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Abstract. In this paper, we present a core-stateless framework for al-
locating bandwidth to flows based on their requirements which are ex-
pressed using utility functions. The framework inherently supports flows
with adaptive resource requirements and intra-flow drop priorities. The
edge routers implement a labeling algorithm which in effect embeds par-
tial information from a flow’s utility function in each packet. The core
routers maintain no per-flow state. Forwarding decisions are based a
packets label and on a threshold utility value that is dynamically com-
puted. Thus the edge and core routers work in tandem to provide band-
width allocations based on a flow’s utility function. We show how the la-
beling algorithm can be tailored to provide different services like weighted
fair rate allocations. We then show the performance of our approach us-
ing simulations.

1 Introduction

The Internet is being increasingly used for carrying multimedia streams that are
sensitive to the end-to-end rate, delay and drop assurances they receive from the
network. We are motivated by two key characteristics that a significant number of
these flow share. First, multimedia flows are increasingly becoming adaptive and
can adjust their level of performance based on the amount of resource available.
The different levels of performance result in varying levels of satisfaction for the
user. Another key characteristic is that most of them tend to be composed of
packets which contribute varying amounts of utility to the flow they belong to.
This intra-flow heterogeneity in packet utility could be caused due to the stream
employing a hierarchical coding mechanism as in MPEG or layered multicast,
or due to other reasons such as the specifics of a rate adaptation algorithm (as
explained later for TCP). In either case, dropping the “wrong” packet(s) can
significantly impact the qualitative and quantitative extent to which a flow is
able to make use of the resources allocated to it. That being the case, the utility
provided by a quantum of resource allocated to a flow depends on the value of
the packets that use it. So, merely allocating a certain quantity of bandwidth to
a flow does not always imply that the flow will be able to make optimal use of
it at all times. As has been observed previously, applications don’t care about
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bandwidth, per se, except as a means to achieve user satisfaction. In summary,
if optimizing the perceived quality of service is the end goal of an architecture,
then it is important that we allocate resources according to user’s preferences,
and provide simple ways for a flow to make best use of its share.

Utility functions have long been recognized as an abstraction for a user to
quantify the utility or satisfaction that (s)he derives when a flow is allocated a
certain quantum of resource. It maps the range of operational points of a flow
to the utility that a user derives at each point. Figure 1 shows some sample util-
ity functions. Such an abstraction provides the necessary flexibility to express
arbitrarily defined requirements. Also, it is now well established that different
notions of fairness can be defined in terms of utility functions [4,7,8,10]. Partly
motivated by recent work by Gibbens, Kelly and others [5,4,11,2], we use utility
functions as an abstraction that is used to convey application/user level perfor-
mance measures to the network. In this paper, we only concern ourselves with
allocation of bandwidth as a resource. Therefore, we have used the terms re-
source and bandwidth interchangeably. We hope that the proposed framework
will be a step toward a more general solution that can be used for allocation of
other network resources such as those that impact end to end delay and jitter.

In this paper, we propose a scalable framework for allocating bandwidth to
flows based on their utility functions. The architecture is characterized by its
simplicity – only the edge routers maintain a limited amount of per flow state,
and label the packets with some per-flow information. The forwarding behavior
at a router is based on the state in the packet header. As the core routers do not
perform flow classification and state management they can operate at very high
speeds. Furthermore, the framework allows a flow to indicate the relative priority
of packets within its stream. The dropping behavior of the system is such that
for any flow lower priority packets are dropped preferentially over high priority
packets of the flow.

We refer to our architecture as the Stateless Utility based Resource allocation
Framework(SURF)1. The network objective and architecture are described in
Section 2. The algorithms implemented by this architecture are described in
Section 3. In Section 4, we present the performance of our architecture in a
variety of scenarios. Section 5 discusses our implementation experience and some
key issues. Section 6 discusses the related work and section 7 concludes the paper.

