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and Marek Karpinski4

1 Computer Science Division, University of California, Berkeley, CA 94720-2320‡
2 Department of Mathematics and Physics, Mälardalens University

3 Institute of Mathematics and Computer Science, University of Latvia, Raiņa bulv.
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Abstract. Quantum finite automata were introduced by C. Moore, J.
P. Crutchfield [MC 97], and by A. Kondacs and J. Watrous [KW 97].
This notion is not a generalization of the deterministic finite automata.
Moreover, in [KW 97] it was proved that not all regular languages can be
recognized by quantum finite automata. A. Ambainis and R. Freivalds
[AF 98] proved that for some languages quantum finite automata may
be exponentially more concise rather than both deterministic and proba-
bilistic finite automata. In this paper we introduce the notion of quantum
finite multitape automata and prove that there is a language recognized
by a quantum finite automaton but not by deterministic or probabilis-
tic finite automata. This is the first result on a problem which can be
solved by a quantum computer but not by a deterministic or probabilistic
computer. Additionally we discover unexpected probabilistic automata
recognizing complicated languages.

1 Introduction

Recently a new type of algorithms has appeared, namely, quantum algorithms.
Nobel prize winner physicist Richard Feynman asked in [Fe 82] what effects can
have the principles of quantum mechanics, especially, the principle of superpo-
sition on computation. He gave arguments showing that it might be computa-
tionally expensive to simulate quantum mechanics on classical computers. This
observation immediately lead to a conjecture predicting enormous advantages
to quantum computers versus classical ones. D. Deutsch [De 89] introduced the
commonly used notion of the quantum Turing machine and proved that quan-
tum Turing machines compute exactly the same recursive functions as ordinary
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deterministic Turing machines do. When Peter Shor [Sh 94] proved that quan-
tum algorithms can factorize large integers and compute discrete logarithms in
a polynomial time practical construction of quantum computers became a prob-
lem that involves many people and huge funding. Indeed, building a quantum
computer would be equivalent to building a universal code-breaking machine
since the intractability of the above-mentioned problems is the fundamental of
the public-key cryptography.

Quantum mechanics differs from the classical physics very much. It suffices
to mention Heisenberg’s uncertainty principle asserting that one cannot measure
both the position and the impulse of a particle simultaneously precisely. There
is a certain trade-off between the accuracy of the two measurements. Another
well-known distinction of quantum mechanics from the classical physics is the
impossibility to measure any object without changing the object.

The fundamental atom of information is the quantum bit, henceforth abbre-
viated by the term ‘qbit’.

Classical information theory is based on the classical bit as fundamental
atom. This classical bit, henceforth called cbit, is in one of two classical states
t (often interpreted as “true”) and f (often interpreted as “false”). In quantum
information theory the most elementary unit of information is the quantum bit,
henceforth called qbit. To explain it, we first discuss a probabilistic counterpart
of the classical bit, which we call here pbit. It can be t with a probability α and
f with probability β, where α+ β = 1. A qbit is very much like to pbit with the
following distinction. For a qbit α and β are not real but complex numbers with
the property ‖α‖2 + ‖β‖2 = 1.

Every computation done on qbit s is performed by means of unitary op-
erators. One of the simplest properties of these operators shows that such a
computation is reversible. The result always determines the input uniquely. It
may seem to be a very strong limitation for such computations. Luckily this is
not so. It is possible to embed any irreversible computation in an appropriate
environment which makes it reversible. For instance, the computing agent could
keep the inputs of previous calculations in successive order.

The following features of quantum computers are important (but far from
the only characteristic features of them).

– Input, output, program and memory are represented by qbits.
– Any computation (step) can be represented by a unitary transformation of

the computer as a whole.
– Any computation is reversible. Because of the unitarity of the quantum evo-

lution operator, a deterministic computation can be performed by a quantum
computer if and only if it is reversible.

– No qbit can be copied. After the qbit is processed, the original form of it is
no more available.

– Measurements may be carried out on any qbit at any stage of the compu-
tation. However any measurement destroys the information. More precisely,
the measurement turns a qbit into a classical bit with probabilities dependent
on the qbit.



