
Fine Grain Parallelism for Discrete Variable
Approaches to Wavepacket Calculations

Daniele Bellucci1, Sergio Tasso1 and Antonio Laganà2

1 - Dipartimento di Matematica e Informatica, Università di Perugia,
06123 Perugia, Italy

2 - Dipartimento di Chimica, Università di Perugia, 06123 Perugia, Italy

Abstract. The efficiency of some parallel models and structures when
applied to wavepacket reactive scattering calculations is discussed by re-
visiting some existing time dependent quantum procedures. The achieve-
ment of computational efficiency was found to be closely related to the
parallel model adopted with the fine grain being always less efficient than
the coarser grain ones. In spite of this the fine grain parallel model was
found to be useful for dealing with excessively large matrices.

1 Introduction

Scattering properties of reactive systems can be evaluated using different approa-
ches[1]. Among them those based on classical mechanics are naturally parallelized
at large grain since each trajectory calculation is an independent computational
task. On the contrary, approaches based on quantum mechanics are difficult
to parallelize because of the spread nature of the wavefunction describing the
quantum system. The spread nature of the quantum representation of the system
shows up in the use of a large basis set or of a large pointwhise representation
of the wavefunction.

Quantum wavepacket methods differ from time-independent quantum meth-
ods in that they integrate in time the time-dependent Schrödinger equation
starting from a known quantum state of the reactants.

In the numerical procedure we use (TIDEP), only the real part of the wave-
packet is propagated [2]. For the generic atom-diatom collinear (two mathemat-
ical dimensions) reactions A + BC(v, j) the initial wavepa-cket is set up by
expressing the wavefunction in terms of the initial diatomic molecule BC wave-
function and its analysis is performed at a cut corresponding to a large fixed B-C
vibrational coordinate [2]. To start the propagation, the initial wavepacket (the
vibrational, v, and rotational, j, wavefunction of the diatomic reactant times a
normalized Gaussian function and a phase factor giving a relative momentum
towards the interaction region[2]) is placed in the entrance channel. The method
can be implemented in a way that only the real component of wavepacket can be
explicitly propagated [2] and a collocation method can be used. Accordingly, the
potential and the wavefunction are represented by their values on a regular grid
that must be large enough to contain the initial wavepacket, the region where
the analysis line is drawn, and the interaction region. The grid must also be fine

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 918−925, 2002.
 Springer-Verlag Berlin Heidelberg 2002



enough to accurately describe the structure of the wavefunction. The real part
of the wavepacket is propagated in time until it has mainly been absorbed near
the edge of the grid. This reduces the calculation to a continuous manipulation
of a certain number of multidimensional matrices.

As already pointed out elsewhere[3], a coarse grain model is better suited
to parallelize TIDEP. Coarse grain parallel implementations of the code and
related advantages and disadvantages are discussed in section 2. Finer grain
parallelization models are, under certain respects, more interesting. They act, in
fact, at the innermost level of the matrices implying a highly repetitive execution
of some operations that is a favourable case for parallelism. In addition, the
bigger dimensionality of the matrices used in these approaches makes more likely
the possibility that the memory limits of the machine used are hit. In section 3,
we discuss several details of a fine grain parallel implementation of TIDEP.

2 The coarse grain parallelization of TIDEP

The parallelization tool used in our work is MPI. In TIDEP, calculations are per-
formed for a given range of energy, at a fixed value of the vibrotational quantum
number (vj) of the reactant diatom and at a single value of the total angular mo-
mentum quantum number J and parity p. Therefore, the coarsest grain level of
parallelism that can be adopted is the one distributing the calculation for a given
quartet of v, j, J, p quantum numbers. In this case, due to the increasingly (with
J) different characteristics of the various tasks, the best choice is to adopt a task
farm organization dynamically assigning the computational workload [3]. This
very coarse grain approach was fruitfully implemented on a cluster of powerful
workstations. In this case, however, the highest J calculations require increas-
ingly longer times to run, make the check for convergency with partial waves
difficult and the imbalance of the load rapidly growing.