1 We borrow the notion of stateless core from CSFQ [14]
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2 System Architecture

2.1 Network Model

The approach that we propose is based on the same philosophy used in tech-
nologies like CSFQ [14] and Corelite [12]. The network’s edge routers maintain
per-flow state information, and label packets based on rate at which flows send
packets. Core routers maintain no per-flow state. Forwarding decisions are based
on the labels that packet carry and aggregate state information such as queue
length. Thus the edge and the core routers work in tandem to provide per-flow
allocations. We build on these principles to provide resource allocation based on
utility functions.

2.2 Network Objective

Let us assume that all flows provide the network their utility functions. There are
a variety of objective functions that can be used to accomplish different goals. In
the following discussion we consider two possible objectives, provide the intuition
behind them, and motivate our choice of one of them as an objective that we
use in this paper.

A possible network objective is to maximize the aggregate utility at every
link in the network. i.e., at every link in the network, maximize

∑M
i=1 Ui(ri),

subject to the constraint
∑M

i=1 ri ≤ C, where M is the number of flows sharing
the link, Ui(ri) is the utility derived by flow i for a allocation ri and C is the total
link capacity. Another potential objective is to maximize the aggregate system
utility, i.e, maximize

∑N
i=1 Ui(ri), where N is the total number of flows in the

network. For a network with just a single link both the objectives are identical.
However, for a multi-hop network they are different. For instance, consider the
example shown in Figure 2. Here, f1 is a high priority flow and hence has a
larger incremental utility than that for f2 and f3. If the available bandwidth
is two units, then if we use the first objective function we will allocate both
units to f1 in both the links. This maximizes the utility at every link in the
network(3.0 units at every link) and the resultant system utility is 3.0 because
only f1 received a bandwidth allocation. However, if we use the second objective
function, we will allocate two units to f2 and f3 in each of the links. Though
the aggregate utility at any given link is only 2.0, the resultant aggregate system
utility is 4.0. This difference in allocation results from different interpretations
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of the utility function. The first objective function treats utility functions from a
user’s perspective by collapsing the entire network into a single unified resource,
neglecting the hop count. Thus, this interpretation has 2 key characteristics: (i)
it is topology agnostic, i.e. a user does not have to be concerned with how many
hops a flow traverses when specifying a utility value, and (ii) it maintains the
relative importance of different flows as specified by the utility function across
all links.

While the first objective function suites an user’s perspective the second
treats them from a resource pricing point of view. In this interpretation, the
more hops a flow traverses the more resources the flow utilizes and the more a
user should pay for comparable performance. Specifically, the utility functions
can be viewed as quantifying a user’s willingness to pay. Optimizing the second
objective function can maximize the network operator’s revenue. Networks which
employ such an optimization criterion require a user to be cognizant of the hop
count of the end to end path traversed by his flow and alter the utility function
to get performance comparable to a case with a different number of hops.

Arguably, a case can be made in favor of either of the cases mentioned here
or many other possible objectives. As our focus in this paper is to view utility
function as a guide to user satisfaction, independent of network topology, we
choose to focus on the former objective function.

3 Distributed Framework and Algorithms

In this section, we describe the distributed framework that provides rate alloca-
tions that approximate the desired network objective. A key characteristic of the
framework is that only the routers at the edges of the network maintain per-flow
state information and have access to the utility function of the flows. The core
routers however, treat packets independent of each other. They do not perform
any per-flow processing and have a simple forwarding behavior.

The framework has two primary concepts: First, an ingress edge router log-
ically partitions a flow into substreams. The substreams correspond to different
slopes in the utility function of the flow. Substreaming is done by appropriately
labeling the headers of packets using incremental utilities. Second, a core router
has no notion of a flow, and treats packets independent of each other. The for-
warding decision at any router is solely based on the incremental utility labels
on the packet headers. Routers do not drop a packet with a higher incremen-
tal utility label as long as a lower priority packet can instead be dropped. In
other words, the core router attempts to provide the same forwarding behavior
of a switch implementing a multi-priority queue by using instead a simple FIFO
scheduling mechanism, eliminating any need for maintaining multiple queues
or sorting the queue. For ease of explanation, in this paper, we describe the
algorithms in the context of utility function U4 in Figure 12.
2 Many utility functions such as U1 can be easily approximated to a piece-wise function

similar U4. For functions such as U3 we are still working on appropriate labeling
algorithms that provide the right allocation with least amount of oscillations
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3.1 Substreaming at the Edge

