Skip to main content

The Semidefinite Relaxation of the k-Partition Polytope Is Strong

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2337))

Abstract

Radio frequency bandwidth has become a very scarce resource. This holds true in particular for the popular mobile communication system GSM. Carefully planning the use of the available frequencies is thus of great importance to GSM network operators. Heuristic optimization methods for this task are known, which produce frequency plans causing only moderate amounts of disturbing interference in many typical situations. In order to thoroughly assess the quality of the plans, however, lower bounds on the unavoidable interference are in demand. The results obtained so far using linear programming and graph theoretic arguments do not suffice. By far the best lower bounds are currently obtained from semidefinite programming. The link between semidefinite programming and the bound on unavoidable interference in frequency planning is the semidefinite relaxation of the graph minimum k-partition problem.

Here, we take first steps to explain the surprising strength of the semidefinite relaxation. This bases on a study of the solution set of the semidefinite relaxation in relation to the circumscribed k-partition polytope. Our focus is on the huge class of hypermetric inequalities, which are valid and in many cases facet-defining for the k-partition polytope. We show that a “slightly shifted version” of the hypermetric inequalities is implicit to the semidefinite relaxation. In particular, no feasible point for the semidefinite relaxation violates any of the facet-defining triangle inequalities for the k-partition polytope by more than √2 - 1 or any of the (exponentially many) facet-defining clique constraints by1/2 or more.

This article is based on results contained in the Ph. D. thesis of the author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardal, K., Hurkens, C., Lenstra, J., Tiourine, S. Algorithms for Frequency Assignment Problems. CWI Quaterly, 9(1 & 2):1–8 (1996).

    MATH  Google Scholar 

  2. Aardal, K. I., Hoesel, C. P. M. v., Koster, A. M. C. A., Mannino, C., Sassano, A. Models and solution techniques for the frequency assignment problem. ZIB Rep. 01-40, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Berlin, Germany (2001). Available at http://www.zib.de/PaperWeb/abstracts/ZR-01-40/.

    Google Scholar 

  3. Alizadeh, F. Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim., 5(1):12–51 (1995).

    Article  MathSciNet  Google Scholar 

  4. Burer, S., Monteiro, R. D., Zhang, Y. Interior-point algorithms for semidefinite programming based on a nonlinear programming formulation. Tech. Rep. TR 99-27, Department of Computational and Applied Mathematics, Rice University (1999).

    Google Scholar 

  5. Chopra, S., Rao, M. R. The partition problem. Math. Program., 59:87–115 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  6. Chopra, S., Rao, M. R. Facets of the k-partition polytope. Discrete Appl. Math., 61:27–48 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  7. Correia, L. M. (ed.). COST259: Wireless Flexible Personalized Communications. J. Wiley & Sons (2001).

    Google Scholar 

  8. Deza, M. M., Grötschel, M., Laurent, M. Complete Descriptions of Small Multicut Polytopes. Applied Geometry and Discrete Mathematics—The Victor Klee Festschrift, 4:221–252 (1991).

    Google Scholar 

  9. Deza, M. M., Grötschel, M., Laurent, M. Clique-web facets for multicut polytopes. Math. Oper. Res., 17:981–1000 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  10. Deza, M. M., Laurent, M. Facets for the cut cone I. Math. Program., 56:121–160 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  11. Deza, M. M., Laurent, M. Geometry of Cuts and Metrics, vol. 15 of Algorithms and Combinatorics. Springer-Verlag (1997).

    Google Scholar 

  12. Eisenblätter, A. Frequency Assignment in GSM Networks: Models, Heuristics, and Lower Bounds. Ph.D. thesis, TU Berlin, Germany (2001). Cuvillier-Verlag, ISBN 3-8987-3213-4, also available at ftp://ftp.zib.de/pub/zib-publications/books/PhD_eisenblaetter.ps.Z.

