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Abstract. The CMPP (Circulant Modulated Poisson Process) modeling
approach represents an appealing solution since it provides the integration of
traffic measurement and modeling. At the same time, it maintains the
Markovian hypothesis that permits analytical transient and steady-state analyses
of queueing systems using efficient algorithms. These relevant features of
CMPP approach has driven us to analyze in more details the fitting procedure
when it is applied to actual broadband traffic. In the paper, investigating the
estimation algorithm of model parameters, we emphasize the difficulty of
CMPP in capturing the upper tail of marginal distribution of actual data, which
leads to an optimistic evaluation of network performance. As shown in the
paper, a simple relation exists between the number of significant eigenvalues
obtained by the spectral decomposition and the peak rate that the CMPP
structure is able to capture. The relation evidences the difficulties of CMPP to
model actual traffic, characterized by long tailed distribution, as well as traffic
data with the well accepted hypothesis of gaussian marginal.

1. Introduction

The CMPP approach for modeling arrivals process by means of a circulant modulated
Poisson process, provides a technique for integration of traffic measurement and
modeling [10], maintaining, at the same time, the Markovian hypothesis that permits
analytical transient and steady-state studies of queueing systems using efficient
algorithms [9]. The developed modeling theory has permitted to study the impact of
power spectrum, bispectrum, trispectrum, and marginal distribution of the input
process on queueing behavior and loss rate. These studies have highlighted the key
role played on the queueing performance by the marginal distribution, especially in the
low frequencies region [8]. The technique for the construction of a CMPP that
matches marginal distribution and autocorrelation function of the observed process has
been presented in [2,9], where the authors showed simulation results with measured
traffic data to prove the goodness of this approach. In this paper, further analysis of
CMPP fitting procedure will be presented, highlighting a limitation of the mentioned
algorithm in matching accuracy for the marginal distribution of observed rate process.
Moreover, the presented study determines the maximum peak rate captured by the
CMPP model once the spectrum has been matched and emphasizes the necessity of a
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CMPP structure containing a large number of effective eigenvalues to adequately
capture even the light tail of a gaussian function, usually accepted as realistic for
traffic distribution in the core network [1]. The relevance of these considerations is
related to the impact of the marginal distribution tail of input traffic on queueing
behaviour. Indeed, as shown in the numerical analysis Section, optimistic performance
are estimated when the peak rate is not matched. On the other hand, the actual traffic
rate has a marginal distribution that in some cases exhibits a tail heavier than Gaussian
[3,5]; under such condition, the CMPP models result inadequate to estimate realistic
queueing performance. Lastly, some advice to overcome the exposed limitation are
briefly introduced.

2. Background on CMPP

The fitting procedure of a CMPP model mainly consists of three steps [9], which are
briefly summarized in this section. In the first step, the autocorrelation function of the
observed rate process is estimated and then matched by a sum of exponentials (with
complex parameters λk) weighted by real and strictly positive power coefficients ψk.
This matching is a non-linear problem and cannot be solved directly. An approximate,
but quite accurate, solution is obtained by using the Prony algorithm [6] to express the
autocorrelation function in terms of complex exponentials with complex coefficients,
and then satisfying the constraints on the ψk’s (which must be real and strictly
positive) by matching the power spectral density (PSD) using the nonnegative least
square (NNLS) method.

The second step aims to design the transition frequencies matrix Q  of the

underlying modulant continuous time Markov chain. In order to fit the PSD of the

modeled process, the eigenvalues of Q  must contain all the λk’s obtained in the

previous step; the use of a circulant matrix permits to solve the inverse eigenvalues
problem. An efficient procedure to solve this problem is the Index Search Algorithm
(ISA), presented in [1].

The last step is then the estimation of a vector γ associated to the Poissonian
generation of arrivals in each state of the modulating Markov chain, such that the
model matches the cumulative distribution function (CDF), F(x), of the observed rate
process. In more details, the fitting procedure starts considering that the
autocorrelation function of a CMPP model with N states is expressed by the following:
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with positive real ψl's. The Fourier transform of (2.1) can be expressed by:
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represent the power associated to each λl. The λl’s are the eigenvalues of the transition
matrix, which must include all the “effective” ones that derive by the exponential
decomposition of R(τ), the autocorrelation function of the measured rate process.
Using the Prony method, the estimated R(τ) can be written as
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The presence of a constant term in RCMPP (τ) requires 0,Pλ  to be imposed equal to

zero, and consequently 0,0 Pψψ = : this is simply obtained applying the Prony method

to the autocovariance function ( ) ( ) 2γττ −= RC  (γ  is the mean value of the observed

traffic rate), since ( ) 2γτ →∞→R , and from (2.3) 0,Pψ = γ 2. After the NNLS

matching, the expression (2.3) remains substantially unchanged and can be rewritten
as

( )∑
=

⋅⋅+≅
p

k
kPkPPR

1
,,0, exp)( τλψψτ (2.4)

being aware that p, the kP,ψ ’s and the kP,λ ’s may not be the same as those of (2.3)

(they surely will not be in the case of complex eigenvalues). The order p of the
exponential decomposition may be much less than the order N of the model, and thus
in the construction of the transition matrix only few lλ ’s will be imposed equal to the

kP,λ ’s. Indicating with i the vector of indices (of dimension p) such that [ ] kPki ,λλ = ,

the relation [ ] kPki ,ψψ = consequently holds. On the other hand, in order to obtain

( ) ( )ττ RRCMPP ≅ , all the other lψ ’s will be imposed equal to zero.

After having determined the transition matrix Q  (note that many solutions are

possible for each set of eigenvalues, since the order N of the matrix is higher than the
number p of desired eigenvalues), the third step, i.e. the design of the rate vector γ
such that ( ) ( )xFxFCMPP ≅ , involves the minimisation of the distance between

( )xFCMPP  and ( )xF , which is obtained by using the Nelder-Mead Simplex Search

method. Since ( )xFCMPP  is a piecewise step function, which jumps by 1/N at each

value iγ  in γ , the task is to determine the optimal vector γ  which minimises the

quantity

∑
−

=
−

1

0
’

N

i
ii γγ (2.5)

where γ  is obtained by the quantization of ( )xF  in levels, whose amplitude is 1/N.
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Defining ( )iii jϑψβ exp⋅= , i=0,1,…,N-1, the vector [ ]110 ,...,, −= Nββββ
represents the Discrete Fourier Transform of γ , and its Inverse can be expanded as
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where the expression of βl has been substituted.

In order to obtain real γi, β must exhibit the Hermitian property (i.e. *
llN ββ =− ,

which corresponds to llN ψψ =−  and llN ϑϑ −=− ). Indeed, if β does not satisfy the

Hermitian property, its Inverse Finite Fourier Transform γ cannot be real. Under the
condition of Hermitianity on β, the above relation assumes the following expression
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that permits to estimate γ by applying the Nelder-Meade Simplex Search method to
(2.5) as a function of ϑ . The Hermitian conditions on βl are automatically satisfied

for those power coefficients related to conjugated complex pairs of eigenvalues, but
cannot stand for real ones, since only one ψl is associated to each of them. To
overcome this problem, each real eigenvalue needs to be considered twice. In order to
maintain the same correlation structure (or equivalently the same PSD), the
corresponding power coefficients will be assumed equal to half of the original ψl’s.

3. Analysis of Fitting Procedure

The investigation presented in this work involves the last step of the fitting procedure
and evidences a relevant limitation on the tail behavior of the marginal distribution of
CMPP models. This limitation may considerably affect the evaluation of queueing
performance of actual traffic, leading to an underestimation of network resources
needed to guarantee the target QoS expressed in terms of loss probability.

The first observation on the fitting procedure is that, putting τ=0 in (2.4), the
variance σ2 of the rate process can be expressed as the sum of the lψ  for l=1, 2, …, N-

1. On the other hand, the maximum theoretical rate achievable by the model is derived
by (2.6) putting all the cosines equal to +1. In this case, a second relation involving

lψ ’s can be simply obtained:
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The maximum rate deviation from the mean value is then limited by (3.1), under

the constraint 21
1

σψ =∑ −
=

N

l l . As we stated before, only the p lψ ’s associated to the

effective eigenvalues are non zero. Among these p power coefficients, some are
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related to real λl, hence each of them needs to be split into two terms with halved
magnitude. Therefore, the resulting set of couples (λl, lψ ) after this operation consists

of q elements, with p ≤ q << N. In the remaining of the paper, we will refer to (λl, lψ )

as elements of this set; consequently if λl∈ℜ ⇒ ∃ λN-l =λl and lN −ψ = lψ , with lψ
equal to half of the original power coefficient obtained by NNLS algorithm. Thus
relation (3.1) can be rewritten as

[ ]∑
=

=−
q

k
kiMAX

1

ψγγ (3.2)

where i is now a vector of indices of dimension q.
In most actual cases, the measured peak rate is quite higher than the mean value

and then, in order to capture the long tailed behavior of the rate distribution, the sum
in equation (3.2) should be as large as possible. The problem of maximizing (3.2) with

the constraint 2
1 ][ σψ =∑ =

q

k ki  can be easily solved using the Lagrange-Multipliers

method, leading to the solution
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holds.
This equation represents the intrinsic limitation of CMPP in terms of maximum

achievable rate as a function of the number q of effective eigenvalues, in the
hypothesis of evenly distributed power coefficients. Considering that the distribution

of the amplitudes of the dominant iψ ’s will hardly be like (3.3), the MAXγ  value

obtained from the above relation represents only an upper bound, actually difficult to
reach. However, (3.4) gives an indication on the minimum number of exponentials
required to reach a target peak rate, fixed the variance and the mean value of the
observed rate process. As an example, suppose that the observed process presents a

gaussian marginal distribution with mean x  and variance 2σ ; hence, the CDF is
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Using a 500 state CMPP to model this rate process, the CDF results divided in
intervals whose heights are 1/500=2⋅10-3 (the high number of states has been chosen in
order to obtain a fine quantization of CDF). The maximum level of the quantized CDF
is then limited to the value 0.998, corresponding to ( ) σxx −  equal to 3.09. The
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comparison of this relation with (3.4) leads to q=3.092≅9.55. Therefore, the original
autocovariance should be decomposed in, at least, 10 exponentials; more likely they

will not be sufficient, since the assumption that all power coefficients iψ ’s are of

equal magnitude is not easily verified. Indeed, a more realistic scenario is that few

iψ ’s (around 6 or 8, as supported by the analysis in the Numerical Section) will be

dominant with respect to the others and consequently the reproduced peak rate will be

such that σγγ ⋅=− 6MAX , in correspondence of whom the original CDF will

assume the value ( ) 993.061 ≅− Q . Hence, the tail of the model will be shorter than

the one of the observed rate process. The relevance of this drawback can be pointed
out envisaging that, especially for traffic whose power spectrum is concentrated in the
lower region of the frequencies [7] (this assumption is supported by the self similar
nature highlighted by the recent modeling results based on the analysis of acquired
traffic data [11]), the tail of the marginal distribution has a deep impact on the network
resources required to guarantee a target loss probability.

Note that from (2.6) [ ]∑
=

=−
q

k
kiMIN

1

ψγγ  can also be derived, which, together

with (3.2), implies the following general relation
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4. Numerical Results

To test the relevance of the presented analysis, we consider two sets of simulations:
the first one is carried out applying the CMPP fitting procedure on synthetic data with
a well defined and known spectral decomposition, whereas the second one refers to
actual traffic data. In the first simulation scenario, we have generated two traces
having the same mean value, variance and power spectrum, differing only by their
probability density functions (one is gaussian and the other one is triangular). The
values of the mean and the variance of the data (γ =4500 cells per second, σ2=106

cps2) have been chosen in order to obtain a negligible probability of having negative
values in the gaussian rate trace. In order to build the CMPP models of the two traces,
we have first decomposed the autocovariance functions into a sum of complex
exponentials. Then, applying the NNLS algorithm, only the three couples of
eigenvalues shown in Table 1.(a) (here and in the remaining of the paper, the “**”
reminds that the real eigenvalue is considered twice and that the corresponding ψ has
been already halved in magnitude, according to the procedure described in the
previous sections) have turned out to be associated to power coefficients ψ different
from zero (note that ∑i iψ  equals the imposed variance σ2).
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Table 1. Eigenvalues with non-zero power coefficient deriving from the NNLS algorithm:
(a) Synthetic Gaussian trace; (b) trace “Videoconference”; (c) trace “October89”

According to (3.6), the maximum deviation achievable using this set of eigenvalues
is equal to

2367≅=− ∑ ψγγ
MAX

 cps . (4.1)

The obtained value is quite close to the limit 24506 ≅⋅σ  cps, since the power
coefficient magnitudes have a quasi-uniform distribution.

Two CMPP models have been built from these eigenvalues to match the two
different CDFs. The MAXγ ’s for the two models have resulted equal to 6660 cps and

6500 cps for the triangular and the gaussian hypothesis, respectively. These limits do
not consider the exponential and I.I.D. generation of arrivals (Poissonian
microdynamics) in each state of the CMPP model, which affects the upper tails of
marginal distributions, as well as the peak rates of generated traces. In particular, the
latter ones are higher than the respective MAXγ ’s, (see the third column of Table 2,

which summarizes the main statistics of the analyzed data traffic and of the related
traces generated by the corresponding CMPP models). The results of the fittings in
terms of PSD and complementary probability (CP) of the generated traces in the
gaussian hypothesis are shown in Fig. 1. The excellent matching of the PSD is not
accompanied by an equivalently good fitting of the distribution function. This
mismatch is not easily revealed by the CDF’s comparison, hence a CP plot is always
required to appreciate possible differences in the upper tails. In the triangular case, we
observed good fitting results for both PSD and CP plots, but we do not report the
relative figures here for sake of simplicity.

In order to estimate the errors in the evaluation of queueing performance introduced
by the mismatching of the CDF tail, we have analyzed the results obtained by means
of discrete-event simulations. The simulations have been carried out feeding a FCFS
G/D/1/K queueing system with the four traces; in the remaining of the paper we will
indicate with µ the servant constant cell rate. The size K of the buffer has been fixed
equal to 250 cells, corresponding to a maximum delay introduced by the queue,
variable with the normalized offered load, around 50msec. The traffic is completely
contained in the LF and the MF region of the queue [7]. Therefore, no further filtering
of traffic is possible without losing a portion of its spectrum, i.e. MF components,
which would affect the queueing performance evaluation. The results are shown in the
last two columns of Table 4 and emphasize as the reduced peak of the trace related to
the gaussian case leads to a slightly optimistic resources allocation (nearly 6%). It is
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important to highlight that the CMPP designs have been repeated using different
values for N, ranging from 200 to 500, but no appreciable difference has been noticed.

In the second set of simulations, two real traffic traces have been considered: the
two data sets are related to a videoconference service and a LAN traffic trace. The
description of the characteristics of the videoconference traffic data are described in
[4], whereas the second trace is the well known “October89” trace collected at
Bellcore Labs. In both analyses, the data (i.e. the estimates of the rate processes) refer
to the equivalent number of ATM cells (calculated as the number of transmitted bytes
divided by 48) per second observed in non overlapped time intervals of length Tu. In
the first case, we assume Tu equal to the frame period, i.e. 40 ms, whereas for the
second traffic trace the value of 200 ms has been chosen.

The particular shape of the autocovariance function of the videoconference trace
has led to a spectral decomposition characterized by the eigenvalues reported in Table
1.(b). In this real scenario, we have obtained only few eigenvalues with non-zero
power coefficients, enforcing the hypothesis introduced in the previous section
regarding the number of dominant ψ ’s. In this case the maximum achievable

deviation is equal to 5950∑ ≅=− ψγγ
MAX

 cps and the mean value is

approximately 4350 cps. Hence, we should expect a CMPP peak rate of about 10300
cps, against a measured peak rate of about 21000 cps. The peak rate error is very high
(nearly 43%) due to the very unfavorable condition on the power coefficient
distribution. Indeed, the power spectral decomposition of the considered trace presents
only a single couple of dominant effective real eigenvalues and, at the same time, its
marginal distribution exhibits an upper tail behavior heavier than gaussian [4]. The
modeling results are shown in Fig. 2.(a) and 2.(b), which represent the PSD and the
complementary probability matching, respectively. In particular, Fig. 2.(b) shows
clearly that the obtained CMPP peak rate is much lower than the observed 21000 cps,
as expected. This large difference in terms of peak rate leads to a very optimistic
evaluation of the queueing behavior, as pointed out by the simulations results, see
Table 2, columns 4 and 5, which contain the servant cell rate required in order to reach
a cell loss probability of 10-4 and 10-5.

The last analysis refers to the first 1000 s of the above mentioned LAN traffic trace;
we do not consider the entire data set since a shift of the mean value has been noticed
out of this time period. The relevant eigenvalues obtained after the NNLS matching of
the spectrum are reported in Table 1.(c), and correspond to a theoretical maximum
deviation 5524≅−

MAX
γγ  cps. Adding the estimated mean (about 6016 cps) to this

value, the limit 11540 cps is obtained, with respect to a model ( )i
i

MAX γγ max=  of

11145 cps and of a data set peak of 17800 cps. Fig. 3.(a) and 3.(b) present the
matching of PSD and complementary probability respectively: the former shows the
good fitting of the considered second order statistic, whereas the latter confirms the
limitation of the model in capturing the upper tail behavior of marginal distribution.

The last two columns of Table 2 clearly evidence the entity of the relative error in
resources allocation when the CMPP models does not capture the upper tail of
marginal distribution (and particularly the peak cell rate).
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Fig. 1. Comparison of (a) Power Spectral Density and (b) Complementary Probability of
Synthetic Traffic Data – Gaussian Case
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Table 2. Relevant statistics of analysed traces and corresponding CMPP models

Mean
[cps]

Variance
[cps2]

Peak
[cps]

µ (Ploss=10-4) [cps] µ (Ploss=10-5)
[cps]

4493 1.00e+6 7000 5930 6033Triangular
(CMPP model) (4506) (1.00e+6) (7500) 6025 (+1.6%) 6170 (+2.3%)

4490 1.00e+6 8344 6110 6390Gaussian
(CMPP model) (4503) (0.99e+6) (7330) 5855 (-4.2%) 6010 (-5.9%)

October89 6016 7.48e+6 17600 15360 16120
(CMPP model) (6030) (6.03e+6) (11780) 10330 (-32.7%) 10590 (-34.3%)

Videoconference 4350 6.15e+6 20975 16400 18520
(CMPP model) (4410) (6.10e+6) (12100) 9670 (-41.0%) 9820 (-47.0%)
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Fig. 4. Performance Comparison

In the cases of the videoconference and LAN traces, a more complete analysis of
modeling performance is shown in Figure 4, where the target CLP is plotted versus the
servant cell rate needed to guarantee it. The analysis of Table 2 points out two
important results: the first one concerns the critical behavior of the CMPP model even
in the gaussian case, which implies an optimistic resource allocation (4 to 6%). The
second result highlights as actual traffic exhibits a slower decay of marginal
distribution with respect to the gaussian hypothesis leading to a less suitable
environment for the CMPP approach, evidenced by the large errors suffered (in terms
of peak rate, matching of the upper tail of marginal distribution and consequently of
the network resources needed to guarantee a target cell loss probability).

5. Improvement Proposals to Overcome the CMPP Drawback

We have observed that, under the same conditions on q, the uniform distribution of
ψ ’s magnitudes is the only one that guarantees the maximum model peak γMAX. Thus,
it is desirable to have a spectral decomposition with power coefficients exhibiting this
feature. To the aim of coming close to the uniform distribution and increasing the
parameter q, a straight solution can be to split each dominant exponential in the sum of
two or more terms. The j-th term of the exponential decomposition is represented by
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the parameters λj and ψj , as described in Section 2. Our suggestion is to obtain an
equivalent contribution to the autocorrelation function using a number B of power
coefficients (associated to the given exponential). This procedure results in having B
terms λj,i ,ψj,i for each couple λj , ψj, where 

jij λλ =,
  and Bjij ψψ =, ,  i=1,2,…,B.

Consequently, the autocorrelation function remains unchanged, whereas the
contribution of the decomposed couple λj, ψj to the peak rate becomes

∑∑
==

⋅==
B

i
j

j
B

i
ij B

B11
, ψ

ψ
ψ , i.e. B  times the original one (i.e. jψ ).

Unfortunately, this solution also presents a drawback, whose relevance needs

further investigation: the increased number of eigenvalues to be assigned to Q  can

cause the increment of the minimum number of the model states N that permits the
solution of the ISA problem. As a consequence, an higher N means that the model
parameters derivation takes a longer time, thus limiting the use of CMPP approach in
a real time performance estimator.

Another possible approach to overcome the presented limitation is to increase the
value of T. In such a way, the peaks of the traffic data will be reduced, hence making
easier to capture them by the CMPP model. Unfortunately, also this procedure
presents some drawbacks. First of all, a limit exists on the maximum value of the time
quantum T. Indeed, using higher T can cause the loss of a significant portion of
information associated to the traffic data [7], leading to inaccurate queueing
performance evaluation. Furthermore, increasing T reduces the variance σ2 of the
resulting trace. Consequently, the constraint on the ψi’s sum (∑i iψ =σ2) produces a

set of power coefficients of reduced magnitude, vanishing the advantage gained by the
trace peak reduction. Further study is then needed to highlight the trend of the peak
rate decay with respect to the time quantum T in different simulation scenarios, and to
derive a relation with the tail behavior.

6. Conclusions

The paper presents an analysis of the algorithm for the measurement-based parameters
estimation of CMPP models, raising some warnings to be aware of in the use of this
modeling approach. In particular, the main result of the paper is the analytical
derivation of an intrinsic limitation of the fitting procedure in the modeling of traffic
characterized by long-tailed marginal distribution. Furthermore, the analysis shows
that even in the gaussian hypothesis, a CMPP structure containing a large number of
effective eigenvalues is necessary to adequately fit the CDF.

In general, the limitation manifests when the difference between the peak and the
mean rate of the traffic data set exceeds few times its standard deviation. In this
condition the CMPP model cannot match with sufficient accuracy the behavior of the
CDF upper tail, leading to optimistic prediction of the network resources needed to
guarantee the target QoS (in terms of cell loss probability).
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Discrete-event simulations driven by actual traffic data and synthetic traces,
generated according to the corresponding CMPP models, have confirmed the results of
the proposed analytical study. Moreover, the analysis of the simulation results shows
the practical relevance of the CMPP limitation in a single server queueing system, a
relevant case study in performance comparison. In particular, the analyzed cases
highlight the optimistic resources allocation produced by the fitting errors on the CDF.
The presented limitation reduces the field of applicability of the CMPP modeling
approach, hence further studies are needed to overcome this drawback. To this aim,
some advice are presented as possible solutions to be investigated.
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