A next lower level of parallelization of TIDEP is the one based on the com-
bined distribution of fixed J , p and Λ calculations. As it has been already pointed
out above, while it is natural to distribute fixed J calculations (these calculations
are fully decoupled) the decoupling of Λ is not natural since one has to introduce
physical constraints of the centrifugal sudden type (i.e. the projection of J on
the z axis of the body fixed frame is kept constant during the collision). This al-
lows to perform separately the step-propagation of the wavepacket for blocks of
fixed Λ values and recombine the various contributions only at the end of each
propagation step. This is a key feature of the adopted computational scheme
since it allows a decomposition of the domain of the wavepacket in J blocks of
size equivalent to that of block J = 0. This converts a request for increasing the
node memory proportionally to J into a request for increasing the number of
nodes proportionally to J while keeping the node memory constant.

To carry out the calculations the O(1D)+HCl atom diatom reaction [4, 5] was
taken as a case study. Accordingly, the mass values were chosen to be 15.9949
amu, 1.00783 amu and 34.96885 amu (for O, H and Cl, respectively). The energy
range covered by the calculation was approximately 1 eV, the initial vibrotational

919Fine Grain Parallelism for Discrete Variable Approaches



state used for the test was v = 0 and j = 0. The potential energy surface
used for the calculations is described in ref. [4, 5] where other details are also
given. Two sizes ((a) 127 × 119 points, (b) 251 × 143 points) were used for the
dimension of the R′ and r′ matrices while the angular part was expanded in
a set of basis functions (80 in both (a) and (b) cases). Time propagation was
carried out for about 40000 steps to properly diffuse the wavepacket. Production
runs took about 3 weeks on a single node of a Sylicon Graphics PowerChallenge
supercomputer at J = 0. A first version of the parallel code was run [5] on the
Cray T3E at the EPCC of Edinburgh (UK) for the simplest case of J = 0 and
J = 1 in which only three pairs of J and Λ values are considered and only three
nodes are used. Measured speedups are 2.6 for the propagation grid (a) and 2.5
for the propagation grid (b).

The model was then generalized to higher J values. In this generalized model
node zero was exclusively devoted to act as a master and the I/O was decen-
tralized. At the same time, the feature of carrying out fixed J calculations in
pairs by associating one high J value with its complement to the maximum value
of J was adopted in order to keep the number of processors used constant. To
evaluate the performance of this model, the calculations were carried out on the
Origin 3800 at Cineca (Bologna, I) using the same set of parameters adopted
for the grid (a) test described above yet reducing the basis set expansion for
the angular part to 10. Table 1 shows the value of the percentual increase of the
node computing time with respect to that of the node carrying out the J = 0.

Table 1. Percentual time increment (with respect to J = 0)

J 1 2 3 4 5 6 7 8 9 10 11 12 13

% time 0.9 1.8 3.2 6.4 6.4 8.2 15.5 17.3 16.4 19.1 20.0 21.8 22.7

As clearly shown by the results reported in the Table 1 the computing time
per node (averaged over the various values of Λ) increases with J up to about
20%. This indicates that, although one has to pay an extra price to increase
the maximum allowed value of J , for this parallel model the increase of com-
munication time associated with an increase in the number of allowed Λ only
marginally reduces the advantage of having distributed the calculations over
several computing nodes.

3 The fine grain parallelization of TIDEP

The key feature of TIDEP is the iterated use of a time propagator which is
characterized by a determined and recursive structure of matrix operations, such
as the fast Fourier transform, which could allow a re-use of the resources. This

920 D. Bellucci, S. Tasso, and A. Laganà



requires, however, that the matrix operations (multiplications, transpositions,
Fourier transforms) of the algorithmic sequence are performed in a proper way.

At fine grain level, this means to focus the parallelization work on the rou-
tines BLAS DCOPY and DAXPY. In fact TIDEP calls these routines more
than hundred thousands times per propagation. If use is made of propagation
techniques involving a continuous transformation between coordinate and mo-
mentum space, the use of the BLAS routines is accompanied by the use of a Fast
Fourier Transform routine that makes the computational burden even heavier.

