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Abstract. The focus of this paper is the shaping of self-similar traffic
at the access of an optical node. We propose a novel algorithm that dy-
namically shapes the incoming traffic, based on service curves equations,
in order to meet the optical nodes constraints in terms of buffer size or
delay. We first estimate arrival parameters within various time intervals
in order to make the incoming traffic fit into a token bucket traffic spec-
ification (Tspec) format. We then derive the shaping parameters based
on deterministic service curves. Those shaping parameters vary dynam-
ically according to the Tspec of every time window. We eventually set
those parameters back into the original model in order to meet some QoS
constraints at the optical network level.

1 Preliminaries and Problem Relevance

Optics has been identified as a key technology able to provide a large capacity
to transport massive IP flows, and to cope with different Quality of Service
(QoS) requirement. The self-similar nature of IP traffic has been demonstrated
by several studies and mesurements. Due to the lack of optical memories, QoS
could be offered through combined exploitation of electronic memories in the
edges and optical ressources in the core of the optical network. The traffic shaping
takes place in the edges and has a real impact to maintain the logical performance
to its highest level.
Both IETF, and ITU have identified traffic shaping as a way to: 1) allocate
a suitable amount of resources (buffer memory, bandwidth) to a connection
to achieve its required QoS and 2) police traffic and assure ¨fair¨ access to a
shared resource. The problem studied in this paper 1, is motivated by the desire
to obtain applicable performance bounds for a very high-speed optical network
dealing with self-similar traffic. One may view the problem considered in this
paper as a ¨channel capacity¨ issue associated with dynamic shaping at the
network edge.
1 supported by the “Réseau National de Recherche en Télécommunications” under
the decision number 99S 0201-0204 and the European IST Project DAVID (Data
and Voice Integration over DWDM)
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To achieve this aim, a tool for studying end-to-end, bounded performance is
needed. Classical queuing analysis studies average performance for aggregate
traffic. It focuses on single server environments with attractive traffic models.
However, in the packet-switching, integrated services models, bounds on the end-
to-end performance need to be studied in a networking environment with traffic
dynamics, interactions and burstiness far more complex than in the previous
case. Worst-case performance bounds on the packet flow make it possible to
derive guaranteed maximum and minimum values rather than averages; which
is necessary when dealing with emerging multimedia networking scenarios. In
this work, we use the deterministic version of the service curves method [3] and
particularly Network Calculus (NC) [1], its Min-Plus algebra formulation. The
remainder of this paper is organized as follows. In Section 2, we set the end-to-end
system and describe the modeling of source and network in terms of arrival and
service curve. In Section 3, we study the performance of the system in the absence
of shaping. We also motivate the need for dynamically shaping the traffic in order
to meet the network constraints. In section 4, we focus on dynamic shaping
between a LAN and the optical network, we show the regions of shaping to meet
both buffer and delay constraints and propose a novel algorithm for dynamic
shaping based on the equations of the service curves. Some numerical results are
presented and discussed in Section 5. Concluding remarks are eventually given
in Section 6.

2 End-to-End System
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Fig. 1. End-to-end System
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Fig. 2. Arrival process

2.1 Source Modeling and Arrival Curves

In source modeling, packet and connection arrival processes are often assumed
to be Poisson owing to the attractive theoretical properties of such models [6].
Numerous studies have shown, however, that for both LAN and WAN networks,
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the distribution of packet interarrivals clearly differs from the exponential dis-
tribution [5]. Recent works argue convincingly that LAN traffic is much better
modeled using self similar processes [11], which have very different theoretical
properties than Poisson models. A subsequent investigation suggests that the
same holds for WAN traffic too [12].
The strength of self similar models is that they are able to incorporate Long-
Range Dependence (LRD), which informally means significant correlations
across arbitrarily large time scales. For many networking issues, the presence
or absence of LRD plays a critical role in the behavior predicted by analytical
models. For example, the presence of LRD can completely alter the waiting times
at the tail of a queue [4]. Self-similar processes are very difficult to tackle and
render traffic characterization cumbersome in this case. One way to circumvent
this is to bound the traffic rather than exactly characterizing it as suggested by
recent models based on the service curves approch [7], [2], [8], [9] and [10]. Ex-
plicitly, in [7], a traffic stream is said to satisfy the (Xmin, Xave, I, Smax) model if
the inter-arrival time between any two packets in the stream is larger than Xmin

