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Abstract. In the packet classification, the route and resources allocated
to a packet are determined by the destination address as well as other
header fields of the packet such as source/destination address, TCP and
UDP port numbers. It has been demonstrated that performing packet
classification on a potentially large number of fields is difficult and has
poor worst-case performance. In this work, we proposed an enhanced tu-
ple pruning search algorithm called “Tuple Pruning +” that provides fast
two-dimension packet classification. With reasonable extra filters added
for Information Marker, only one hash access to the tuples is required.
Through experiments, about 8 MB memory is required for 100K-filter
database and 20 million packet per second (MPPS) is achievable. The re-
sults demonstrate that the proposed algorithm is suitable for high-speed
packet classification.

1 Introduction

Traditionally, routers have forwarded packets based only on the destination ad-
dress of the packet and do not provide service differentiation because they treat
all traffic going in the same way. Increasingly, new services require more discrimi-
nating forwarding, called “Packet Classification”. It allows service differentiation
because the router can distinguish traffic based on source/destination address
and application type. The process of mapping packets to different service classes
is referred to as packet classification. The simplest, best-know form of packet
classification is IP lookups, in which each rule specifies a destination prefix.
The associated action is the IP address of next router that the packet must be
forwarded. The other services which require packet classification include: access-
control of firewalls, policy based routing, provision of differentiated qualities of
services, and traffic billing, etc.

To describe the problem formally, we have to define the classifier and the fil-
ter. A classifier is a set of rules or filters that specifies the flows or classes. Packet
classification is performed using a packet classifier, also called filter database. A
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filter F is called k tuple F = (f [1], f [2], . . . f [k]) if the filter contents the k
fields of the packet header, where each f [i] is either a variable length prefix bit
string, a range or a explicit value. A filter can be combined from many fields,
for a packet header, the most common fields are the IP source address (SA), the
destination address (DA), the protocol type and port numbers of source and des-
tination applications and protocol flags. A packet P is said to match a particular
filter F if for all i, the ith field of the header satisfies the f [i]. Each filter has an
associative action. For example, the filter F=(140.113.*, *, tcp, 23, *) specifies
a rule that flows which address to the subnet 140.113 use the telnet application
and the action of the rule may disallow these flows into its network. Beside of
the action, the filter is usually given a cost value to define the priority in the
database. The action of the least-cost matching filter will be used to process the
arriving packet.

To perform packet classification on a potentially large number of filters on
key header fields is difficult and has poor worst-case performance. In the pre-
vious work, tuple pruning search is proposed to achieve fast and scalable two-
dimension (SA,DA) packet classification [1]. Through simulation, 11 hash ac-
cesses are required to finish a packet classification in the worst case as described
in the literature. In this work, an enhanced tuple pruning search algorithm is
proposed. With reasonable extra filters added, only one hash access to the tuples
is required. Also, about 8 MB memory is required for 100,000-filter database. By
using parallel hardware design, 20 million packet per second (MPPS) is achiev-
able. The proposed algorithm is thus suitable for high speed packet classification.

The rest of the paper is organized as follows. Firstly, the related algorithms
are introduced in Section 2. Section 3 presents the proposed algorithm. The
experiment setup and results are presented in 4. Finally, a summary is given in
Section 5.

2 Related Works

Recently several algorithms for packet classification have appeared in the lit-
erature [1], [2], [3], [4], [5], [6], [7], [8], [9]. It can be categorized into following
classes: linear search/caching, hardware-based, grid of tries/cross-producting,
recursive-flow classification, hierarchical intelligent cuttings, and hash-based so-
lution. Many of these algorithms which provide fast lookup performance, re-
quired O(Nk) memory space in the worst case, where N is number of filters
and k is the number of classified fields. In the following, we briefly described the
main properties of these algorithms.

Linear Search/Caching: The simplest approach to packet classification is
to perform a linear search through all the filters. This requires O(N) memory,
but also takes O(N) lookup time, which would be unacceptably large even for
modest size filter sets. Caching is a technique often employed at either hardware
or software level to improve performance of linear search. If packets from the
same flow have identical headers, packet headers and corresponding classification
solution can be cached. However, performance of caching is critically dependent



182 P.-C. Wang et al.

on having large number of packets in each flow. Also, if number of simultaneous
flows becomes larger than cache size, performance degrades severely. Note that
the average lookup time is adversely affected by even a small miss rate due to
very high cost of linear search. Hence caching is much more useful when combined
with a good classification algorithm that has a low miss penalty.

