
Scalable Adaptive Hierarchical Clustering�

Laurent Mathy1, Roberto Canonico2, Steven Simpson1, and David Hutchison1

1 Lancaster University, UK
{laurent, ss, dh}@comp.lancs.ac.uk
2 University Federico II, Napoli, Italy

roberto.canonico@unina.it

Abstract. We propose a new application-level clustering algorithm ca-
pable of building an overlay spanning tree among participants of large
multicast sessions, without any specific help from the network routers.
This algorithm is based on a unique definition of zones around nodes and
an innovative adaptive cluster size distribution. The proposed method
finds application in many context where large-scale overlay trees can be
usefull: application-level multicasting, peer-to-peer networks and content
distribution networks (among other things).

1 Introduction

More than a decade of research in multicast technologies demonstrates the need
for large-scale (application-level) overlay structures.

Tree-based ACKs (TRACKs) have been identified as the most appropriate
approach to providing real-time and scalable delivery guarantees to groups of
receivers [8]. In this scenario, the overlay provides a control structure. This ap-
proach is further re-inforced with the recent emergence of the Source-Specific IP
multicast model [4][3] which is an asymmetrical service where only a designated
source can send in multicast to the group.

More recently, reasons for the lack of widespread deployment of IP multicast
have been identified [2]. These indicate that ubiquitous rollout of IP multicast
services may, even if at all possible, take a very long time. In such circumstances,
overlays represent an attractive alternative to IP multicast for data dissemina-
tion among members of multicast groups. This is the case in Content Delivery
Networks (CDN) where application-level multicast overlays are often used, for
example, for the distribution of multimedia data from primary to secondary
servers.

Peer-to-peer (p2p) applications also rely heavily on overlays. Here, the over-
lays are used to propagate search strings among the nodes of the p2p network,
in order to discover the location of the desired content. Very often, users of p2p
networks statically configure a few nodes to peer with, which can result in a
non-efficient, almost “chaotic” overlay.

To date, all the above scenarii lack, but would greatly benefit from, effective
algorithms to build large-scale, efficient overlays. In this paper, we propose a
� This work was supported by the BT Alpine Project.

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 1172–1177, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Scalable Adaptive Hierarchical Clustering 1173

new method designed to build such large-scale overlays, without requiring any
special support from the network routers. This method is based on the concept
of clustering.

2 Adaptive Hierachical Clustering Algorithm

2.1 General Strategy and Goal

The algorithm described in this section is designed to build, recursively, a hi-
erarchy of clusters. A cluster is represented by a cluster head and is composed
of the cluster head and other nodes “close” to the cluster head. The algorithm
is “recursive” in the sense that each cluster is divided into sub-clusters, whose
(sub-)cluster heads are constituent nodes of the original cluster. The hierarchy
of clusters is organised into layers, where layer Li is composed of the cluster
heads of (sub-)clusters that divide Li−1-clusters (i.e. clusters whose head is in
layer Li−1). This is illustrated in figure 1.(a). For instance, in this figure, the
L1-cluster headed by C is composed of C, F and G. This cluster contains two
L2-clusters, respectively headed by F and G.

1.(a): Clusters and layers 1.(b): Tree

Fig. 1. Cluster hierarchy.

The principle of the algorithm is that, starting at layer L0 with a top-level
cluster containing all the nodes in the hierarchy and whose cluster head is a well
known node called the root of the hierarchy, clusters are recursively divided into



1174 L. Mathy et al.

sub-clusters, until all clusters obtained are “singleton-clusters” containing only
their cluster head1.

The cluster hierarchy thus built forms a logical tree spanning all the cluster
heads (e.g. all the nodes) in the hierarchy (see figure 1.(b)). Consequently, the
state to build and maintain this hierarchy can be distributed among all the nodes
in the hierarchy such that each node in layer Li only needs to record its parent
cluster head (i.e. the Li−1-cluster head whose cluster it belongs to) and the Li+1-
cluster heads that are members of its own cluster. For instance, in figure 1.(a),
B records R as its parent cluster and E as its child.