during any interval I of length l, the average packet inter-arrival in I is larger
than Xave, and the maximum packet size is smaller than Smax. Alternatively,
referring to [2], a traffic stream satisfies the (σ, ρ) model if, in I, the number of
bits is less than σ+ ρu, u ∈ I. In the (σ, ρ) model, σ and ρ can be viewed as the
maximum burst size and the long term bounding rate of the source, respectively.
A similar argument is used in [8] and [9]. Rather than using the bounding rate,
the Deterministic Bounding Interval-Dependent (D-BIND) model, found in [10],
uses a family of rate-interval pairs where the rate is a bounding rate over the
corresponding interval length. The model captures the intuitive property that
over longer interval lengths, a source may be bounded by a rate lower than its
peak rate and closer to its long-term average rate.
Traffic Specification (Tspec), introduced by the IETF for IP, is a description of
the allowed traffic pattern a source can emit and not the actual one. A pair of
token buckets is used by the traffic sender to describe the traffic it expects to
generate and by the QoS control services to describe the parameters of traffic for
which the reservation should apply. A token bucket specification is not a charac-
terization parameter but a data structure definition. It takes the form of a token
bucket, with rate r and depth b, plus a peak rate p and maximum packet size
M . Units are bytes and bytes per second. We now show how self-similar traffic
can be made to fit into a token bucket Tspec format.
Figure 2 depicts a self-similar process. As stated earlier, it is characterized by
a similar irregular behavior at different time scales. To put such a process in a
Tspec formulation, we partition the whole process into N equal, non-overlapping
blocks, corresponding to time intervals (Ii)i=1,...,N , of length lN , and approxi-
mate the traffic volume within each interval Ii by a corresponding set of Tspec
parameters. In doing so, we obtain a piece-wise Tspec formulation of the global
process which approximates the actual process. Let us note that the piece-wise
decomposition of the entire process shall yet reflect its self-similar nature. The
obtained Tspec in each interval seems to be indeed correlated, as will be illus-
trated in the simulations. Building on the arguments found in [10], and depending
on the value of lN , one can bound the traffic volume within Ii by either of three
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ways. One, for small lN , i.e., N large, a peak rate bound is sufficient. As lN gets
larger, i.e., N smaller, a peak rate only is too conservative and one needs to refine
the volume bound by incorporating a mean bound too which gives the second
formulation in terms of peak and mean rates. Three, for lN on the order of the
duration of the global process itself, a mean rate bound may be sufficient.
Using the service curve approach, an arrival function x is said to be bounded
by an arrival curve α for all t if and only if for all s < t, x(t) − x(s) < α(t− s).
Graphically, Figure 3 depicts the arrival curve corresponding to the Tspec given
in terms of p,M, r, b. α(t) equals in this case min(pt+M, rt+ b). Thus, in each
interval Ii of length lN , αN

i is an arrival curve which takes one of those forms:

αN
i (t) =



rNi t for t ∈ Ii , lN = L/N and N small
min(pN

i t, r
N
i t) for t ∈ Ii , lN = L/N and N medium

pN
i t for t ∈ Ii , lN = L/N and N large

The very values of ¨large¨, ¨medium¨ and ¨small¨ depend on the arrival process
itself and the desired accuracy of our bounding approximation. For a highly self-
similar process, given by a high value for the Hurst parameter, the intervals Ii
should have small lengths lN . In this case, the peak rate bound applies better as
an approximation. If on the contrary, the process is not highly correlated, given
by a small Hurst parameter, a mean rate bound offers a good approximation.
For the other cases, a peak plus mean formulation applies.
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Fig. 3. Arrival curve - Tspec
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2.2 Network Modeling and Service Curves