Hardware-Based Solutions: A high degree of parallelism can be imple-
mented in hardware to gain speed-up advantage. Particularly, Ternary Content
Addressable Memories (TCAM) can be used effectively for filter lookup. How-
ever,TCAM with particular word width cannot be used when flexibility in filter
specification to accommodate larger filters is desired. It is difficult to manufac-
ture TCAM with wide enough words to contain all bits in a filter. An interesting
approach that relies on very wide memory bus is presented by Lakshamn et al.
[4]. The scheme computes the best matching prefix for each of the k fields of
the filter set. For each filter a pre-computed N -bit bitmap is maintained. The
algorithm reads Nk bits from memory, corresponding to the best matching pre-
fixes in each field and takes their intersection to find the set of matching filters.
Memory requirement for this scheme is O(N2) and it requires reading Nk bits
from memory. These hardware-oriented schemes rely on heavy parallelism, and
requires significant hardware cost, not to mention that flexibility and scalability
of hardware solutions is very limited.

Grid of Tries/Cross-Producting: For the case of 2-field filters, Srinivasan
et al. presented a trie-based algorithm [3]. This algorithm has memory require-
ment O(NW ) and requires 2W −1 memory accesses per filter lookup. A general
mechanism called cross-producting is also presented. It involves performing best
matching prefix lookups on individual fields, and using a pre-computed table for
combining results of individual prefix lookups. However, this scheme suffers from
a O(Nk) memory blowup for k-field filters, including k = 2 field filters.

Recursive-FlowClassification: Gupta et al. presented an algorithm, which
can be considered as a generalization of cross-producting [4]. After best match-
ing prefix lookup has been performed, recursive flow classification algorithm
performs cross-producting in a hierarchical manner. Thus k best matching pre-
fix lookups and k − 1 additional memory accesses are required per filter lookup.
It is expected to provide significant improvement on an average, but it requires
O(Nk) memory in the worst case. Also, for the case of 2-field filters, this scheme
is the same as cross-producting and hence has memory requirement of O(N2).

Hierarchical Intelligent Cuttings: Gupta et al. proposed a heuristic HI-
Cuts that makes hierarchical cuts in the search space [8]. It is difficult to char-
acterize conditions under which such heuristics perform well, and the worst-case
memory utilization for the HICuts scheme may explode.

3 Enhanced Tuple Pruning

3.1 Tuple Space Search

The tuple space idea generalizes the aforementioned approach to multi-dimen-
sional filters [10]. A tuple T is defined as a combination of field length, and the
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resulting set is called tuple space. Since each tuple has a known set of bits in
each field, by concatenating these bits in order we can create a hash key, which
can then be used to map filters of that tuple into a hash table. As an example,
the two-dimensional filters F=(10*, 110*) and G=(11*, 001*) will both map to
T2,3. When searching T2,3, a hash key is constructed by concatenating 2 bits of
the source field with 3 bits of the destination field. Thus, the best matching filter
can be found by probing each tuple alternately, and keeping track of the best
matching filter. Since the number of tuples is generally much smaller than the
number of filters, even a linear search of the tuple space results in a significant
improvement over linear search of the filters.

To improve the speed of linear search, pre-computation and marker is used
[1]. As a result, 2W − 1 hash probes are required where W is the length of IP
address. Another heuristic, tuple space pruning, performs lookups on individual
fields to eliminate tuples that cannot match the query. Although this heuristic
does not provide any improvement in the worst case, it performs well in the
practical environment. Through the experiment, the number of probed tuples is
reduced to about 10 in the worst case.

3.2 Enhance Mechanism: Tuple Pruning +

The tuple pruning search can be improved by adopting the concept of best match
prefix (BMP). In the BMP problem, the longest matched prefix in the lookup
procedure will be chosen to identify the route. Since there is only one longest
matched prefix for each IP address, we can assign the filters related to the IP
address to the tuple according to the longest matched prefix. Thus only the tu-
ple with the BMP needs to be probed in the packet classification. Assume there
are two filters in the two-dimension classifier: (10*,110*) and (1010*,110010*),
as shown in Figure 1. These two filters will be assigned to the tuples according
to their longest matched prefix, thus they will be located to T2,3 and T4,6, re-
spectively. To further improve the tuple pruning search, an information marker
is introduced to maintain the associated information for future tuple search.
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Fig. 1. A Sample Classifier with Two Filters.
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By applying the idea in our proposed mechanism, one extra entry R3 will
be generated at T2,6 and its action is equal to that of F1. This filter will be
referred for packets which SA is matched to 10* and DA is matched to 110010*,
for example, the packet with header (100000,110010). According to the proposed
idea, the lookup procedure will refer tuple (2,6), thus the associated action will
be selected. We name this filter as a information-marker (i-marker here after).
It is used to improve the search procedure as the marker used in [1], the major
different is that i-marker is only put to the tuples with longer prefixes. The i-
marker should also be added to T4,3 and T4,6. However, the one inserted into
T4,6 is identical to F2, thus the action of F1 will be compared with that of F2.
If the cost of F1 action is lower, its action will occupy the action of F2.

One of the major concerns about this approach is the number of the addi-
tional i-markers. Apparently, the number of the i-markers ties to the number
of tuples with shorter prefix for each IP address. To illustrate this problem, we
use the routing tables downloaded from [11], [12] as an example. In Figure 2,
we show the number of shorter prefixes for each route prefix without counting
the default route. Obviously, for most route prefixes, there are usually less than
three shorter prefixes in the routing table and six in the worst case. On the other
hand, at most 48 (72 − 1) extra filters might be generated for each inserted fil-
ter. However, the occurrence of the worst-case situation should be relatively low
since only 5% of route prefixes have more than three and two shorter prefixes
in the NLANR and the rest routing tables, respectively. And also, each shorter
prefix may not appear in the classifiers. As a result, we believe that the extra
cost should be acceptable with respect to the performance improvement.

Tuple Construction: To build the classification tuples, the procedure con-
sists of two parts. First, each filter is inserted into the associated tuple according
to its length. In the mean time, a prefix tree should be constructed to record the
referred prefixes in the filters. A binary tree or the multi-bit tree proposed in
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Fig. 3. The Tuple Construction from the Prefix Tree.

[13] can be used as the prefix tree. Then, the pruning table for each dimension
will be generated from the prefix tree. Also, it will keep track of the relationship
between each route prefix and its shorter prefixes, as shown in Figure 3. Second,
the i-marker is added to the tuples from the prefix tree. For example, if there are
m longer prefixes for a given SA and n longer prefixes for a given DA, then there
are at most m × n i-markers will be added to the tuples. Before the i-marker is
inserted into the tuple, the existence of duplicate filter is checked. If there is no
duplicate entry, the i-marker is inserted. Otherwise, the cost of filter actions will
be compared for the tuples with duplicate filter and the lower-cost action will
be recorded in the entry. For the sake of ease update, each entry in the tuple
should have two action fields: one is the lowest-cost action related to the filter
and another is its original action.

Note that the insertion of i-markers will not affect the construction of pruning
table since it is based on the original filters. Furthermore, the filters with at least
one wildcard will not be inserted into the tuples. Those filters only need to be
inserted into the prefix tree since they can be treated as single dimension prefixes.
Thus it can reduce the number of i-markers.

Search: The classification procedure consists of two lookups of pruning tables
and one hash lookup to the tuple. Firstly, the BMP lookup is performed in
pruning tables for each dimension. However, the lookup result fetched here is
different from that of IP route lookup, in which only the length of the BMP is
needed in the pruning lookup. After the length of two BMPs l1 and l2 are found,
the tuple (l1, l2) will be probed for the matched filter. Obviously, the tuple space
lookup performance mainly ties to the lookup performance of pruning tables.
The fast lookup algorithm proposed in the previous schemes can be applied to
provide good performance.
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Update: The update procedure is a little complex due to the pre-computation.
However, the re-construction is not required in the proposed scheme. The table
update can be divided into: change of filter action, insertion and deletion of fil-
ter. We only explain how to perform filter insertion and deletion. The change
of filter action is trivial since it can be treated as re-insert the filter with new
action.