Every ingress edge router maintains the utility function, U(r), and the current
sending rate, r, corresponding to every flow that it serves. The current sending
rate of a flow can be estimated using an algorithm similar to the one described
in CSFQ [14]. The edge router then uses a labeling algorithm to compute an
incremental utility value, ui, that should be marked on the packet header. The
result of this procedure is that the flow is logically divided into k substreams
of different incremental utilities, where k is the number of regions or steps3 in
the utility function from 0 to r. The ui field is set to (U(rj) − U(rj−1))/(rj −
rj−1) which represents the increment in utility that a flow derives per unit of
bandwidth allocated to it, in the range (rj , rj−1). Thus all packets have a small
piece of information based on the utility function of the flow embedded in them.

3.2 Maximizing Aggregate Utility

Routers accept packets such that a packet with a higher incremental utility value
is not dropped as long as a packet with a lower incremental utility could instead
be dropped. Such a policy ensures that in any given router, the sum of ui of the
accepted packets is maximized. There are many different ways by which such a
dropping policy can be implemented in the router.

One solution is to maintain a queue in the decreasing order of priorities4.
When the queue size reaches its maximum limit, qlim, the lowest priority packet
in the queue can readily be dropped and incoming packet can be inserted appro-
priately. This would provide the ideal result. But in a high speed router, even
with a moderate queue size, such a solution will be inefficient as the processing
time allowable for any given packet will be very small. In the following section,
we propose an algorithm that approximates the behavior of such a dropping
discipline using a simple FIFO queue, without the requirements of maintaining
packets in a sorted order or managing per-flow or per-class information.

Priority Dropping with a FIFO Queue: The problem of dropping packets
with lower incremental utility labels before packets with a higher incremental
utility can be approximated to the problem of dynamically computing a mini-
mum threshold value that a packet’s label must have, in order for a router to
forward it. We call this value the threshold utility, ut. We define threshold utility
as the minimum incremental utility that a packet must have for it to be accepted
by the router. The two key constraints on ut are that it must be maintained at a
value which will (a) result in enough packets being accepted to fully utilize the
link and (b) not cause buffer overflow at the router.

In Figure 3, R(u) is a monotonically decreasing function of the incremental
utility u. It represents the cumulative rate of all packets that are forwarded

3 A step in refers to a contiguous region of resource values with the same slope
4 This will be in addition to the FIFO queue, that is required to avoid any reordering

of packets.
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through a link for a given threshold utility value, uj . So R(uj) =
∑max

k=j r(uk),
where r(uk) is the rate of packets entering an output link with an incremental
utility label of uk. The threshold utility, ut is a value which satisfies the condition
R(ut) = C, where C is the capacity of the output link. Note that for a given R(u),
there may not exist a solution to R(u) = C because of discontinuities in R(u).
Also the function R(u) changes with time as flows with different utility functions
enter and leave the system and when existing flows change their sending rates.
Hence, tracking the function is not only expensive but may in fact be impossible.
So in theory, an algorithm that uses the value of a threshold utility for making
accept or drop decisions, cannot hope to replicate the result obtained by an
approach that involves sorting using per-flow state information. Our objective is
to obtain a reasonably close approximation of the threshold utility so that the
sum of utilities of flows serviced by the link closely tracks the optimal value,
while the capacity of the output link is fully utilized.

First, we give the intuition behind the algorithm that a router uses to main-
tain the threshold utility ut for an output link and then provide the pseudo code
for the algorithm. We then describe how it is used to make the forward or drop
decision on a new incoming packet.