2.2 Workings of the Algorithm

The algorithm is distributed and based solely on unicast communications. In
other words, it does not rely on any special network support.

One of the central ideas in the algorithm is that any node (i.e. any cluster
head) sees the rest of the world as a set of concentric rings (which we call zones),
centered on the node itself. Each zone starts where the previous one finishes and
the zones are numbered in increasing order, starting at 0 for the smallest ring
(see figure 2). The actual size of each ring, as well as the distance measurement
used to define it (e.g. delays, throughput, etc.), is unimportant for the general
workings of the algorithm. With each zone, a distance called a radius is also
defined. Again, the size of the radius is unimportant for the workings of the
algorithm (but its distance measurement is the same as the measurements used
for defining the zones).

Fig. 2. Zones associated with a node.

The scalable hierachical clustering algorithm works as follows. The cluster
hierarchy is rooted on a well known entity called the root. A node desiring to
join the cluster hierarchy first measures its distance to the root, and then sends

1 Each node in the hierarchy is therefore the cluster head of a (sub-)cluster.



Scalable Adaptive Hierarchical Clustering 1175

to the root a JOIN message containing this distance. Based on this distance, the
root determines the zone of the joining node. Here, two cases are possible:

1. The joining node is the first node joining in the corresponding zone.
2. Other nodes from the same zone have already joined.

In the former case, the root records the presence of the joining node in the corre-
sponding zone and sends the node a NEW CLUSTER ACK message, indicating
that the joining node has found its place in the hierarchy (this finishes the algo-
rithm for the joining node). The joining node is now the cluster head of one of the
sub-clusters dividing the cluster headed by the root (albeit a “singleton-cluster”
for the time being).

In the latter case, the root sends to the joining node, in a TRY message, the
list of the cluster heads in the same zone as the joining node, along with the
radius associated with this zone. The joining node then measures its distance to
each of the nodes in the list. Again, we consider two cases:

1. The distance of the joining node to at least one of the cluster heads in the
list is smaller than the given radius. The clusters headed by these cluster
heads are called attracting clusters.

2. The distance of the joining node to all the cluster heads in the list is greater
than the given radius.

In the former case, the joining node chooses the closest attracting cluster and
joins it: that is, the algorithm starts again with the corresponding cluster head
acting as the root. In this case, the joining node is said to “go down one layer” (as
the cluster it is heading will potentially be part of the partition of the attracting
cluster) and it is important to note that the root does not record the presence of
the joining node. In essence, from the root’s point of view, the members of the
attracting cluster are “collapsed” into the attracting cluster head, as this cluster
head is the only node in the attracting cluster remembered by the root.

In the latter case, the joining node creates a new sub-cluster by sending a
NEW CLUSTER message to the root (including its distance to the root). The
root then keeps a record of the new cluster head (i.e. the joining node) and of
its zone and replies with a NEW CLUSTER ACK message which finishes the
algorithm for this joining node.

3 Scalability Considerations

From the previous section, it should be clear that the state overhead imposed
on each node in the hierarchy is proportional to the number of zones needed
for that node to “span” its cluster, times the number of clusters per zone. This
number of clusters per zone also influences the scalability of the join procedure,
as any joining node must measure its distance to all the cluster heads at the
same zone, for all traversed layers. Also, the further away from the central node
a zone is, the more nodes – and thus the more clusters – such a zone potentially
contains. These observations favour the use of large clusters, within few zones.



1176 L. Mathy et al.

On the other hand, large clusters tend to create many layers (as they can
contain large sub-clusters which, in turn, will have to be divided), which has a
negative impact on the latency of the join procedure.

In order to accommodate these conflicting requirements, we propose to define
zones based on RoundTrip Times (RTTs) measurements, and whose sizes follow
an “exponential distribution” (see figure 2):

zone0 : 0 < dist ≤ 1 (1)

zonei : (1 + ∆)i−1 < dist ≤ (1 + ∆)i, with ∆ > 0 (2)

This, in turn, allows us to define the size (i.e. radius) of the clusters at zonei as:

ri =
(1 + ∆)i − (1 + ∆)i−1

2
(3)

The parameter ∆ in the formulae could be either fixed or varied according to
which layer the cluster, headed by the corresponding node, belongs to. Other
size “distributions” for both zones and radii are of course possible, but the ones
we propose prevent an explosion of the number of clusters in far zones while
keeping the number of zones down and retaining the desirable property that
“detail” (i.e. “fine grain positioning”) matters only for nodes close to a cluster
head.

4 Discussion and Conclusions

In this paper, we have proposed a method to build a hierarchy of nodes, based on
the notion of proximity, in a distributed and scalable way. The hierachy is built
through a series of “local” decisions involving only a small subset of the hierachy’s
population for each decision. This, coupled with an innovative adaptive cluster
size distribution approach, yields a simple, yet powerful, approach to building
overlay, application-level structures without relying on any special support from
network routers.

The hierarchy thus built is loopless and spans all the nodes in it. Our scal-
able adaptive hierarchical clustering algorithm can therefore be seen as a new
member in the category of application-level multicast tree building methods
(e.g. [1][5][7][6]). The overlay application-level multicasting trees built with our
scalable adaptive hierarchical clustering are unconstrained, meaning that nodes
in the tree cannot explicitly control their number of children. This may not be a
problem for overlay trees built for control purposes [8] but could yield a signifi-
cant penalty for trees built for data distribution. However, the method presented
in this paper can still be very useful in the context of application-level multicast
data distribution.

Indeed, a constrained application-level multicast overlay tree can be built by
having each cluster head and its sub-clusters (i.e. its members populating the
next layer in the hierarchy) run any algorithm that builds a constrained overlay
tree [1][7][6]. With this approach, each node in the cluster hierachy would be a



Scalable Adaptive Hierarchical Clustering 1177

member of the overlay tree rooted at its parent cluster, as well as the root of
the overlay tree spanning its own cluster. This would allow the building of very
large constrained overlay trees.

Another application of the scalable adaptive hierarchical clustering presented
in this paper is resource discovery. Indeed, a permanent hierarchy of resources
could be built, rooted on a well known node, and “searched” by clients with
a modified join procedure which does not declare the creation of a new (sub-)
cluster when it finishes (see section 2.2). This could even substitute expanding
ring searches in asymmetric network multicast circumstances or when network
multicast is unavailable.

In future work, we will investigate the performance of the proposed algorithm
under dynamic conditions (e.g. dynamic group membership, failures, etc.)

References

1. Y-H. Chu, S. Rao, and H. Zhang. A Case for End System Multicast. In ACM
SIGMETRICS, pages 1–12, Santa Clare, CA, USA, June 2000.

2. C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment Issues for
the IP Multicast Service and Architecture. IEEE Network, 14(1):78–88, Jan/Feb
2000.

3. B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas. Protocol Iindependent Mul-
ticast - Sparse Mode: Protocol Specification (revised). Internet Draft draft-ietf-pim-
sm-v2-new-02, IETF, Mar 2001. Work in Progress.

4. H. Holbrook and D. Cheriton. IP Multicast Channels: EXPRESS Support for Large-
scale Single-source Applications. ACM Comp. Comm. Reviews, 29(4):65–78, Oct
1999.

5. J. Jannotti, D. Gifford, K. Johnson, F. Kaashoek, and J. O’Toole. Overcast: Reliable
Multicasting with an Overlay Network. In USENIX OSDI, San Diego, CA, USA,
Oct 2000.

6. L. Mathy, R. Canonico, and D. Hutchison. An Overlay Tree Building Control
Protocol. In Proc. of Intl. workshop on Networked Group Communication (NGC),
pages 76–87, Nov 2001.

7. D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: an Application Level
Multicast Infrastructure. In 3rd USENIX Symposium on Internet Technologies, San
Francisco, CA, USA, Mar 2001.

8. B. Whetten and G. Taskale. An Overview of Reliable Multicast Transport Protocol
II. IEEE Network, 14(1):37–47, Jan 2000.


	Introduction
	Adaptive Hierachical Clustering Algorithm
	General Strategy and Goal
	Workings of the Algorithm

	Scalability Considerations
	Discussion and Conclusions