To deal with the inserted filter, the prefix tree for each dimension is main-
tained. Firstly, it will be inserted into the prefix tree, and then the longer prefixes
for the SA and DA are found from the prefix trees. With the lengths of the longer
prefixes, the set of tuples which are covered by the inserted filter is calculated.
An i-marker is inserted into each tuple in the set. If there is a filter with the
same key as the i-marker, a cost comparison is performed and the action with
lower cost will be left in the entry. Furthermore, the tuples covered by the lower-
cost filter will not be probed for the insertion since they will not be affected by
the inserted filter, as shown in Figure 4. A filter F5 is inserted into the two-filter
database of Figure 1. After inserting the SA and DA into the prefix trees, the set
of probed tuples are derived. According to the row-major order, the i-markers
are put into T1,3, T1,6, T2,2 and T4,2, respectively. While traversing T2,3, a colli-
sion with F1 is encountered. After comparing their cost, if the cost of F5 is lower,
its action will replace the lowest-cost action field of F1 and keep traversing the
remaining tuples. Otherwise, the entry in T2,3 will remain unchanged and the
remained three tuples (T2,6, T4,3 and T4,6) which are covered by F1 will not be
probed in this insertion. In the worst case, it will update W 2 tuples.

The procedure of filter deletion is a little similar to that of filter insertion.
Now we use the filter database with newly inserted F5 in Figure 5 as an example.
If the filter F1 is deleted from the database, the tuples covered by it will be probed
for possible update. However, before the tuple-probe proceeding, the nearest
filter which covers F5 should be found for possible referring. This is because if
there are probed tuples with i-markers or filters with cost higher than F1 and
F5, the action of F5 should replace those entries to ensure that the lowest cost
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action will be taken. Consequently, the i-markers in the probed tuples will be
refreshed by F5. Also, the filters will be checked whether the cost is higher than
F5. If yes, they will be occupied by the action of F5. Otherwise, their actions
will be used instead. The time complexity for update is also O(W 2).

Implementation: The pruning tuple space search can be implemented with
software or hardware. With software implementation, the total lookup time is
(lookup(SA) + look(DA)) plus one hash access time. To deal with the potential
large number of entries, the hash function can allocate multiple entries in a pool
to fit the cache line.

The lookup performance can be further improved through hardware imple-
mentation. By exploiting hardware parallelism, the total lookup time of the
pruning tables is reduced to max(lookup(SA), lookup(DA)), as shown in Fig-
ure 6. It can also perform the pruning and hash simultaneously by adopting
pipeline design to achieve higher throughput. As a result, we can accomplish
one packet classification within maximum(pruning(SA), pruning(DA), one hash
access to the tuple).

Pruning Table for SA
Pruning Table for SA

Pruning Table for DA
Pruning Table for DA

Exploiting hardware parallelism

to the pruning table lookups

.

.
.

 

Fig. 6. Implement with Parallel Hardware.
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Since the most memory accesses refer to the pruning, we can use high-speed
SRAM as its storage. By adopting the existing IP lookup algorithms for pruning,
such as multibit trie [13] or multiway search tree [14], the pruning time can be
reduced to less than 50 ns easily (less than ten memory accesses). Assume that
one hash access time without collision is 50 ns (one 50-ns DRAM access time),
thus the proposed scheme can achieve 20 MPPS.

4 Performance Evaluation

To evaluate the performance of the proposed scheme, we use the randomly gen-
erated filter database with 5K to 1M entries. This is mainly because that the
filter database is usually considered as secret data commercially. Also, most of
them are relatively small, such as the filter databases used in [4]. Thus we gen-
erate the filter database from the routing table in NLANR. There are 102,309
prefixes in the sample routing table [11]. We use two different sampling schemes
to generate the (SA,DA) filters: the first one is to choose the prefixes uniformly
[1] and the other is to concentrate 80% filters in 20% address space to show the
locality [9]. Note that the filters with wildcard are not considered in the simu-
lation because they will be inserted into the pruning table and will not affect
the tuples. The filter length distribution with 100,000 filters with 80% locality is
shown in the right part of Figure 7 which is similar to the figure of the uniformly
chosen filters. Obviously, most filters correspond to the tuples near (24,24). A
darker color indicates that there are more filters in the tuple.