The objectives of the algorithm are (i) to maintain the value of ut such that
for the given link capacity the sum of the utilities of all the accepted packets
is close to the maximum value possible, and (ii) to maintain the queue length
around a specified lower and upper threshold values(qlth and quth). There are
three key components in the algorithm. (a) to decide whether to increase, de-
crease or maintain the current value of ut, (b) to compute the quantum of change
and (c) to decide how often ut should be changed. The key factors that deter-
mine these decisions are avg qlen, an average value of the queue length computed
(well known methods for computing the average, like the exponential averaging
technique can be used for this purpose) and qdif , the difference between the
virtual queue length value at the current time and when the threshold ut was
last updated. The virtual queue length is a value that is increased on an enqueue
event by the size of the packet received if its ui ≥ ut. The value is decreased by
the size of the packet either on a deque or during a successful enque of a packet
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with a label less than than the ut
5. The latter enables corrective action when

packets are being dropped due to a incorrect(large) threshold. Thus, the virtual
queue length is simply a value that increases and decreases without the physical
constraints of a real queue. Maintaining a virtual queue length in this manner
provides an accurate estimate of the state of congestion in the system. Note
that even when the real queue overflows, the virtual queue length will increase,
resulting in a positive qdif reflecting the level of congestion. Similarly, when the
ut value is very large and no packets are being accepted, the virtual queue length
will decrease, resulting in a negative value of qdif . qdif reflects the rate at which
the length of the virtual queue is changing. When there is a sudden change in
R(u), qdif provides a early warning signal which indicates that ut may need to
be modified. However, if the link state changes from uncongested to congested
slowly, the absolute value of qdif may remain small. But a value of avg qlen that
is beyond the specified queue thresholds indicates that ut needs to be changed.

The quantum of change applied to ut is based on the amount of buffer space
left – given by the queue length, and the rate at which the system is changing –
given by qdif . Congestion build up, is equivalent to R(u) in Fig. 3 shifting to the
right. To increase the threshold, we use a heuristic to determine a target value
uitgt such that R(uitgt) < C. This is used to significantly reduce the probability
of tail drops. Currently this value of uitgt is based on the average ui values of
all the accepted packets and the maximum ui value seen in the last epoch. The
value of ut is then incremented in step sizes that are based on the estimated
amount of time left before the buffer overflows. Similar computation is done
to decrease the threshold where udtgt is based on the average ui values of all
packets dropped in the last epoch. The pseudocode for updating the threshold
is as follows:

if (avg qlen < qlth)or(qdif < −Kq)
time left = avg qlen/qdif

change = (ut − udtgt)/timeleft
else if (avg qlen > quth)or(qdif > Kq)

time left = (qlim − avg qlen)/qdif

change = (uitgt − ut)/time left
u t+ = change

There are two events that trigger a call to the update-threshold() function.
They are (a) whenever |qdif | > Kq and (b) a periodic call at the end of a fixed size
epoch. The first trigger ensures fast reaction. The value of Kq is a configurable
parameter and is set such that we do not misinterpret a typical packet burst
as congestion. Also, it provides a self-healing feedback loop. For instance, when
congestion is receding, if we decrease ut by steps that are smaller than optimal,
this trigger will result in the change being applied more often. Case (b) ensures
that during steady state, the value of ut is adjusted so that the queue length is
maintained within the specified queue thresholds.

5 This case would occur when link is not congested but ut is incorrectly large.
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The forwarding algorithm is very simple. When the link is in a congested
state(avg qlen > qlth), if ui ≤ ut the packet is dropped. Otherwise the packet is
accepted.

3.3 Variants of SURF

The framework described above is flexible and can be tailored to specific needs
by choosing appropriate utility functions. The labeling algorithms at the edge
router can be tailored to label the incremental utilities for specific cases. The
forwarding and threshold computation algorithms remain the same. This is a big
advantage. In this section, we describe a few specific cases of the edge labeling
algorithm and provide the pseudo-code.

Fair Bandwidth Allocation. A common notion of fair bandwidth allocation
is one in which all flows that are bottle necked at a link get the same rate, called
the fair share rate. To achieve such an allocation, all we need to do is assign
identical utility functions with constantly decreasing incremental utilities to all
flows. For ease of understanding we provide a labeling procedure for an idealized
bit-by-bit fluid model. Let umax be the maximum possible value of incremental
utility.

label(pkt)
served+ = 1
pkt.ui = umax − served

where the value of served is reset to 0, after a fixed size labeling epoch, say 1
sec. Let us suppose that the rate at which each flow is sending bits is constant.
The result of this labeling algorithm then is that during any given second, the
bits from a flow sending at rate r bits per second are marked sequentially from
umax to umax − r. The router in a bottleneck link will compute the threshold
ut and drop packets from all flows with ui < ut. This results in fair bandwidth
allocation. This is an alternate implementation of CSFQ [14]. As we will see in
the next section, a key advantage of this approach is that it allows us to convey
rate information as well as intra-flow utility using the same field in the packet
header.

Intra-flow Priorities. Consider a flow, i, which is sending packets with mul-
tiple priority levels at a cumulative rate ri. For instance, the levels could be
I, P and B frames in an MPEG video stream or layers in a layered multicast
stream [9]. The utility function corresponding to the flow will be similar to U4
in Figure 1. Independent of the number of layers and rate allocated to other
flows, if flow i’s packets need to dropped, we would like the packets from layer
j+1 to be dropped before layer j. To achieve such a dropping behavior, the end
hosts must communicate the relative priority of a packet to the edge router. A
simple mechanism to accomplish this could be in the form of a field in the packet
header. The desired dropping behavior honoring intra-flow drop priorities can be
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achieved in the proposed framework by using a labeling procedure similar to the
pseudo-code given below. The forwarding and threshold computation algorithms
remain unchanged.

label(pkt)
p = pkt.intraflow priority
served[p]+ = pkt.size
cum rate[p] = cum rate[p − 1] + est rate[p]
if (served[p] < cum rate[p − 1]) or
(served[p] ≥ cum rate[p])

served[p] = cum rate[p − 1]
pkt.ui = u(served[p])

Figure 4 describes the above pseudo-code. In the code given above, est rate[p]
is the estimated rate at which a flow is sending packets of a certain priority level p
and cum rate[p] is simply

∑p
i=1 est rate[p](assuming 1 to be the highest priority

level). est rate[p] can be computed using a method similar to the one used in
[14]. served[p] maps the packet received onto the appropriate region in its utility
function. u(r) gives the incremental utility of the region corresponding to rate r.

est_rate[p]

U(r)

u(served[p])

cum_rate[p]cum_rate[p−1]

Fig. 4. Labeling Algorithm

Improving TCP Performance. The labeling algorithm used by the edge
router can be tailored to improve the performance of TCP. Specifically, it can
mitigate two primary causes of a reduction in throughput – (i) drop of a re-
transmitted packet (ii) back to back drops of multiple packets. To accomplish
the former, the labeling procedure can label retransmitted packets with the
highest allowable incremental utility for the flow; and to accomplish the latter,
the labeling algorithm can assign consecutive packets to different priority levels
thereby reducing the chances of back-to-back drops. Such an implicit assignment
of interleaved priorities is also useful for audio streams, whose perceived quality
improves when back-to-back drops are avoided.
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4 Performance Evaluation

In this section, we evaluate the algorithms using simulations. We have imple-
mented the algorithms in the ns-2 simulator. We have used the two topologies.
Topology 1 is a simple network with a single congested link which all flows share.
We use this topology to first show that the system converges to the optimal rate
allocation with both adaptive and non adaptive flows. We then use topology 2,
shown in Figure 5, to confirm that the solution converges to the expected values
in a multi hop network. We then take a specific variant of SURF discussed in
3.3, where all flows have the same utility function. Using TCP and CBR flows we
show that fair allocation is achieved. Finally, using a flow with 3 different packet
priority levels, we show that the proposed framework drops packets based on a
flow’s intra-flow priority. The allocated rate for CBR flows is measured by sum-
ming the number of bits received every 250 ms in the sinks, and that for adaptive
flows is measured in the sinks using an exponential averaging routine(similar to
the arrival rate estimation algorithm in the edge router).

All the simulations presented in this section use a fixed packet size of 1000
bytes, a maximum queue size of 100 packets, queue thresholds quth and qlth of
10 and 50 packets respectively and a Kq of 10 packets. Kq and qlth are chosen
so that we do not interpret small bursts that typically occur at a router as
congestion and quth is chosen so that there is sufficient time to adapt ut and
avoid tail drops. Flows use the utility functions shown in Figure 6. The 4 values
given for each utility function are incremental utilities for the 4 rate regions. For
instance, function U2 has an incremental utility of 0.45 for an allocation in the
region 480-960Kbps.
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Fig. 5. Topology 2

4.1 Single Congested Link

In this scenario, Flows 1, 2 and 3 have utility functions U1, U2 and U3 (shown
in Figure 6) respectively. For the first set of results, we consider 3 non-adaptive
CBR sources, each sending at a rate of 1.92Mbps, the link capacity. To calculate
the optimal allocations, we note that the incremental utilities for these flows are
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U2

U3U(r)

U1

480Kbps 960Kbps 1.44Mbps
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Fig. 6. Utility Functions
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Fig. 7. Single Link With Non Adaptive Flows

such that, U3 has the highest incremental utility in region 0-960Kbps. This is
followed by U2 then U1 in the region 0-480Kbps, followed by U2 and U1 again
in the region 480-1.44Mbps. So when flow1 and flow2 are sharing the channel,
the optimal allocation would be to provide 960Kbps each to flow1 and flow2.
Similarly when all 3 flows share the channel, the optimal allocation is to allocate
960Kbps to flow3 and 480Kbps each to flow1 and flow2.

In the simulation, flow 1, enters the network at time 0. As it is the only
flow in the system, it is allocated the entire network bandwidth. 5 seconds after
the start of the simulation, flow 2 enters the network. From Figure 7(a) we
see that flow1 and flow2 are allocated and 960Kbps each, which is the optimal
allocation. After 20 seconds, flow 3, enters the system. This flow has incremental
utility of 0.9 (U3 of Figure 6) which is larger than that of the other two flows in
the region 0-960Kbps. Consequently, the threshold utility, shown in Figure 7(b),
momentarily shoots up. However, this results in increased packet drops, resulting
in containing the queue size within acceptable limits. When the queue size drops,
the threshold utility also drops to a lower value. It finally stabilizes at a value
that results in the capacity being shared between Flows 1, 2 and 3 in the ratio
1:1:2. This conforms to the allocation that optimizes the aggregate utility of the
flows sharing the link.
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Fig. 8. Adaptive and non-adaptive flows with SURF

We now present the results for the same scenario with adaptive flows. Flow 2
and 3 are adaptive. As these flows adjust their sending rates, the distribution of
ui(and hence, R(u)) will also change. The objective of this results is to show that
even when R(u) changes ut converges to the correct value. Figure 8(a) shows
the measured rate at the receivers of the flows.

4.2 Multiple Congested Links

The results for this scenario are shown in Figure 8(b). In this case, there are
five flows having utility functions U1,U2,U3,U1 and U4 respectively. The key
objectives in this experiment are to show (1) that the computation of threshold
utility settles about the correct value even with flows traversing more than just a
single link, (2) even if there is no exact solution to R(u) = C, the value computed
by the algorithm hovers around the right value.

Between time 0 to 25 seconds, only flow 1 and 2 are in the system. The
optimal allocation will result in a ratio of 2:1.5 for flows 1 and 2. This is a case
when there is no exact solution to the condition R(u) = C. At ut < 0.4, the
accepted rate will be only 1.44Mbps, where as at ut ≥ 0.4, the accepted rate will
be 1.92Mbps. The results in Figures 8(b) show that the bandwidth distribution
stabilizes around the correct values.

At time 25 seconds, flow 3 enters and occupies the entire remaining band-
width in the link C2-C3. Its entry does not affect the allocations made to flow2.
Flow4 then enters at time 45sec. It grabs its share of the two units of bandwidth
at the expense of flow3 because flow 3 has a lower incremental utility in the
region beyond 960Kbps, compared to flow 4 in the region 0-960Kbps. At time
75sec, flow 5 enters the network. It has a larger incremental utility till the rate
720Kbps, compared to flows 2 and 4. So it gets that share in preference to flows
2 and 4, which end up with allocations of 720Kbps and 480Kbps respectively.
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4.3 Achieving Fair Allocation

The simulated network topology has a single link with 20 sources sharing a
10Mbps. The labeling epoch length in the edge routers is set to 250 ms. The edge
routers implement the labeling algorithms that provide fair bandwidth alloca-
tion. The sources successively enter the system in 200 ms intervals. Figure 9(a)
and (b) show the rate allocations and the profile of the queue length with TCP
sources. The figures indicate that: (1) there is approximately fair sharing of the
link bandwidth, (2) the queue length is controlled to a range close to the specified
threshold values.
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Fig. 9. Providing Fair Allocation For TCP Flows

4.4 Honoring Intra-flow Priorities

We next perform a simple experiment to illustrate the support for intra-flow
priority dropping provided by an island of SURF routers. In this experiment we
have five UDP flows sharing a 2 Mbps link. Each of the flows is assumed to be
encoded using a layered encoding scheme that has 3 levels of priority. A base
layer of highest priority(priority 1), and two enhancement layers with priorities
2 and 3(priority 2 packets being more useful in reconstructing the content than
those of priority 3). Further, the flows send a third of their packets in each layer,
uniformly striating the flow across the three layers. Each flow sends data at a
rate of 1 Mbps, resulting in a fair share of 400 Kbps. When using SURF, we
observed that each flow was in fact allocated exactly 400 Kbps.

Priority total sent dropped
1 785 3
2 785 618
3 785 761

The above table shows the dropping behavior of a network implementing
SURF. The values shown are typical of any given flow. total sent is the number
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of packet sent by a flow. dropped, the number of packets dropped in different
priority levels clearly indicates that the lower priority packets are dropped in
preference to higher priority packets. During the initial phase of the simula-
tion, when flows are introduced successively, all the layers are served. But as
congestion builds up, all packets from priority 3 are dropped. The fair share
of 400Kbps is shared between the entire 333Kbps of priority 1 packets and a
small portion(66Kbps) of priority 2 packets. This simulation shows that in addi-
tion to providing utility based allocation of rate, SURF routers honor intra-flow
priorities.

5 Discussion

5.1 Implementation Experience

We have implemented the framework described here in the linux kernel, as a
queuing discipline that can be configured using ’tc’, the traffic control program.
The threshold computation, forwarding procedure and the different variants of
SURF that we discussed before have been implemented. The results obtained us-
ing the simulations match closely with the results on our implementation testbed.
We have used vcr, a client-server program that can stream mpeg audio-video files
and play the same, to demonstrate the improvement in user experience. The only
change that was required to the vcr program itself, was an addition to convey
the relative priority of a packet. We use the standard ’setsockopt()’ system call
before every ’send()’ operation to convey this information to the IP layer. The
time and space complexity of implementing the operations of the core router
are of the same order as RED. So we believe that the proposed schemes can be
implemented without compromising the efficiency of high speed core routers.

5.2 Convergence Issues

One of the key issues is the stability and convergence of the threshold computa-
tion algorithm. Though in the simulations that we have performed the threshold
converges to the correct value, an analytical evaluation of the convergence of the
algorithm is essential. In [1], we have considered the specific case of section 3.3
where all flows have the same utility function. We consider the different cases
with constant bit rate sources and TCP like rate adaptive sources and on-off
sources. We have derived the conditions that are essential for the convergence of
a threshold computation algorithm(or fair share estimation in the CSFQ). We
show that both the CSFQ algorithm and the algorithm proposed in this paper
satisfy those conditions. Further analysis with different types of utility function
is part of ongoing work.

5.3 Pricing Issues

In a network that provides service differentiation based on utility functions,
greedy users may be tempted to associate the highest utility value to any amount
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of bandwidth allocated. Typically a pricing scheme is used to prevent users from
lying about their utility functions. The proposed framework does not dictate the
use of a specific pricing scheme. This framework can coexist with many different
pricing schemes. In many cases, the pricing scheme can use some parameters
provided by the framework to determine the cost of the resource. For example,
in a simple spot-market pricing mechanism that is based on the current level of
congestion, the threshold utility(ut) can be used as an indicator of the current
the level of demand of the resource. Also, note that the framework does not
bind a flow to a particular utility function. It offers the flexibility to dynamically
change the utility function during the lifetime of a flow. This is a very useful
feature because, the utility that a user derives from a certain amount of resource
allocated to a flow can change dynamically based on various circumstances.

6 Related Work

The concept of core-stateless networks was proposed by Stoica et al in [14].
They provide an architecture for approximating the behavior of a network of
fair queuing routers. [14] achieves this by labeling packets with the estimated
sending rate of a flow and probabilistically dropping packets based on the label
and a dynamically computed fair share rate in the core. Our approach is partly
motivated by their work. In [13], the authors propose a similar approach based
on carrying flow state in packet headers to provide delay guarantees. RFQ [3],
which was developed independent of our framework is an extension to CSFQ
which provides support for intra-flow priorities by marking packet with different
colors. It does not consider user-specified utility functions for labeling packets. In
[11], Kunniyur and Srikant, describe a framework for designing end-to-end con-
gestion control schemes where users can have different utility functions. While
the framework proposed in this paper is network based, the framework in [11]
depends on flows performing congestion control based on utility functions. The
objective function they optimize is different from the one we elaborate in this
paper. In fact, they maximize aggregate user satisfaction, rather than utility at
every link. Also, being a purely end-to-end adaptation scheme with no router
support, it does not provide for intra-flow drop priorities. [6] presents a frame-
work for optimizing the aggregate user satisfaction of a network by perform-
ing congestion avoidance using the congestion price as the feedback parameter.
They present an algorithm core routers can use for computing the congestion
price (the shadow price), and a rate adaptation algorithm for end hosts. The
rate adaptation algorithm adapts the rate of a flow based on a flows willingness
to pay. They show that at the socially optimum allocation, the first derivative
of a user’s utility function exactly matches the sum of the shadow prices of all
resources along the flows route. They propose changes to the use of the ECN
mechanism in TCP, to implement their framework. [2] proposes a mechanism of
utility max-min which tries to maximize the minimum utility received by appli-
cations sharing a bottleneck link. This is different from the objectives that we
considered in section 2.
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7 Conclusion

In this paper, we have presented SURF, a scalable architecture for providing
bandwidth allocation to flows based on their utility functions. Our proposed ar-
chitecture maximizes the aggregate utility at each link. Its key attributes are scal-
ability, accomplished using a core-stateless architecture, and support for intra-
flow priorities. By simply tailoring edge labeling algorithms, this framework can
be leveraged to optimize the performance of a variety of flows. We described an
algorithm for computing the threshold utility and forwarding packets based on
the computed value. We then presented labeling algorithms that can be used to
provide fair sharing of link bandwidth; and to optimize the perceived quality of
layered streams while providing equal sharing of the bandwidth across flows. We
presented a selected set of results to illustrate various facets of performance. As
high speed networks become increasingly common, we believe that core-stateless
schemes such as SURF will be useful in enabling flexible service models and
optimizing user satisfaction in a unified, scalable framework.
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