An alternative approach is that based on the Discrete Variable Representa-
tion (DVR) method. This is based on the reiterated application of operations
like

H = A ·C + C ·BT + V #C (1)

where A and B are the matrix representations of the two terms (one for each
dimension) of the Laplacian operator, C is the collocation matrix of the wave-
function, V is the matrix representation of the potential operator (accordingly
V #C is the direct product of the single component V matrix with C).

loop of iv from 1 to nv
loop of ir from 1 to nr

h(ir, iv) = 0
end loop of ir

end loop of iv
loop of iv from 1 to nv

loop of i from 1 to nr
loop of ip from 1 to nr

h(i, iv) = h(i, iv) + a(i, ip) · c(ip, iv)
end loop of ip

end loop of i
end loop of iv
loop of i from 1 to nr

loop of iv from 1 to nv
loop of ivp from 1 to nv
h(i, iv) = h(i, iv) + c(i, ivp) · b(iv, ivp)

end loop of ivp
end loop of iv

end loop of i
loop of iv from 1 to nv

loop of i from 1 to nr
h(i, iv) = h(i, iv) + v(i, iv) · c(i, iv)

end loop of i
end loop of iv

Fig. 1. Pseudo code for the section of the av routine associated with eq. (1)

In the reduced dimensionality version of TIDEP used for the parallelization,
above matrix operations are performed inside the routine av. Inside av, two ma-

921Fine Grain Parallelism for Discrete Variable Approaches



trix times vector and one vector times vector operations are performed according
to the computational scheme given in Fig. 1.

When all the matrices involved are distributed per (groups of) rows among
a certain number of nodes, all the operations sketched above imply a quite
significant amount of communication to allow the nodes have the updated version
of the matrices involved.

As already mentioned, the fine grain approach has the advantage of allowing
an increase of the size of the involved matrices beyond the capacity of the node
memory. In this approach, in fact, the request of memory is drastically reduced
by partitioning the space (and momentum) domain. The choice we made was to
partition the representation domain by rows and to adopt a management of the
memory that takes into account the hierarchy of the memory including the I/O
levels.

Accordingly, out of eq. (1) one obtains

Row(i,H) =
nr∑

k=1

A(i, k)·Row(k, C) +Row(i, C) · BT +Row(i, V )#Row(i, C)

whose algorithmic structure is given in Fig. 2.
In this algorithm the matrix C is always handled by rows. The parallel model

adopted is a task farm that performs the calculation for the first two operations
of the right hand side of eq. (1) at worker level and leaves the third one with
the master. Each worker has access to a local (unshared) secondary memory in
which the elements of the proper partitions of A, B and C are stored. In the
startup phase the C matrix is distributed to the workers (this avoids possible
subsequent I/O conflicts). In the same phase the first row of A is distributed
by the master that, after reading sequentially the rows of C, forwards the pairs
〈A(1, k), Row(k, C)〉 to the workers using a roundrobin policy. This implies the
use of a buffer of nr elements in which, at each time, the C row is stored. The
dimension of the buffer is determined by the number of workers (M). Accord-
ingly, the ith worker is assigned the pairs 〈A(1, k), Row(k, C)〉 with k ≡ i mod
M .

Rows of matrix A and B are stored in the same local secondary memory.
Each worker after receiving the row vector of C performs its multiplication

∑

k∈Di

Row(k, C) ·A(1, k) (2)

where Di = {x ∈ N |x ≡ i mod M}.
The product Row(1, C) · BT is then computed by multiplying inside each

node the first row of C by the related partition of rows of B (avoiding so far
the transposition). These terms are then summed to the quantity (2). The sum
of the vectors computed by the workers and the master determines the first row
of H . This is performed via a reduce called by all the farm processes in which
the master deals with Row(1, V ) # Row(1, C) and the workers the computed
vectors. The sum is saved into the logical space of the master that stores it into
the secondary memory space assigned to the matrix H .