– Quantum parallelism: during a computation, a quantum computer proceeds
down all coherent paths at once.

Quantum finite automata were introduced twice. First this was done by C.
Moore and J.P.Crutchfield [MC 97]. Later in a different and non-equivalent way
these automata were introduced by A. Kondacs and J. Watrous [KW 97].

The first definition just mimics the definition of 1-way finite probabilistic
only substituting stochastic matrices by unitary ones. We use a more elaborated
definition [KW 97].

QFA is a tuple M = (Q;Σ; δ; q0;Qacc;Qrej) where Q is a finite set of states,
Σ is an input alphabet, δ is a transition function, q0 ∈ Q is a starting state, and
Qacc ⊂ Q and Qrej ⊂ Q are sets of accepting and rejecting states. The states in
Qacc and Qrej are called halting states and the states in Qnon = Q−(Qacc∪Qrej)
are called non halting states. κ and $ are symbols that do not belong to Σ. We use
κ and $ as the left and the right endmarker, respectively. The working alphabet
of M is Γ = Σ ∪ {κ; $}.

A superposition ofM is any element of l2(Q) (the space of mappings from Q
to C with l2 norm). For q ∈ Q, |q〉 denotes the unit vector which takes value 1 at
q and 0 elsewhere. All elements of l2(Q) can be expressed as linear combinations
of vectors |q〉. We will use ψ to denote elements of l2(Q).

The transition function δ maps Q× Γ ×Q to C. The value δ(q1; a; q2) is the
amplitude of |q2〉 in the superposition of states to which M goes from |q1〉 after
reading a. For a ∈ Γ , Va is a linear transformation on l2(Q) defined by

Va(|q1〉) =
∑

q2∈Q

δ(q1; a; q2)|q2〉.

We require all Va to be unitary.
The computation of a QFA starts in the superposition |q0〉. Then transfor-

mations corresponding to the left endmarker κ, the letters of the input word
x and the right endmarker $ are applied. The transformation corresponding to
a ∈ Γ consists of two steps.

1. First, Va is applied. The new superposition ψ′ is Va(ψ) where ψ is the
superposition before this step.

2. Then, ψ′ is observed with respect to the observable Eacc ⊕ Erej ⊕ Enon

where Eacc = span{|q〉 : q ∈ Qacc}, Erej = span{|q〉 : q ∈ Qrej}, Enon =
span{|q〉 : q ∈ Qnon}. This observation gives x ∈ Ei with the probability equal
to the amplitude of the projection of ψ′. After that, the superposition collapses
to this projection.

If we get ψ′ ∈ Eacc, the input is accepted. If we get ψ′ ∈ Erej , the input is
rejected. If we get ψ′ ∈ Enon, the next transformation is applied.

We regard these two transformations as reading a letter a.
For probabilistic computation, the property that the probability of correct an-

swer can be increased arbitrarily is considered evident. Hence, it is not surprising
that [KW 97] wrote ”with error probability bounded away from 1/2”, thinking



that all such probabilities are equivalent. However, mixing reversible (quantum
computation) and non-reversible (measurements after each step) components in
one model makes it impossible. This problem was first considered in the paper
[AF 98] by A. Ambainis and R. Freivalds. The following theorems were proved
there:

Let p be a prime. We consider the language Lp = {ai|i is divisible by p}. It
is easy to see that any deterministic 1-way finite automaton recognizing Lp has
at least p states.

Theorem 1.1 For any ǫ > 0, there is a QFA with O(log p) states recognizing
Lp with probability 1− ǫ.

Theorem 1.2 Any 1-way probabilistic finite automaton recognizing Lp with prob-
ability 1/2 + ǫ, for a fixed ǫ > 0, has at least p states.

Theorem 1.3 There is a language that can be recognized by a 1-QFA with prob-
ability 0.68... but not with probability 7/9 + ǫ.