    Google Scholar 

  13. Erdős, P., Rubin, A. L., Taylor, H. Choosability in graphs. Congr. Numer., 26:125–157 (1979).

    Google Scholar 

  14. Eisenblätter, A., Koster, A. FAP web—a website about frequency assignment problems (2000). URL http://fap.zib.de/.

  15. Frieze, A., Jerrum, M. Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION. Algorithmica, 18:67–81 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. Goemans, M. X., Williamson, D. P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  17. Goldschmidt, O., Hochbaum, D. S. A polynomial algorithm for the k-cut problem for fixed k. Math. Oper. Res., 19:24–37 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  18. Grötschel, M., Lovász, L., Schrijver, A. Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, 2nd ed. (1994).

    Google Scholar 

  19. Grötschel, M., Wakabayashi, Y. Facets of the clique partitioning polytope. Math. Program., 47:367–387 (1990).

    Article  MATH  Google Scholar 

  20. Hale, W. K. Frequency Assignment: Theory and Applications. In Proceedings of the IEEE, vol. 68, pp. 1497–1514. IEEE (1980).

    Article  Google Scholar 

  21. Helmberg, C. Semidefinite programming for combinatorial optimization. Habilitationsschrift, TU Berlin, Berlin, Germany (2000).

    Google Scholar 

  22. Hurkens, C., Tiourine, S. Upper and lower bounding techniques for frequency assignment problems. Tech. Rep., Eindhoven University of Technology, The Netherlands (1995).

    Google Scholar 

  23. Jaumard, B., Marcotte, O., Meyer, C. Mathematical models and exact methods for channel assignment in cellular networks. In Sansò, B., Soriano, P. (eds.), Telecommunications Network Planning, chap. 13, pp. 239–255. Kluwer Academic Publishers (1999).

    Google Scholar 

  24. Karger, D., Motwani, R., Sudan, M. Approximate graph coloring by semidefinite programming. J. ACM, 45(2):246–265 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  25. Koster, A. M. C. A. Frequency Assignment-Models and Algorithms. Ph.D. thesis, Universiteit Maastricht, Maastricht, The Netherlands (1999).

    Google Scholar 

  26. Laurent, M., Poljak, S. On a positive semidefinite relaxation of the cut polytope. Linear Algebra Appl., 223/224:439–461 (1995).

    Article  MathSciNet  Google Scholar 

  27. Lovász, L. On the Shannon capacity of a graph. IEEE Transactions on Information Theory, IT-25:1–7 (1979).

    Article  Google Scholar 

  28. Poljak, S., Tuza, Z. Maximum cuts and large bipartite subgraphs. In Cook, W., Lovász, L., Seymour, P. (eds.), Combinatorial Optimization, vol. 20 of DIMACS Ser. in Discr Math. and Theoretical Comput. Sci., pp. 188–244. American Mathematical Society (1995).

    Google Scholar 

  29. Rutten, J. Polyhedral Clustering. Ph.D. thesis, Universiteit Maastricht, Maastricht, The Netherlands (1998).

    Google Scholar 

  30. Schrijver, A. Theory of Linear and Integer Programming. J. Wiley & Sons (1986).

    Google Scholar 

  31. Verfaillie, G., Lemaître, M., Schiex, T. Russian doll search for solving constraint optimization problems. In Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), pp. 181–187. Portland, OR, USA (1996).

    Google Scholar 

  32. West, D. B. Introduction to Graph Theory. Prentice Hall (1996).

    Google Scholar 

  33. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.). Handbook on Semidefinite Programming, vol. 27. Kluwer Academic Publishers (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisenblätter, A. (2002). The Semidefinite Relaxation of the k-Partition Polytope Is Strong. In: Cook, W.J., Schulz, A.S. (eds) Integer Programming and Combinatorial Optimization. IPCO 2002. Lecture Notes in Computer Science, vol 2337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47867-1_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-47867-1_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43676-8

  • Online ISBN: 978-3-540-47867-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics