {

big_task(A[i]);

}

}

In order to parallelize the above code in OpenMP, users just need to insert
some OpenMP directives to tell the compiler how to parallelize the loop.

A short hand notation that combines the Parallel and work-sharing construct
is shown below:

void main()

{

double Res[100000];

#pragma omp parallel for

for(int i=0;i<100000;i++)

{

big_task(Res[i]);

}

}

The OpenMP work-sharing construct basically splits up loop iterations among
the threads in a team to achieve parallel efficiency. By default, there is a barrier
at the end of the “omp for”. We can use the “nowait” clause to turn off the
barrier.

Of course, there are many different OpenMP constructs available for us to
choose. The most difficult aspect of parallelizing a code using OpenMP is the
choice of OpenMP constructs, and where these should be inserted in the sequen-
tial code. Smart choices will generate efficient parallel codes, while bad choices
of OpenMP directives may even generate a parallel code with worse performance
than its original sequential code due to communication overheads.

When parallelizing a loop in OpenMP, we may also use the schedule clause
to perform different scheduling policies which effects how loop iterations are
mapped onto threads. There are four scheduling policies available in OpenMP.
The static scheduling method deals-out blocks of iterations of size “chunk” to
each thread. In the dynamic scheduling method, each thread grabs “chunk” iter-
ations off a queue until all iterations have been handled. In the guided scheduling
policy, threads dynamically grab blocks of iterations. The size of the block starts
large and shrinks down to size “chunk” as the calculation proceeds. Finally, in
the runtime scheduling method, schedule and chunk size are taken from the
OMP SCHEDULE environment variable and hence are determined at runtime.

The section work-sharing construct gives a different structured block to each
thread. This way, task parallelism can be implemented easily if each section has a
task (procedure call). The following code shows that three tasks are parallelized
using the OpenMP section work-sharing construct.

890 Y. Pan

#pragma omp parallel

#pragma omp sections

{

task1();

#pragma omp section

task2();

#pragma omp section

task3();

}

Another important clause is the reduction clause, which effects the way vari-
ables are shared. The format is reduction (op : list), where op can be any
general operation such as +, max, etc. The variables in each “list” must be shared
in the enclosing parallel region. Local copies are reduced to a single global copy
at the end of the construct. For example, here is an example for global sum and
the final result is stored in the variable res.

#include <omp.h> #define NUM_THREADS 2 void main ()

{ int i;

double ZZ, func(), res=0.0;

omp_set_num_threads(NUM_THREADS)

#pragma omp parallel for reduction(+:res) private(ZZ)

for (i=0; i< 1000; i++)

{

ZZ = func(I);

res = res + ZZ;

}

}

Programming in a shared memory environment is generally easier than in
a distributed memory environment and thus saves labor costs. However, pro-
gramming using message passing in a distributed memory environment usually
produces more efficient parallel code. This is much like the relationship between
assembly languages and high level languages. Assembly codes usually run faster
and are more compact than codes produced by high-level programming lan-
guages and are often used in real-time or embedded systems where both time
and memory space are limited, and labor costs are not the primary considera-
tion. Besides producing efficient codes, assembly languages are also useful when
students learn basic concepts about computer organization, arithmetic opera-
tion, machine languages, addressing, instruction cycles, etc. When we need to
implement a large complicated program, high-level languages such as C, C++,
or Java are more frequently used. Similarly, students can learn a lot of concepts
such as scalability, broadcast, one-to-one communication, performance, commu-
nication overhead, speedup, etc, through low-level languages such as MPI or
PVM. These concepts are hard to obtain through high-level parallel program-
ming languages due to the fact that many details are hidden in the language
constructs. However, students can implement a relatively large parallel program

891Teaching Parallel Programming

using a high-level parallel language such as OpenMP or HPF easily within a
short period of time.

We believe that the future of high performance computing heavily depends
on high level parallel programming languages such as OpenMP due to the in-
creasingly high labor costs and the scarcity of good parallel programmers. High
level parallel programming languages are one way to make parallel computer
systems popular and available to non-computer scientists and engineers. Hence,
teaching students how to use high level parallel programming languages as well
as the low level message passing paradigm is an important task for teaching
parallel programming.

3 Why OpenMP and MPI

There are currently four major standards for programming parallel systems that
were developed in open forums: High Performance Fortran (HPF) [6], OpenMP
[2], PVM [3] and MPI [5].

HPF relies on advanced compiler technology to expedite the development of
data-parallel programs [6]. Thus, although it is based on Fortran, HPF is a new
language, and hence requires the construction of new compilers. As a consequence
each implementation of HPF is, to a great extent, hardware specific, and until
recently there were very few complete HPF implementations. Furthermore most
of the current implementations are proprietary and quite expensive. HPF has
been written for the express purpose of writing data-parallel programs, and, as
a consequence, it is not well-suited for dealing with irregular data-structures or
control-parallel programs.

The Parallel Virtual Machine (PVM) system uses the message-passing model
to allow programmers to exploit distributed computing across a wide variety of
computer types, including multiprocessor systems [3]. A key concept in PVM
is that it makes a collection of computers appear as one large virtual machine,
hence its name. The PVM computing model is simple yet very general, and
accommodates a wide variety of application program structures. The program-
ming interface is deliberately straightforward, thus permitting simple program
structures to be implemented in an intuitive manner. The user writes his appli-
cation as a collection of cooperating tasks. Tasks access PVM resources through
a library of standard interface routines. These routines allow the initiation and
termination of tasks across the network as well as communication and synchro-
nization between tasks. The PVM message-passing primitives are oriented to-
wards heterogeneous operation, involving strongly typed constructs for buffering
and transmission. Communication constructs include those for sending and re-
ceiving data structures as well as high-level primitives such as broadcast, barrier
synchronization, and global sum.

MPI specifies a library of extensions to C and Fortran that can be used to
write message passing programs [5]. So an implementation of MPI can make use
of existing compilers, and it is possible to develop more-or-less portable MPI
libraries. Thus, unlike HPF, it is relatively easy to find an MPI library that will

892 Y. Pan

run on existing hardware. All of these implementations can be freely downloaded
from the internet. Message passing is a completely general method for parallel
programming. Indeed, the generality and ready availability of MPI have made it
one of the most widely used systems for parallel programming. Compared with
the PVM library, MPI has recently become more popular.

OpenMP has emerged as the standard for shared memory parallel program-
ming. For the first time, it is possible to write parallel programs which are
portable across the majority of shared memory parallel computers. OpenMP is
a portable, scalable model that gives shared-memory parallel programmers a
simple and flexible interface for developing parallel applications for platforms
ranging from the desktop to the supercomputer.

The most important reason for our adoption of OpenMP in a parallel pro-
gramming class is that students can parallelize some realistic code (not toy
problems) within a short period of time due to the ease of programming that it
offers. Students can also experiment with different scheduling schemes such as
static or dynamic loop scheduling policies within a short period of time, which
would be impossible otherwise using MPI. Using OpenMP also has the advan-
tage that task parallelism can be easily implemented by just inserting several
OpenMP directives. By combining loop parallelism and task parallelism, better
performance and higher scalability can be achieved. On the other hand, task
parallelism is difficult to implement using MPI or HPF.

Another reason for our selection of OpenMP in our class is that we have an
SGI Origin 2000 shared memory multiprocessor system in our department. A
shared memory programming model fits in well.

Besides the above reasons, OpenMP has the following benefits for parallel
programming compared with message passing models such as MPI: a) A user
just needs to add some directives to the sequential code to instruct the com-
piler how to parallelize the code. Hence, it has unprecedented programming
ease, making threading faster and more cost-effective than ever before. b) The
directives are treated as comments when running a single processor. Hence, a
single-source solution can be used for both serial and threaded applications, low-
ering code maintenance costs. c) Parallelism is portable across Windows NT and
Unix platforms. d) The correctness of the results generated using OpenMP can
be verified easily which dramatically lowers development and debugging costs.

Hence, our strategy is to teach students the basic concepts in parallel pro-
gramming such as scalability, broadcast, one-to-one communication, performance,
communication overhead, speedup, etc, through a low-level parallel programming
language, and teach other concepts such as various scheduling policies and task
parallelism through a high-level parallel programming language. Since MPI and
OpenMP are the most widely used languages in the two categories, these are
selected to teach parallel programming.

893Teaching Parallel Programming

4 Some Pitfalls with OpenMP

Because OpenMP is a high level parallel language, many details are hidden
from a programmer. The good thing is that students can learn quickly and
start to program immediately after learning some techniques. The pitfall is that
students cannot clearly see the communications involved in a parallel program.
Our approach to overcome this problem is to supplement OpenMP projects with
some simple MPI programs.

Students first learn the basics of parallel programs in a distributed mem-
ory environment. They start to parallelize a sequential code using simple MPI
constructs such as MPI Bcast, MPI Reduce, MPI Send, and MPI Recv. Through
several small projects, they learn the concepts of one-to-one communication,
multicast, broadcast, reduction, synchronization, and concurrency.

Later, when they use OpenMP to parallelize a program, they already have a
deep understanding of communication structure, communication overhead, scal-
ability and performance issues.

The second shortcoming with OpenMP is that it does not provide mem-
ory allocation schemes for arrays and other data structures since OpenMP is
designed for shared memory machines. Again, this relieves the students from
complicated memory allocation decisions, allowing concentration on loop and
task parallelism. This is good for the ease of programming, but students do
not know the details of array allocation schemes such as BLOCK or CYCLIC
schemes commonly used in distributed memory environments. Since the memory
on the SGI Origin 2000 is not physically shared, SGI provides data distribution
directives to allow users to specify how data is placed on processors. If no data
distribution directives are used, then data are automatically distributed via the
“first touch” mechanism [4] which places the data on the processor where it is
first used. Because different allocation schemes may affect the performance of a
program greatly, SGI data distribution directives are required in the final project
to show the performance improvement.

For example, the following data distribution directive distributes the 4D array
H on dimension 2:

!$sgi distribute_reshape H(*,BLOCK,*,*)

Students are required to try several data distribution schemes, to observe the
running times and to comment on the timing results as described below. In this
way, the relationship between memory allocation schemes and performance is
demonstrated.

Due to these pitfalls with OpenMP, students would not learn all the concepts
and the whole picture in parallel programming using OpenMP alone. Our strat-
egy is to supplement OpenMP with explanation on several typical MPI codes
and small projects using the MPI standard. Then, students experiment with var-
ious scheduling policies and complicated parallelization methods in OpenMP. In
this way, students experience various parallel schemes and techniques in a short
period of time. This would be very hard to achieve if only the MPI or PVM

894 Y. Pan

programming model were used in teaching parallel programming because of the
time demands for implementation and parallelization of large codes in MPI or
PVM. The following section details the strategy of using both OpenMP and MPI
in the class.

5 Using MPI and OpenMP in Projects

The parallel programming class at GSU is a semester-long class for upper-level
undergraduates and beginning graduate students. In it tutorials on MPI and
OpenMP from the Ohio Supercomputing Center were used as supplements to a
parallel algorithms textbook [9]. The code presented in the lectures uses both C
and Fortran.

The course begins with an overview of parallel computing and continues with
a brief introduction to parallel computing models such as various PRAMs, shared
memory models and distributed memory models. The concepts of data paral-
lelism and pipelining are also introduced at that time. The next block of lectures
forms a transition into a more or less standard parallel algorithms course. First
serial and parallel versions for a very simple computation – e.g., prefix sums and
prime finding, are discussed. In the course of analyzing the performance of these
algorithms, the concepts of speedup, scalability and efficiency are developed.
The deterioration of the performance of the parallel algorithm as the number
of processes is increased leads naturally to a discussion of Amdahl’s Law and
scalability.

The course work consists of two tests, a final exam, five programming projects
and a research paper. Since the course’s emphasis is on parallel programming,
projects are an important part of the course. The purpose of the first project
is simply to acquaint students with the system and programming environment
of the Origin 2000. In this they write a simple addition code, and measure the
parallel times using different numbers of processors.

In the second project, the students implement an MPI code to calculate π
using Simpson’s Rule instead of the rectangle rule discussed in class, where stu-
dents are exposed to various MPI communication functions. For timing measure-
ments and precision, they need to test the code using several different numbers
of subintervals to see the effect on the precision of results and different number
of processors on the execution times.

In the third project, students implement the parallel game of life. Through
the assignment, students learn various domain decomposition strategies. All the
above projects are implemented in MPI.

Once students understand the communication mechanisms of parallel com-
puting systems, and communication overhead within a parallel code, it is time
to introduce OpenMP. After briefly discussing the use of OpenMP and illus-
tration of OpenMP through several examples, students are asked in the fourth
project to initialize a huge array A so that each element has its index as its value.
A second real array B which contains the running average of array A is then
created. The loops are parallelized with all four scheduling schemes available

895Teaching Parallel Programming

in OpenMP (static, dynamic, guided, and runtime) and the running times are
measured with different scheduling policies and different chunk sizes. Students
write up their observations on the timings using the four different scheduling
policies and explain why the performance differs in these cases.

In the fifth project, students learn how to parallelize a real research Fortran
code in OpenMP. The project contains several parts which includes the paral-
lelization of the major loops in the code in OpenMP using both the loop and
task parallelism of OpenMP. Thus the best scheduling policy, best chunk size
for the policy, and both loop and task parallelism are obtained in the above two
steps, while array mapping is done automatically by the OpenMP compiler. For
the final step, the arrays are distributed manually using SGI array distribution
directives because array distribution directives are not available in OpenMP.
The purpose is for students to understand the effect of array distribution on
the runtime performance. Students are also required to write a short report
to summarize the results obtained. Through these steps, students learn how to
parallelize a real code in a step-by-step fashion.

Students are also required to write a research paper or a survey paper on
a chosen topic in parallel processing. The purpose is for the students to apply
the knowledge learned in the course to an application. Some students have im-
plemented algorithms using MPI and/or OpenMP using various strategies and
compared the performance of their implementations with the results published
in the literature. At the end of the term, students need to present their findings
and submit a paper.

The outcome of the course is very good. Based on student evaluations and
comments on the course, most students feel that they learn a lot in the course.
Some of the students have already applied the knowledge learned in the course to
research projects supported by the NSF and Air Force. One student implemented
a parallel program for Cholesky factorization using both MPI and OpenMP, and
did a lot of testing using various scheduling and partition strategies. He also did
a comprehensive comparison among the different implementations, and wrote an
excellent research paper at the end of the course. The paper is being revised and
potentially could be published in a conference. This would have been impossible
if only MPI had been taught in the course.

6 Conclusion

As OpenMP becomes more popular for parallel programming because of its
many advantages over message passing programming models, it is important
to introduce OpenMP in a parallel programming course. However, OpenMP
also has some shortcomings for teaching parallel programming concepts. Our
strategy is to use MPI to convey the basic concepts of parallel programming and
to use OpenMP to tackle more complicated problems such as various scheduling
policies and combined loop and task parallelism. It seems that the strategy is
well received by the students.

896 Y. Pan

References

1. F.C. Berry. An undergraduate parallel processing laboratory, IEEE Trans. Educa-
tions, vol. 38, pp. 306-311, (Nov. 1995)

2. Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan, and Jeff
McDonald, Parallel Programming in OpenMP, Morgan Kaufmann Publishers, 300
pages, (October 2000)

3. J. Dongarra, P. Kacsuk, N. Podhorszki(Editors): Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface: 7th European PVM/MPI Users’
Group Meeting, Balatonfuered, Hungary, (September 2000)

4. J. Fier. Performance Tuning Optimization for Origin 2000 and Onyx 2. Silicon
Graphics, (1996), http://techpubs.sgi.com

5. W. Gropp, E. Lusk, A. Skjellum. Using MPI : portable parallel programming with
the message- passing interface, MIT Press, Cambridge, Mass., (1994)

6. C. H. Koelbel. The High performance Fortran handbook, MIT Press, Cambridge,
Mass., (1994)

7. R. Miller. The status of parallel processing education, Computer, vol. 27, no. 8,
pp. 40-43, (Aug. 1994)

8. C. H. Nevison. Parallel computing in the undergraduate curriculum, Computer,
vol. 28, no. 12, pp. 51-53, (Dec. 1995)

9. M. J. Quinn. Parallel Computing - Theory and Practice, McGraw-Hill, INC., (1994)
10. B. Wilkinson and M. Allen. A state-wide senior parallel programming course, IEEE

Trans. Educations, vol. 42, no. 3, pp. 167-173, (1999)

897Teaching Parallel Programming

	Introduction
	About OpenMP
	Why OpenMP and MPI
	Some Pitfalls with OpenMP
	Using MPI and OpenMP in Projects
	Conclusion
	References