We consider only multitape finite automata in this paper. A quantum au-
tomaton is defined in the natural way, demanding that the transformation ( the
state, the information on the first head having or not having moved, the infor-
mation on the second head having or not having moved, ... , → the state, the
information on the first head having or not having moved, the information on the
second head having or not having moved, ... ) is unitary for arbitrary tuple (the
symbol observed by the first head, the symbol observed by the first head,...).

Definition 1.1 A quantum finite multitape automaton (QFMA)
A = (Q;Σ; δ; q0;Qacc;Qrej) is specified by the finite input alphabet Σ, the finite
set of states Q, the initial state q0 ∈ Q, the sets Qacc ⊂ Q, Qrej ⊂ Q of accept-
ing and rejecting states, respectively, with Qacc ∩ Qrej = ∅, and the transition
function

δ : Q × Γm × {↓,→}m −→ C[0,1],

where m is the number of input tapes, Γ = Σ ∪ {κ, $} is the tape alphabet of
A and κ,$ are endmarkers not in Σ, which satisfies the following conditions (of
well-formedness):
1. Local probability condition

∀(q1, σ) ∈ Q× Γm
∑

(q,d)∈Q×{↓,→}m

|δ(q1, σ, q, d)| = 1.

2. Orthogonality of column vectors condition.

∀q1, q2 ∈ Q, q1 6= q2, ∀σ ∈ Γm
∑

(q,d)∈Q×{↓,→}m

δ∗(q1, σ, q, d)δ(q2, σ, q, d) = 0.



3. Separability condition.
M =def {1, 2, . . . ,m}. The k-th component of an arbitrary vector s will be defined
as sk. We shall understand by I an arbitrary element from the set P (M)−{∅}.

RI =def A1 ×A2 × . . .×Am, whereAi =

{

{↓,→}, if i /∈ I
{”nothing”}, if i ∈ I.

TI =def B1 ×B2 × . . .×Bm, where Bi =

{

{↓,→}, if i ∈ I
{”nothing”}, if i /∈ I.

The function Ri × Ti
dI−→ {↓,→}m is defined as follows:

diI(r, t) =def

{

ri, if i /∈ I
ti, if i ∈ I.

dI(r, t) =def (d1I(r, t), d
2
I(r, t), . . . , d

m
I (r, t)).

∀I ∈ P (M)− {∅} ∀σ1σ2 ∈ Γm ∀q1, q2 ∈ Q ∀t1, t2 ∈ TI ;
if ∀i /∈ I σi

1 = σi
2, ∀j ∈ I tj1 6= tj2 then

∑

(q,r)∈Q×RI

δ∗(q1, σ1, q, dI(r, t1))δ(q2, σ2, q, dI(r, t2)) = 0.

States from Qacc ∪ Qrej are called halting states and states from Qnon =
Q− (Qacc ∪Qrej) are called non halting states.

To process an input word vector x ∈ (Σ∗)m by A it is assumed that the input
is written on every tape k with the endmarkers in the form wk

x = κxk$ and that
every such a tape, of length |xk|+ 2, is circular, i. e., the symbol to the right of
$ is κ.

For the fixed input word vector x we can define n to be an integer vector
which determines the length of input word on every tape. So for every n we
can define Cn to be the set of all possible configurations of A where |xi| = ni.

|Cn| = |Q|
m
∏

i=1

(ni + 2). Every such a configuration is uniquely determined by a

pair |q, s〉, where q ∈ Q and 0 ≤ si ≤ |xi| + 1 specifies the position of head on
the i-th tape.

Every computation of A on an input x, |xi| = ni, is specified by a unitary
evolution in the Hilbert space HA,n = l2(Cn). Each configuration c ∈ Cn corre-
sponds to the basis vector in HA,n. Therefore a global state of A in the space
HA,n has a form

∑

c∈Cn

αc|c〉, where
∑

c∈Cn

|αc|
2 = 1. If the input word vector is

x and the automaton A is in its global state |ψ〉 =
∑

c∈Cn

αc|c〉, then its further

step is equivalent to the application of a linear operator U δ
x over Hilbert space

l2(Cn).