Using the service curve approach, a service curve is defined as the minimal service
offered by a single server to our arrival curve. Analytically, for an input function
x and output function y, β is a service curve if and only if for all t ≥ 0, there
exists some t0 ≤ t such that y(t) − x(t0) ≤ β(t − t0). The IETF service curve
has the form β(t) = R(t − T0) where R is the service rate and T0 is the time
at which the server starts serving our arriving traffic. A nonzero T0 reflects the
presence of a background traffic being served prior to our arriving traffic.
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A network is not more than a cascade of successive network elements or servers
each offering a service curve βi. To ease the modeling and analysis of the network,
the latter, i.e. the successive nodes that the traffic shall traverse, may be replaced
by a single server reproducing their individual services as a concatenation of the
individual servers. For n network elements in tandem, each one with service
rate Ri and starting service at time Ti, i = 1, .., n, one possible concatenation
scenario is a network element with a service curve c(t) = Rn(t − Tn)+ where
Rn = min(R1, R2, .., Rn) and Tn =

∑n
i Ti, as shown in Figure 4.

3 Performance without Shaping

Let us recall that, for each interval Ii of length lN , the input function is bounded
by an arrival curve of the form αi(t) = min(pit+Mi, rit+bi). The service curve at
the network level is given as c(t) = Rn(t−Tn)+, with service rate Rn and starting
service at Tn, as the minimal service curve guaranteed by the server. Taking c(t)
as our actual service curve, the output curve is: α∗(t) = min(Rn(t− Tn), rt+ b)
for t > Tn, as shown in Figure 5. According to the fundamental bounds of the
service curve theory (maximum delay dmax and backlog Bmax) in general, and
Network Calculus [1] in particular, for θ = b−M

p−r ,

dmax =
p−Rn

Rn
θ +

M

Rn
+ Tn at t = θ if p > Rn > r (1)

We now determine the maximum backlog Bmax. For Tn < θ :

Bmax = (p−Rn)θ +M +RnTn at t = θ if p > Rn > r (2)

However, in real settings, two cases may arise. One, it may be the case that the
maximum network buffer size Bc is smaller than the above mentioned bound
Bmax, in which case, if nothing is done, some traffic may be lost. Moreover, it may
also be the case that the above mentioned bound on delay dmax is unacceptable
for a real-time user who is not prepared to accept a delay, at the network level,
larger than a delay constraint dc. Again, traffic in excess of dc may be useless
to the user and hence lost. Our objective is then to act on the traffic in such
a way so as to not exceed the maximum offered buffer size Bc and /or the
maximum tolerated delay bound dc while guaranteeing a loss free performance.
This is achieved by the use of a shaper. A shaper shall be introduced between
the source and the network (see Figure 6). It has a size Bsh which we try to keep
as minimal as possible. It has a shaping rate Rsh at which the traffic is shaped
and sent into the network. A larger value of Rsh means a less affected traffic.
This is a good feature as the traffic should be minimally altered. An optimal
shaper is thus a shaper with minimal buffer size Bsh and maximal shaping rate
Rsh.
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4 Shaping

4.1 Regions of Shaping

Adding a shaper to the arriving traffic prior to its entrance to the network is done
as follows. A new service curve, corresponding to the actions of the shaper, with
parameters (Rsh,Tsh) is set between the arrival curve and the network service
curve. This causes the arrival traffic to be first shaped by the newly introduced
shaping service curve, the output of which is then sent to the network and
served by the network service curve. In what follows, we assume, without loss of
generality, that the buffer and server at the network level are fully dedicated to
our incoming traffic. Any background traffic shall not interfere with our incoming
traffic and shall thus be not explicitly shown, i.e., Tn = 0.

Shaping to meet buffer requirement. Let us suppose that the maximum
buffer size, Bc, at the network level is smaller than the maximum backlog bound,
Bmax, caused by the non-shaped arriving traffic. The point of introducing a
shaper in this case is to assure that the incoming traffic does not exceed Bc

for a loss-free network performance. For θ′ = b
Rsh−r ,Bc = (Rsh − Rn)θ′ at t =

θ′ if Rsh > Rn > r.
Schematically, and considering the setting of Figure 6, the idea is to vary the
shaping curve through the segment indicating Bc. In this case, the shaded region,
given in Figure 7, shows the region of shaping. It is wise to note the extreme in
this case. It is the shaping curve with shaping rate hb < Rn. This corresponds to
a maximal buffer size Bsh > Bmax for the network without shaping. However,
Rsh is not maximal. Let us note that for Rsh more than hb, the buffer constraint
Bc is outperformed uselessly for an even higher shaping rate. The optimal case
is given by the shaping curve with shaping rate Rsh starting from Tsh = 0 and
the intersection point with rt+ b is (θ′, y) . This corresponds to maximal Rsh or
equivalently minimal shaping.