922 D. Bellucci, S. Tasso, and A. Laganà



{Let nr = nv}
loop of i from 1 to nr

ReadFromFile Row(i, A)
ReadFromFile Row(i, V )
ReadFromFile Row(i, C)
loop of j from 1 to nv
Temp(j) = 0

end loop of j
loop of k from 1 to nr

ReadFromFile Row(k, C)
loop of j from 1 to nv
Temp(j) = Temp(j) +A(i, k) · C(k, j)

end loop of j
end loop of k
loop of j from 1 to nv
Temp(j) = Temp(j) + V (i, j) · C(i, j)

end loop of j
loop of w from 1 to nr

ReadFromFile Row(w,B)
loop of j from 1 to nv
Temp(w) = Temp(w) +C(i, j) · B(w, j)

end loop of j
end loop of w
loop of j from 1 to nv
H(i, j) = Temp(j)

end loop of j
WriteToFile Row(i,H)

end loop of i

Fig. 2. Sequential version of the section of the av routine associated with eq. (1)

To minimize the worker idle time, the master broadcasts to all workers the pair
〈Row(2, A), Row(2, C)〉 before entering the state of waiting for the completion of
the reduce. This allows the worker to immediately resume their calculations after
executing the reduce. This has the effect of overlapping (and therefore masking)
the time needed for the completion of the broadcast through the computing time
of the workers. It is worth noting that the master performs the broadcast while
no other process of the farm attempts an access to the communication channel.
As a result, the performance is not affected by possible network access conflicts.

Then each worker Wi can access at the same time its own block of C rows
stored in the startup phase with no conflicts and alike in the previous startup
phase performs the sum of scalar products by taking from the vector Row(2, A)
the proper elements of index i modulus the number of workers (M). In a similar
way, the C rows of index greater than 1 are generated.

Test runs have been performed on a Beowulf made of 8 monoprocessor (Pen-
tium III 800 MHz) nodes having 512 MB of central memory using square matrices

923Fine Grain Parallelism for Discrete Variable Approaches



of size 512, 768 and 1024. As shown by Table 2, the elapsed times measured for
the parallel version are definitely smaller than those of the serial version. As a
result, speedups are significant and the advance apparent especially if a compar-
ison is made between with the previous version for which the elapsed time of a
five processor parallel run would hardly break even with that of a single processor
sequential run[3]). It is particularly worth noting also that, in the investigated
range of matrix sizes, the speedup is constant.

Table 2. Elapsed times and speedups

Matrix size Seq. time/s Par. time/s Speedup

512x512 1549.1 231.1 6.7
768x768 5193.2 768.3 6.8

1024x1024 12271.0 1814.2 6.8

4 Conclusions

The need for pushing the parallelization of wavepacket reactive scattering codes
to a fine level in order to deal with matrices of large dimensions associated with
the solution of problems of high dimensionality has been discussed. The code
considered by us for parallelization makes use of a collocation method and a
discrete variable technique. Then the domain is decomposed in a way that the
sequence of matrix operations can be performed by minimizing the time needed
for the reorganization of the matrices during the operations and by overlapping
communication to execution. The study has shown that in this way it is not
only possible to deal with systems whose collocation matrices are too large to be
accomodated in the local memory of the nodes but it is also possible to achieve
a significant parallel speedup.

5 Acknowledgments

This research has been financially supported by MIUR, ASI and CNR (Italy)
and COST (European Union).

References

1. Laganà, A., Innovative computing and detailed properties of elementary reactions
using time dependent approaches, Computer Physics Communications, 116 (1999)
1-16.

924 D. Bellucci, S. Tasso, and A. Laganà



2. Balint-Kurti, G.G., Time dependent quantum approaches to chemical reactions,
Lecture Notes in Computer Science, 75 (2000) 74 - 88.

3. V. Piermarini, L. Pacifici, S. Crocchianti, A. Laganà, Parallel models for reactive
scattering calculations, Lecture Notes in Computer Science 2110 (2001) 194 - 203.

4. V. Piermarini, G. Balint-Kurti, S. K. Gray, G.F. Gogtas, M.L. Hernandez, A.
Laganà, and M.L. Hernandez, Wave Packet Calculation of Cross Sections, Product
State Distributions, and Branching Ratios for the O(1D)+ HCl Reaction, J. Phys.
Chem. A 105(24) (2001) 5743-5750.

5. V. Piermarini, A. Laganà, G. Balint-Kurti, State and orientation selected reactivity
of O(1D)+ HCl from wavepacket calculations, Phys. Chem. Chem. Phys., 3 (2001)
4515-4521.

925Fine Grain Parallelism for Discrete Variable Approaches


	Introduction
	The coarse grain parallelization of TIDEP
	The fine grain parallelization of TIDEP
	Conclusions
	Acknowledgments
	References