Definition 1.2

U δ
x |ψ〉 =

∑

c∈Cn

αcU
δ
x |c〉.

If a configuration c = |q′, s〉, then U δ
x |c〉 =

∑

(q,d)∈Q×{↓,→}m

δ(q′, σ(s), q, d)|q, τ(s, d)〉,

where σ(s) = (σ1(s), . . . , σm(s)), σi(s) specifies the si-th symbol on the i-th tape,
and

τ(s, d) = (τ1(s, d), . . . , τm(s, d)), τ i(s, d) =

{

(si + 1) mod (ni + 2), if di =′→′

si, if di =′↓′ .

Lemma 1.1 The well-formedness conditions are satisfied iff for any input x the
mapping U δ

x is unitary.

Definition 1.3 A QFMA A = (Q;Σ; δ; q0;Qacc;Qrej) is simple if for each σ ∈
Γm there is a linear unitary operator Vσ over the inner-product space l2(Q) and
a function D : Q −→ {↓,→}m, such that

∀q1 ∈ Q ∀σ ∈ Γm δ(q1, σ, q, d) =

{

〈q|Vσ|q1〉, if D(q) = d
0, otherwise.

Lemma 1.2 If the automaton A is simple, then conditions of well-formedness
are satisfied iff for every σ Vσ is unitary.

As in the case of single-tape quantum finite automata it is presumed that all
the states are divided into halting and nonhalting, and whenever, the automaton
comes into a halting state, the automaton stops, and accepts or rejects the input
with a probability equal to the square of the modulo of the amplitude.

2 Reversible automata

A 1-way reversible finite automaton (RFA) is a QFA with δ(q1, a, q2) ∈ {0, 1}
for all q1, a, q2. Alternatively, RFA can be defined as a deterministic automaton
where, for any q2, a, there is at most one state q1 such that reading a in q1
leads to q2. We use the same definitions of acceptance and rejection. States
are partitioned into accepting, rejecting and non-halting states and a word is
accepted (rejected) whenever the RFA enters an accepting (rejecting) state. After
that, the computation is terminated. Similarly to quantum case, endmarkers are
added to the input word. The starting state is one, accepting (rejecting) states
can be multiple. This makes our model different from both [An 82] (where only
one accepting state was allowed) and [Pi 92] (where multiple starting states
with a non-deterministic choice between them at the beginning were allowed).
We define our model so because we want it to be as close to our model of QFAs
as possible.



Generally, it’s hard to introduce probabilism into finite automata without
losing reversibility. However, there are some types of probabilistic choices that
are consistent with reversibility. For example, it was proved by A. Ambainis and
R. Freivalds that for the language L = {a2n+3|n ∈ IN} not recognizable by a
1-way RFA, there are 3 1-way RFAs such that each word in the language is
accepted by 2 of them and each word not in the language is rejected by 2 out of
3.

3 Quantum vs. probabilistic automata

Definition 3.1 We say that a language L is [m,n]-deterministically recognizable
if there are n deterministic automata A1, A2, An such that:
a) if the input is in the language L, then all n automata A1, . . . , An accept the
input;
b) if the input is not in the language L, then at most m of the automata A1, . . . ,
An accept the input.

Definition 3.2 We say that a language L is [m,n]-reversibly recognizable if there
are n deterministic reversible automata A1, A2, An such that:
a) if the input is in the language L, then all n automata A1, . . . , An accept the
input;
b) if the input is not in the language L, then at most m of the automata A1, . . . ,
An accept the input.

Lemma 3.1 If a language L is [1,n]-deterministically recognizable by 2-tape fi-
nite automata, then L is recognizable by a probabilistic 2-tape finite automaton
with probability n

n+1 .

Proof. The probabilistic automaton starts by choosing a random integer
1 ≤ r ≤ (n + 1). After that , if r ≤ n, then the automaton goes on simulating
the deterministic automaton Ar, and, if r = n + 1, then the automaton rejects
the input. The inputs in L are accepted with probability n

n+1 , and the inputs
not in the language are rejected with a probability no less than n

n+1 . ✷

Lemma 3.2 If a language L is [1,n]-reversibly recognizable by 2-tape finite au-
tomata, then L is recognizable by a quantum 2-tape finite automaton with prob-
ability n

n+1 .

Proof. In essence the algorithm is the same as in Lemma 3.1. The automaton
starts by choosing a random integer 1 ≤ r ≤ (n + 1). This is done by taking
3 different actions with amplitudes 1√

3
(the possibility to make such a choice

is asserted in Lemma 4.6). After that , if r ≤ n, then the automaton goes on
simulating the deterministic automaton Ar, and, if r = n+1, then the automaton
rejects the input. Acceptance and rejecting are made by entering the states where



measurement is made immediately. (Hence the probabilities are totaled, not the
amplitudes.) ✷

First, we discuss the following 2-tape language

L1 = {(x1∇x2, y)‖x1 = x2 = y},

where the words x1, x2, y are unary.

Lemma 3.3 For arbitrary natural n, the language L1 is [1,n]-deterministically
recognizable.

Proof. See Appendix.
R. Freivalds [Fr 79] proved

Theorem 3.1 The language L1 can be recognized with arbitrary probability 1−ǫ
by a probabilistic 2-tape finite automaton but this language cannot be recognized
by a deterministic 2-tape finite automaton.

Proof. By Lemma 5.1 L is [1,n]-deterministically recognizable for arbitrary
n.By Lemma 3.1, the language is recognizable with probability n

n+1 . ✷

Theorem 3.2 The language L1 can be recognized with arbitrary probability 1−ǫ
by a quantum 2-tape finite automaton.

Proof. By Lemma 3.2. ✷
We wish to prove a quantum counterpart of Theorem 3.1. We need some

lemmas to this goal.
In an attempt to construct a 2-tape language recognizable by a quantum 2-

tape finite automaton but not by probabilistic 2-tape finite automata we consider
a similar language

L2 = {(x1∇x2∇x3, y)‖there are exactly 2 values ofx1, x2, x3such that they equaly},

where the words x1, x2, x3, y are unary.

Theorem 3.3 A quantum automaton exists which recognizes the language L2

with a probability 3
5 − ǫ for arbitrary positive ǫ.

Proof. This automaton with amplitudes:
a) 1√

5
× 1

b) 1√
5
× (cos 2π3 + i sin 2π

3 )

c) 1√
5
× (cos 4π3 + i sin 4π

3 )

d)
√

2
5

takes actions:
a) compare x1 = x2 = y,
b) compare x2 = x3 = y,
c) compare x1 = x3 = y,
d) says ”accept”.



If y equals all 3 words x1, x2, x3, then the input is accepted with probability 2
5

(since the amplitudes of the actions a), b), c) total to 0). If y equals 2 out of
3 words x1, x2, x3, then the input is accepted with probability 3

5 . If y equals at
most one of the words x1, x2, x3, then the input is accepted with probability 2

5
(only if the action d) is taken). ✷

Unfortunately, the following theorem holds.

Theorem 3.4 A probabilistic automaton exists which recognizes the language
L2 with a probability 21

40

Proof. The probabilistic automaton with probability 1
2 takes an action A or

B:
A) Choose a random j and compare xj = y. If yes, accept with probability 19

20 .
If no, accept with probability 1

20 .
B) Choose a random pair j, k and compare xj = xk = y. If yes, reject. If no,
accept with probability 12

20 .
If y equals all 3 words x1, x2, x3 and the action A is taken, then the input is

accepted with relative probability 19
20 . If y equals all 3 words x1, x2, x3, then and

the action A is taken, then the input is accepted with relative probability 0. This
gives the acceptance probability in the case if y equals all 3 words x1, x2, x3, to
be 19

40 and the probability of the correct result ”no” to be 21
40 .

If y equals 2 words out of x1, x2, x3 and the action A is taken, then the input
is accepted with relative probability 13

20 . If y equals 2 words out of x1, x2, x3
and the action B is taken, then the input is accepted with relative probability
8
20 . This gives the acceptance probability in the case if y equals 2 words out of
x1, x2, x3, to be 21

40 .
If y equals only 1 word out of x1, x2, x3 and the action A is taken, then the

input is accepted with relative probability 7
20 . If y equals only 1 word out of

x1, x2, x3 and the action B is taken, then the input is accepted with relative
probability 12

20 . This gives the acceptance probability in the case if y equals only
1 word out of x1, x2, x3, to be 19

40 and the probability of the correct result ”no”
to be 21

40 .
If y equals no word of x1, x2, x3 and the action A is taken, then the input is

accepted with relative probability 1
20 . If y equals no word of x1, x2, x3 and the

action B is taken, then the input is accepted with relative probability 12
20 . This

gives the acceptance probability in the case if y equals no word of x1, x2, x3, to
be 13

40 and the probability of the correct result ”no” to be 27
40 . ✷

Now we consider a modification of the language L2 which might be more
difficult for a probabilistic recognition:

L3 = {(x1∇x2∇x3, y1∇y2)‖there is exactly one valuek
such that there are exactly two valuesjsuch thatxj = yk.}

Theorem 3.5 A quantum finite 2-tape automaton exists which recognizes the
language L3 with a probability 6

11 − ǫ for arbitrary positive ǫ.



Proof is moved to Appendix. It is provided for the referees only, and it will
not be included in the final text.

However this language also can be recognized by a probabilistic 2-tape finite
automaton.

Theorem 3.6 A probabilistic finite 2-tape automaton exists which recognizes
the language L3 with a probability 13

25 − ǫ for arbitrary positive ǫ.

Proof. The probabilistic automaton with probability 6
25 takes action A or

B or C or with probability 7
25 takes action D:

A) Choose a random k and two values of j. Then compare xj = yk. If yes,
accept. If no, reject.
B) Chose a random k and compare x1 = x2 = x3 = yk. If yes, reject. If no,
accept. C) Choose two values j and m. Then compare xj = xm = y1 = y2. If
yes, reject. If no, accept.
D) Says ”reject”.

Notice that the actions A,B,C are probabilistic, and they can be performed
only with probability 1−ǫ (actions A andB are described in the proof of Theorem
3.1 and action C is similar).

The acceptance probabilities equal:
A B C total

no yk equals 2 or 3 xj 0 1 1 12
25

one yk equals 2 xj
1
6 1 1 13

25

one yk equals 3 xj
1
2

1
2 1 12

25

two yk equal 2 xj
1
3 1 2

3
12
25

all yk equal all xj 1 0 0 6
25

✷

Finally we consider a modification of the languages above which indeed is
difficult for a probabilistic recognition:

L4 = {(x1∇x2, y)‖there is exactly one value j such thatxj = y.}

where the words x1, x2, y are binary.

Theorem 3.7 A quantum finite 2-tape automaton exists which recognizes the
language L4 with a probability 2

3 − ǫ for arbitrary positive ǫ.

Idea of the proof. The computations corresponding to the checks whether
or not x1 = y and x2 = y, are performed with opposite amplitudes. If these two
computations are successful, the amplitudes annihilate.
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Appendix
(for referees only)

4 Unitary matrices

Lemma 4.1 For arbitrary real values φ, ψ, η, the matrix

(

cosφ(cos η + i sin η) sinφ(cos η + i sin η)
sinφ(cosψ + i sinψ) − cosφ(cosψ + i sinψ)

)

is unitary.

Corollary 4.1 The matrix

(

1√
2

1√
2

1√
2
− 1√

2

)

is unitary.

Corollary 4.2 The matrix

(

cosφ i sinφ
i sinφ cosφ

)

is unitary.

Corollary 4.3 The matrix

(

cosφ sinφ
sinφ − cosφ

)

is unitary.

http://xxx.lanl.gov/abs/quant-ph/9804043
http://xxx.lanl.gov/abs/quant-ph/9707031


This corollary is crucially important for the sequel. We will use it to prove
that quantum automata (in contrast with deterministic or probabilistic au-
tomata) can do the counting modulo arbitrarily large prime numbers using only
two states.

Lemma 4.2 For arbitrary real values φ, ψ, the matrix








cosφ cosψ i sinφ cosψ i cosφ sinψ − sinφ sinψ
i sinφ cosψ cosφ cosψ − sinφ sinψ i cosφ sinψ
i cosφ sinψ − sinφ sinψ cosφ cosψ i sinφ cosψ
− sinφ sinψ i cosφ sinψ i sinφ cosψ cosφ cosψ









is unitary.

Corollary 4.4 The matrix








1
2

i
2

i
2 − 1

2
i
2

1
2 − 1

2
i
2

i
2 − 1

2
1
2

i
2

− 1
2

i
2

i
2

1
2









is unitary.

Definition 4.1 We call the matrix

C =









c11 c12 . . . c1 kn

c21 c22 . . . c2 kn

. . . . . . . . . . . .
ckn 1 ckn 2 . . . ckn kn









a block-product of the matrices A =









a11 a12 . . . a1 k

a21 a22 . . . a2 k

. . . . . . . . . . . .
ak 1 ak 2 . . . ak k









and B =









b11 b12 . . . b1n

b21 b22 . . . b2n

. . . . . . . . . . . .
bn 1 bn 2 . . . bnk









if C(m−1)k+i (l−1)k+j = ai jbml.

Lemma 4.3 If the matrices A and B are unitary, then their block-product is
also a unitary matrix.

Lemma 4.4 For arbitrary prime p, the matrix


















1
√

p
(e0) 1

√
p
(e0) 1

√
p
(e0) . . . 1

√
p
(e0)

1
√

p
(e

2pπ
p ) 1

√
p
(e

2(p−1)π
p ) 1

√
p
(e

2(p−2)π
p ) . . . 1

√
p
(e

2π
p )

1
√

p
(e

4pπ
p ) 1

√
p
(e

4(p−1)π
p ) 1

√
p
(e

4(p−2)π
p ) . . . 1

√
p
(e

4π
p )

1
√

p
(e

6pπ
p ) 1

√
p
(e

6(p−1)π
p ) 1

√
p
(e

6(p−2)π
p ) . . . 1

√
p
(e

6π
p )

. . . . . . . . . . . . . . .

1
√

p
(e

(p−1)pπ
p ) 1

√
p
(e

(p−1)(p−1)π
p ) 1

√
p
(e

(p−1)(p−2)π
p ) . . . 1

√
p
(e

(p−1)π
p )



















is unitary.



Corollary 4.5 For arbitrary prime p, there is a unitary matrix Cp of size p× p
such that all the elements c1j of this matrix equal 1√

p
.

Corollary 4.6 For arbitrary natural number n, there is a unitary matrix Cn of
size n× n such that all the elements c1j of this matrix equal 1√

n
.

Corollary 4.7 For arbitrary natural number n, there is a unitary matrix Cn of
size n× n such that all the elements ci1 of this matrix equal 1√

n
.

These corollaries are used as a tool to perform an equiprobable choice among
a finite number of possibilities.

5 Proof of Lemma 3.3

Lemma 5.1 For arbitrary natural n, the language L1 is [1,n]-deterministically
recognizable.

The language L can be recognized by the following team of deterministic
1-way 2-tape finite automata {A1, A2, · · · , An}.

The automaton Ar performs cycles, each one consisting in reading n + 1
digits from x1 and r digits from y. When the symbol ∇ is met, the automaton
memorizes the remainder of x1 modulo n and goes on (in cycles) reading n+ 1
digits from x2 and n + 1 − r digits from y. If the input pair of words is in the
language, the processing of the two tapes takes the same time. In this case the
automaton accepts the pair, otherwise the automaton rejects it. This way, the
automaton accepts the pair of words if and only if there are nonnegative integers
u, v such that:

(n+ 1)u ≤ x1

(n+ 1)(u+ 1) > x1

(n+ 1)v ≤ x2

(n+ 1)(v + 1) > x2

x1 − (n+ 1)u = x2 − (n+ 1)v = y − ru − (n+ 1− r)v

If x1 = x2, then the number −ru − (n+ 1− r)v does not depend on the choice
of r. Either all xi match the y, or no one does. If x1 6= x2, then the numbers
−ru − (n+ 1− r)v are all different for different values of r. Hence at most one
of them can match y. ✷



6 Proof of Theorem 3.5

Theorem 3.5. A quantum finite 2-tape automaton exists which recognizes the
language L3 with a probability 3

5 − ǫ for arbitrary positive ǫ.
This automaton takes the following actions with the following amplitudes:

a) With amplitude 1√
11

× (cos 0π6 + i sin 0π
6 ) compares whether x1 = x2 = y1;

b) With amplitude 1√
11

× (cos 4π6 + i sin 4π
6 ) compares whether x2 = x3 = y1;

c) With amplitude 1√
11

× (cos 8π6 + i sin 8π
6 ) compares whether x1 = x3 = y1;

d) With amplitude 1√
11

× (cos 6π6 + i sin 6π
6 ) compares whether x1 = x2 = y2;

e) With amplitude 1√
11

× (cos 10π6 + i sin 10π
6 ) compares whether x2 = x3 = y2;

f) With amplitude 1√
11

× (cos 2π6 + i sin 2π
6 ) compares whether x1 = x3 = y2.

g) With amplitude
√

5
11 says ”accept”.

These comparisons are probabilistic actions (as in Theorem 3.1; recall that the
words xj , yk are unary) but they are simulated by a quantum automaton. This
way, every action is replaced by several actions the number of which depends on
ǫ. For instance, if ǫ = 1

n
then the action a) is replaced by n actions:

a1) With amplitude 1√
11n

× (cos 0π6 + i sin 0π
6 ) compares whether there are non-

negative integers u, v such that:

(n+ 1)u ≤ x1

(n+ 1)(u+ 1) > x1

(n+ 1)v ≤ x2

(n+ 1)(v + 1) > x2

x1 − (n+ 1)u = x2 − (n+ 1)v = y1 − u− nv

a2) With amplitude 1√
11n

× (cos 0π6 + i sin 0π
6 ) compares whether there are non-

negative integers u, v such that:

(n+ 1)u ≤ x1

(n+ 1)(u+ 1) > x1

(n+ 1)v ≤ x2

(n+ 1)(v + 1) > x2

x1 − (n+ 1)u = x2 − (n+ 1)v = y1 − 2u− (n− 1)v

a3) With amplitude 1√
11n

× (cos 0π6 + i sin 0π
6 ) compares whether there are non-

negative integers u, v such that:

(n+ 1)u ≤ x1

(n+ 1)(u+ 1) > x1

(n+ 1)v ≤ x2



(n+ 1)(v + 1) > x2

x1 − (n+ 1)u = x2 − (n+ 1)v = y1 − 3u− (n− 2)v

—————

an) With amplitude 1√
11n

× (cos 0π6 + i sin 0π
6 ) compares whether there are

nonnegative integers u, v such that:

(n+ 1)u ≤ x1

(n+ 1)(u+ 1) > x1

(n+ 1)v ≤ x2

(n+ 1)(v + 1) > x2

x1 − (n+ 1)u = x2 − (n+ 1)v = y1 − nu− v

If y1 = y2, then the total of amplitudes for the acceptance is 0 since the amplitude
for comparison of y1 with arbitrary pair xi, xj is (minus 1) times the amplitude
for the comparison of y2 with the same pair xi, xj .

If y1 6= y2, and y1 = x1 = x2, then y2 cannot equal more than one of the xj ,
namely, x3. In this case, all the actions am) [m = 1,2, . . . , n] end in acception and
so do also no more than one of the actions bm) ,no more than one of the actions
cm), no more than one of the actions dm), no more than one of the actions em),
and no more than one of the actions fm). The total of the amplitudes for the
accepting actions am) is n√

11n
× (cos 0π6 + i sin 0π

6 )
✷

This article was processed using the LaTEX macro package with LLNCS style