Rsh =
Bcr −Rnb

Bc − b (3)
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Again, smaller values of Rsh will yield an even smaller Bc uselessly at the cost of
higher shaping. Those two cases correspond thus to two feasible shaping param-
eters depending on the cost of the resources. The first case operates at network
buffer less than the target Bc but a high shaping action whereas the second is
optimal in view of the shaping action, i.e., large Rsh, and network buffer size
constraint Bc met.

Shaping to meet delay constraint. In this case, the point of shaping is
to reduce the maximum delay to be experienced at the network region from the
original dmax to a new delay constraint dc. Let us note that introducing a shaper
does not add to the end-to-end delay. The latter shall be just partitioned between
the shaper and the network element. This type of partitioning may be useful in
an optical context where it is better to hold the packets at the electronic side
and not at the optical side where the signal is more prone to being distorted and
attenuated. For θ′ = b

Rsh−r ,dc = Rsh−Rn

Rn
θ′ at t = θ′ if Rsh > Rn > r.

This is again achieved by setting appropriate values to Rsh. Schematically, the
idea is to vary the line the shaping curve through the segment indicating dc as
shown in Figure 8.
The extreme in this case occurs when the shaping curve with shaping rate hd <
Rn. This corresponds to a maximal buffer size Bsh > Bmax for the network
without shaping. However, Rsh is not maximal. Let us note that for Rsh more
than hd, the delay constraint dc is outperformed uselessly for an even higher
shaping rate. The optimal case is given by the shaping curve with shaping rate
Rsh starting from Tsh = 0 and the intersection point with rt+ b is (θ′, y).

Rsh =
Rn(b− rdc)
b−Rndc

(4)

This corresponds to maximal Rsh or equivalently minimal shaping. Again,
smaller values of Rsh will yield an even smaller dc uselessly at the cost of higher
shaping.
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4.2 Equation-Based Dynamic Shaping Algorithm

So far, we considered shaping within every interval Ii of length lN . Our ulti-
mate aim is however to shape the global incoming traffic. Parallel to the idea of
partitioning the arrival process so as to locally bound each interval, the shaping
scheme introduced in the previous section shall apply to each interval.

It is clear that the shaping rate Rsh depends on the arrival curve parame-
ters throughout the whole process. The task in this case is to find optimal, i.e.
maximal, shaping rate Rsh for each interval Ii such that the buffer constraint
and/or delay constraint are satisfied. This is achieved by dynamically changing
the shaping rate from one interval to the next. The dynamic shaping algorithm
is then as follows.

1. Set observation window size equal to lN
2. Determine corresponding Tspec in interval (Ii)i=1,...,N

3. Apply Equations 3 and 4. to set shaping parameters such that
i. shaping is minimal in the sense of minimal buffer size Bsh and maximal
shaping rate Rsh

ii. requirements are met, i.e., buffer or delay constraint at network level
iii. no loss at shaper, i.e. Bsh not exceeded.

5 Numerical Results

5.1 Model

We consider the end-to-end system shown in Figure 1. Let the self similar traffic
resulting from the LAN sources have the following characteristics: mean = 100
Mbit/s, variance = 108, and Hurst parameter H = 0.7.
Let the packets be of maximal size M equal to 1540 bytes. At the network level,
let Rn = 227 Mbit/s be the rate of the server, with buffer capacity Bn equal
to 100 packets. We assume without loss of generality that a fixed portion of the
server at the network level, with service rate Rn and buffer space Bn, is entirely
dedicated to our incoming traffic; any background traffic will not be modeled
explicitly. This assumption simplifies the analysis and simulation as Tn is equal
to zero. In real setting, this amounts to considering a dedicated share of buffer
space and service rate.