We first examine the filters database with 80% locality. The major perfor-
mance metrics ties to the number of i-markers. Since the size of i-marker is equal
to the filter, we use the term “entry” to cover both. From Table 1, we can see that
the numbers of entries are about three to six times of the original tables. How-
ever, with a larger database (larger than 10,000 entries), the increased entry ratio
is lower with respect to the smaller database (1,000). This is because with more
entries in the table, the probability to generate an i-marker with collision filter is

       

Fig. 7. The Filter Lengths Distribution of Original Database. (Left:Random,
Right:80% Locality)
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Table 1. The Number of Entries versus the Pruned Tuples without i-Marker. (80%
Locality)

Filter Original Scheme Proposed Scheme
Count Tuples Probes Entry Count Tuples Probes Entry Count

1,000 129 8 1,000 153 1 5,623
5,000 224 11 5,000 249 1 14,105
10,000 295 11 10,000 318 1 30,654
50,000 365 15 50,000 377 1 162,931
100,000 353 16 100,000 360 1 293,217
500,000 442 30 500,000 462 1 2,400,103
1,000,000 504 51 1,000,000 530 1 5,628,952

also higher, this reduces the ratio of increased entries. It does suggest good scal-
ability, especially under the speed-critical environment, the proposed scheme has
apparent improvement. The result for the random-generated database is shown
in Table 2. The number of pruned tuple is slightly reduced because the address
locality may result in more intersection in the pruning. However, the number of
entries is increased for the large database (for database with more than 50,000
filters); this is because that large amount filters result in more related prefixes
in the database. However, without i-marker, the probed tuples will increased to
51 in the worst case for 1M-filter database, i.e., at least 51 memory accesses.
Obviously, the speed improvement is necessary, even with about 6 times storage.

For the random-generated database, the number of generated entries is more
than that in the 80%-locality database. This is because the wide-spread filters
might cause more i-markers in the worst case. We assume that the memory
utilization of the hash table is 50%. Thus, for the 100k-filter database, it requires
about 8 MB memory, whose cost is lower than US$ 10. However, it can achieve
about 20 MPPS by using the 50-ns DRAM. While the database enlarges to 1M
filter, it will requires about 130 MB memory without speed degradation.

Table 2. The Number of Entries versus the Pruned Tuples without i-Marker. (Ran-
dom)

Filter Original Scheme Proposed Scheme
Count Tuples Probes Entry Count Tuples Probes Entry Count

1,000 139 2 1,000 140 1 2,009
5,000 242 4 5,000 246 1 12,438
10,000 274 5 10,000 276 1 23,583
50,000 334 12 50,000 341 1 195,990
100,000 361 14 100,000 375 1 374,718
500,000 440 31 500,000 459 1 2,685,592
1,000,000 468 41 1,000,000 491 1 6,814,934
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Fig. 8. The Filter Lengths Distribution of Database with i-Markers. (Left:Random,
Right:80% Locality)

The filter lengths distribution graph from Figure 7 is shown in Figure 8. One
can see that the number of required tuples is increased and the colors of most of
the blocks are darker than that in the previous graph. Furthermore, the number
of colored blocks is increased because the i-markers might be inserted to the
tuples without filter originally.

5 Conclusion

In this paper, we propose a remarkable enhancement to the previous work. By
using the pre-computation and i-markers, we can reduce the number of probed
tuples from the worst-case O(W 2) to O(1). The incremental update is also sup-
ported. In the worst case, the number of generated i-markers are four times of
the original filters for the 100,000-filter datebase. From the simulation, the pro-
posed scheme with parallel design can achieve 20 MPPS in the worst case. In
the future, we will focus on dynamic space-cutting algorithm to further reduce
the required storage.
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