5.2 Estimation of Arrival Parameters

The first step of our equation-based dynamic shaping algorithm is to estimate
the parameters of the incoming traffic into a Tspec format, i.e., peak rate p,
mean rate r and maximum burst size b for different observation windows of
size lN . In interval (Ii)i=1,...,N of length lN , as stated in Section 2.1, the peak
rate p is equal to the reciprocal of the minimum interarrival time Xmin and the
mean rate r is equal to the reciprocal of the average interarrival times Xave.
The complexity lies in the estimation of the maximum burst size b, an essential
parameter for a well-defined arrival envelope, performance bounds and shaping
issues.
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By definition, b corresponds to consecutive arrivals with interarrival times tend-
ing to zero as the traffic is observed in a mean phase. In our present work, we
observe the consecutive interarrivals of size equal to Xmin for every interval
(Ii)i=1,...,N of length lN and store the largest value of the corresponding packets
in b.

Estimation of mean rate r and peak rate p. Figures 9 and 10 shows the
average rate ri for intervals Ii of lengths equal to 300ms and 1s respectively. We
notice that for a given window size lN , rNi varies from one interval to the next
keeping the same behavior as the original traffic, i.e., incorporating correlation.
On the other hand, the family of (rNi )i=1,...,N behaves in the same way in different

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

0 500 1000 1500 2000 2500 3000 3500

M
ea

n 
ra

te
 r

i (
bi

t/s
)

Intervals Ii

"mean_300ms"

Fig. 9. Average rate ri during the In-
terval Ii : lN = 300ms

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

0 200 400 600 800 1000

M
ea

n 
ra

te
 r

i (
bi

t/s
)

Intervals Ii

"mean_1s"

Fig. 10. Average rate ri during the In-
terval Ii : lN = 1s

lengths lN of intervals (Ii)i=1,...,N , i.e., in many time scales. That means the
presence of self-similarity property in the sequence (rNi )i=1,...,N . Figures 9 and
10 shows two times scales (rNi )i=1,...,N behaviors : 300ms and 1s. The same
remarks remain valid for p.

Estimation of burst size b. For each window size lN , we have observed the
interarrival packets during the smallest mean rate ri. The sum of consecutive
interarrivals smaller or equal to the interarrival time within the corresponding
peak rate pi corresponds to the burst size. The obtained values for b vary from
85 packets for small window size lN to 60 for larger ones.

5.3 Non-constrained Performance

If no shaping is used at the access of the network, Figure 11 shows the probability
density function of the queue at the network level. For a no-loss performance,
this figure indicates to us that a buffer size of 55 packets is needed at the network
server. The maximum delay in the network level in this case is equal to 0.00268
sec.
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5.4 Buffer-Constrained Performance

In this case, let us assume that in fact, the buffer size Bc at the network level
cannot be as large as to hold 55 packets, i.e., if no shaping is used, there will
be some loss. Let Bc be large enough to hold 10 packets , a typical buffer size
in optical switches. To keep up with a non-loss performance, we need to operate
some shaping at the access of the network in order to meet the buffer constraint
Bc = 10. This brings us to the second step of our algorithm. Based on the
arrival Tspec and the service curve equations, we derive the shaping parameters
for every interval (Ii)i=1,...,N of length lN . For intervals of length lN = 100 ms,
Figure 12 shows the mean arrival rate ri versus shaping rate Rsh throughout the
duration of the connection (100 seconds).
We notice that ri and Rsh are inversely proportional; for every large values of ri,
i.e., high input rate, the value of Rsh is small, i.e., a severe shaping is needed to
accommodate the buffer constraint and the loss-free performance. The inverse
case is also true. The third step of the algorithm is to plug the equation-based
shaping parameters back into the simulation model. Figures 13 and 14 show the
probability density function of the buffer occupancy at the network level and
shaper, respectively, for different observation window lengths lN . The shaper
size is also derived from the equations and the largest value over all intervals is
used. This conservatism explains the fact that no loss is observed at the shaper.
The independence between the shaping queue PDF’s and the interval sizes lN s,
can be explained by the fact that the shaping rate Rsh is adaptive with respect
to the incoming traffic in order to meet the non-loss performance. Thus, for each
lN , Rsh varies in an inversely proportional way with the mean rate ri, keeping
the shaping queue behavior more or less the same.
The above figures and observation may actually suggest that self-similar traffic,
variable at different time scales, may exhibit the same type of variability at those
very time scales. If this turns out to be true, it may suggest that observing and
monitoring the traffic at small time intervals may be sufficient in constructing
and extrapolating its behaviour over larger time scales.

As of the network, we notice that the smallest interval lengths lN =
65 and 100 ms yield a non-loss performance. This is explained by the fact
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that at those interval lengths, we obtain higher precision for estimation of
arrival parameters and hence shaping parameters. For larger interval lengths,
lN = 200 and 300 and 1000 ms, some loss, on the order of 2.4 10−7, is observed.
This is explained by the fact that for small precision, the arrival parameters
are under-estimated. Put in the equations, they yield high shaping rates, or
equivalently, soft shaping. This in turn results in loss at the network level.

5.5 Delay-Constrained Performance

Let us assume that in fact, the tolerated maximum delay dc at the network level
cannot be as large as 0.0005 sec , i.e., if no shaping is used, there will be some
loss due to the delay being exceeded. Again, to ensure this performance, we need
to operate some shaping at the access of the network in order to meet the delay
constraint dc =0.0005 sec. We apply then the three steps of our equation-based
algorithm , as done for the buffer-constrained case.
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Figures 15 and 16 show the probability density function of the size of the
buffer at the network level and shaper, respectively, for different observation
window lengths lN . Table 1 illustrates the maximum delay values obtained by
simulation for different window lengths lN : 65ms, 100ms, 200ms, 300ms and 1s.
Again, we notice that the smallest interval lengths lN = 65 and 100 ms yield the
target maximum delay.

Table 1. Maximum delay at the network level for different window lengths lN : 65ms,
100ms, 200ms,300ms, 1s

window lengths lN 65ms 100ms 200ms 300ms 1s
maximum delay in 0.0004102 s 0.0004219 s 0.0005413 s 0.0005414 s 0.0005414 s

the network

For larger interval lengths, lN = 200 and 300 and 1000 ms, the maximum
values of the observed delay exceed the constraint. This is explained by the fact
that for small precision, the arrival parameters are under-estimated.

6 Conclusion

In this paper, we focused on self-similar traffic at the input of an optical node.
If this traffic is left as is, it cannot satisfy the buffer and/or delay constraint
at the network level, which may be very stringent in the optical case. In order
to meet those requirements, shaping is essential. In this work, we proposed an
equation-based dynamic shaping with three key steps: 1) estimation and fitting
of interval-wise incoming traffic into arrival curves, 2) solving into the service
curve approach for the shaping parameters in an adaptive manner and 3) fitting
the later back into the original model.
As of the first step of our algorithm, we notice that the input estimate repro-
duces the same self-similar, correlated nature of the original traffic. The shaping
parameters derived in step 2 are typically conservative owing to the determinis-
tic nature of the service curve. However, when put back into the original model,
i.e., step 3, they are shown to be numerically not very conservative. This may
be explained by the correlated nature of the original self-similar traffic.
Future work perspectives shall focus on the following issues. First, the conser-
vatism of the deterministic version of the service curve approach seem to be
less apparent in the presence of self-similar, LRD traffic, as shown by the small
loss at the network level. It may be wise to quantify to which extent self-similar
traffic reduces this conservatism. Second, optimal shaping relies on the trade-off
between buffer sizes at the shaper versus network. We intend to tackle this is-
sue by releasing the loss-free determinism at the shaper level where we can in
effect tolerate some loss. This can be achieved by more severe shaping action,
by decreasing the shaping rate Rsh, and hence reaching the buffer size limit.
This limit can actually be violated in controlled manner in order to tolerate a
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loss performance similar to that encountered at subsequent network elements.
This feature is desirable and more pragmatic as it is useless to operate a shaping
performance too perfect with respect to that of the optical network; after all,
what really counts to the user view is the end-to-end performance.
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