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Abstract. With increasing demand for real-time services in next gen-
eration wireless networks, quality-of-service (QoS)-based routing offers
significant challenges. Multimedia applications like video conferencing,
real-time streaming of stock quotes or processing of scientific images re-
layed from satellites require strict QoS guarantee (e.g. bandwidth, delay)
while communicating among multiple hosts. This gives rise to the need
for an efficient multicast routing protocol which will be able to deter-
mine multicast routes satisfying the different QoS constraints. Design
of such protocol boils down to a multi-objective optimization problem,
which is computationally intractable. In fact, discovering optimal multi-
cast routes is an NP-hard problem when the network state information
is inaccurate — a common scenario in mobile wireless networks. In this
paper, we propose a novel multicast tree selection algorithm that de-
termines near-optimal multicast routes on demand. Based on the multi-
objective genetic algorithmic (MOGA) approach, our solution attempts
to optimize multiple QoS parameters (e.g. end-to-end delay, bandwidth
guarantee and residual bandwidth utilization) simultaneously. We math-
ematically analyze the performance and convergence of the developed
algorithm. Simulation results demonstrate that our algorithm is capa-
ble of discovering on-demand a set of QoS-based, near-optimal multicast
routes within a few iterations, even with imprecise network information.
From these set of routes one can choose the best possible multicast route
depending on the specified QoS requirements.

1 Introduction

Multicast routing is an effective way to communicate among multiple hosts in a
network. It outperforms the basic broadcast strategy by sharing resources along
common links, while sending messages to a set of predefined destinations. This
is particularly true in wireless networks which suffer from resource (bandwidth)
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scarcity and high bit error rate (BER). Furthermore, the growing demand for
real-time multimedia communications like live video conferencing or streaming
of stock quotes require strict quality-of-service (QoS) guarantee on such param-
eters as bandwidth, end-to-end delay, and delay jitter. An efficient allocation of
network resources satisfying QoS requirements is the primary goal of QoS-based
multicast routing [19]. However, individual QoS parameters may be conflicting
and interdependent, thus making the problem even more challenging [15].

Further complications arise in wireless networks due to information (e.g. re-
source availability) inaccuracy caused by high BER and signal fading, leading
to packet loss and hence higher packet delay and jitter. This effect can be re-
duced at the cost of extra bandwidth allocation. Thus, there exists a trade-off
between bit error rate and bandwidth for a fixed radio spectrum. If we were
to optimize a multicast route path with respect to a single QoS parameter, say
bandwidth, then the problem can be solved in polynomial time even with uncer-
tain network resources [8], by mapping it to a shortest path finding problem. On
the otherhand, determining multicast routes satisfying different QoS parameters
or constraints simultaneously, is an NP-hard problem [I3]|. The uncertainly of
the network resources make such a problem more difficult. Therefore, various
approximate algorithms have been proposed based on some heuristics.

Although QoS-Routing in wireless networks is an active research area in
recent years, QoS-based multicasting is relatively a new research topic. The
impact of information inaccuracy and uncertainty over QoS-routing has been in-
vestigated in [8/15] which proposes efficient heuristics to identify routes that are
most likely to accommodate the desired QoS even with uncertain network state
information. Using suitable probabilistic models it is shown that uncertainty is
minimal for flows with only bandwidth requirements, but it makes path selec-
tions intractable when end-to-end delay is considered. A scalable, coarse-grained
approach to control the mobile QoS is highlighted in [12]. The key technique used
here is to aggregate a cluster of cells into a Virtual Bottleneck cell (VBC) in such
a way that by controlling the parameters of VBC, specific QoS objectives of the
system can be ensured without requiring the accurate prediction of the times and
locations of each mobile user. The 3-level multi-agent architecture for QoS con-
trol in wireless ATM [I1] provides a self-regulating network congestion control
management by means of global network state awareness. A dynamic reconfig-
uration of the agents and an adaptive cell discarding scheme are performed to
meet the end-to-end QoS requirements. The agents efficiently manage the buffer
space to reduce the cell loss ratio while guaranteeing a bounded transit delay.
In a completely different approach [I6] multimedia streams are represented in
terms of multiple substreams each with its own specified QoS and wireless net-
work elements and protocols are made aware of the QoS requirements of such
substreams. With the fluctuation of resource availability, using a fair schedul-
ing algorithm the network selects and schedules substreams in order to meet an
acceptable QoS. For effective multicast tree construction in interactive audiovi-
sual communication, a heuristic has been proposed in [I4] to compute low cost,
delay-bound routes from source to each destination. Recently, the authors in
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[1] demonstrated the efficiency of genetic-algorithm (GA) to obtain QoS-based
multicast routes in computationally feasible time. With the help of evolution-
ary operations, the proposed algorithm is capable of optimizing multiple QoS
parameters to generate a near-optimal multicast tree.

A careful analysis of the optimization schemes explored in QoS-routing in
wireless as well as wirelined networks reveal that most of them suffer from the
same drawback: multiple objectives are combined to form a scalar single-objective
function on an ad hoc basis, usually through a linear combination (weighted sum)
of multiple attributes. In these cases the solution not only becomes highly sen-
sitive to the weight vector but also demands the user to have certain knowledge
(e.g. priority of a particular objective, influence of an objective parameter over
other) about the problem. Moreover, in the case of multi-objective optimization,
a unique solution that optimizes all the objectives simultaneously will rarely, if
at all, exist in practice. The user will therefore be more interested in obtaining a
set of acceptable non-dominated solutions, one of which can be selected based on
the specific problem requirements. We recognize that genetic algorithms can be
readily modified to deal with multiple objectives by incorporating the concept
of Pareto-domination (discussed in Section [2]) in its selection operation [6].

In this paper, we use a multi-objective genetic algorithm (MOGA) technique
to develop an efficient algorithm which determines multicast routes on-demand
by simultaneously optimizing end-to-end delay guarantee, bandwidth require-
ments and residual bandwidth utilization without combining them into a single
scalar objective function. Using suitable genetic operators, the algorithm is ca-
pable of finding near-optimal solutions within a few iterations. We have shown
that with the increase in the number of nodes our algorithm performs better
than existing algorithms based on scalar optimization. Although, it is impossi-
ble to provide a tight-bound for convergence of such an NP-hard algorithm, we
have shown that asymptotically it can converge to the optimal point. From the
experimental results it is clear that our algorithm is capable of obtaining more
than 95% of the global optimal values for all three QoS parameters.

Section 2 reviews the basic concept of MOGA relevant in this context. The
formulation of the required optimization functions and the proposed new algo-
rithm are presented in Section [Bl Section [] highlights the power of the algo-
rithm by analyzing the variation of some genetic operators and demonstrating
its asymptotic convergence. In an attempt to evaluate the performance and the
of the algorithm, a suitable model is developed and steady-state probabilities
are calculated in Section Bl Simulation results in Section [ corroborates the fast
optimization of the required QoS parameters. Section [ concludes the paper with
pointers to the areas of future work.

2 Evolutionary Algorithms in Multi-objective
Optimizations

Genetic algorithms (GA) provides a guided random search and optimization
technique, based on the basic principles of evolution: survival of the fittest and
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inheritance [7]. Tt uses probabilistic transition rules and a payoff function to
guide the search. All generalized greedy and gradient descent search techniques
suffer from getting stuck at a local optimal point. However, using the evolutionary
techniques, GAs can overcome this limitation to provide a near-optimal solution
in a few iterations. The steps involved in solving an optimization problem using
GA can be briefly summarized as follows: (i) Random generation of a population
of chromosomes, (ii) Decoding each chromosome to evaluate its fitness, (iii)
Performing selection, cross-over and mutation operations, (iv) Repeating steps
(ii) and (iii) until a stopping criterion is satisfied. To solve any optimization
problem, GAs start with chromosomal representation of the parameter set. A
set of such chromosomes or strings are termed as population. The fitness/objective
function is chosen in such a way that the good points in the search space possess
high fitness values. This is the so-called payoff information used by GAs. In
short, GAs mimic the natural evolution process through its selection, cross-over
and mutation operations as discussed below:

— Selection: The selection process copies parent strings into a tentative new
population known as mating pool. Selection is usually proportional to an
individual’s fitness value and thus mimics the evolutionary selection process.
Roulette wheel selection, stochastic universal selection and tournament based
selections are the most widely used techniques [4].

— Cross-over: The key idea behind the cross-over is to exchange information
between two randomly selected parent-strings to give birth to the offsprings
for the next generation. The selected strings from the mating pool are paired
at random and a particular cross-over point is selected uniformly at random
between position 1 and the string-length. The offsprings are generated by
swapping the respective portions of the strings after the cross-over point.

— Mutation: Mutation is the process of random alteration in the genetic struc-
ture to introduce genetic diversity. In adverse situation, when the global op-
timal solution resides in a particular portion of the search space not included
in the population, then the mutation is the only way to direct the popula-
tion to jump out from any local optimal solution by randomly altering the
information in the string.

In addition to these basic concepts, generally the best string up to a particular
generation is preserved in a location either within the population or outside it.
This idea is known as elitism [7]. We are now in a position to digress into its
multi-objective counterpart of GAs.

A careful look into many real world problems reveals the requirement of
simultaneous optimizations of multiple objectives. In principle, multi-objective
optimization is quite different from the single-objective optimization. In case of
multiple objectives, there may not exist a single best solution with respect to
all the objectives. In fact, there exists a set of solutions superior to the rest of
the solutions in the entire search space when all objectives are considered. These
solutions are termed as Pareto-optimal solutions. Since none of the solutions in
this set is absolutely better than any other, any one of them will be an accept-
able solution. Hence, the user is given the freedom to choose the best solution
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from this set of Pareto-optimal solutions, defined below, to conform to specific
requirements.

Pareto-optimal Front: This concept of Pareto-optimality, originally formu-
lated by V. Pareto in the 19th century and constitutes by the origin of research
in multi-objective optimization. We can say that a point x is Pareto optimal
if for every x either, N;(fi(z) = fi(z*)) or, there is at least one 4 such that
fi(z) > fi(x*), Vi € I, where f;(x) is the fitness function. In other words, x* is
Pareto optimal if there exists no feasible vector x which would decrease some
criterion without causing a simultaneous increase in at least one other criterion.

The multi-objective genetic algorithm (MOGA) varies from the ordinary GAs
only in its selection operator. Before the selection is performed, using some
suitable ranking schemes, the population is ranked on the basis of individual
chromosome’s or string’s non-domination. The non-dominated strings from the
current population are first identified to form the first Pareto-optimal front [5].
As MOGA iterates in every generation, the non-dominated, Pareto-optimal so-
lutions are found and genetic operations are performed on these solution-sets
to improve their fitness values. The non-dominated solution sets quickly pro-
ceeds towards the global optimal solution and gets saturated at a near-optimal
solution-set. However, the tournament selection method used for ranking schemes
can lead to a tie between two or more strings which is resolved by Niche sharing
discussed below.

Niche Sharing on Non-dominated Frontier: Fitness sharing has already been
applied to a number of real world problems. Given an optimization function
having several peaks, the goal of fitness sharing is to distribute the population
over the different peaks in the search space, where each peak receives a fraction
of the entire population according to its height. The easiest way to achieve such
fitness-sharing is to degrade an individual’s fitness, f;, by dividing it by a niche
count, m;, for that individual. The intuition behind the niche count is that it is
a good estimate about how crowded the neighborhood of a particular individual
i is [9], [20].

With these discussions we will now proceed to develop the multicast routing
algorithm required for our protocol.

3 QoS-Based Multicast Routing Algorithm

The primary goal behind designing this algorithm is to find optimal multicast
routes satisfying the necessary (QoS) parameters. Let us first discuss the different
objective functions that the algorithm should try to optimize.

3.1 Objective Functions

Since wireless networks often suffer from uncertainty of resources, we design the
algorithm in such a way that it can determine the multicast routes by prob-
abilistically satisfying three major objective parameters: (i) end-to-end delay
requirement, (ii) bandwidth guarantee and (iii) residual bandwidth utilization.



Optimizing QoS-Based Multicast Routing in Wireless Networks 33

We represent the network by a graph G = (V, E) where V is the set of
nodes and E is the set of edges between the node-pairs. A path between a source
(vs) and a particular destination (vg) is represented by a sequence of nodes
Vs, U1, V2, V3, ..., Vg where v; € V. There can be multiple such paths between
a given pair of source and destination. For unicast routing the problem is to
find the most efficient path between such a given pair of source and destination
satisfying the required QoS constraints. However, in multicast routings, our focus
is to find such paths between a single source and multiple destinations,which
will simultaneously satisfy the above QoS parameters. These multicast paths
essentially forms a multicast tree and we have multiple such trees.

e

Fig. 2. Two different valid multicast
trees

Fig. 1. A graph representing network

Figure Rlshows two possible multicast trees for finding routes from the source
node 1 to destination nodes 6, 7,9 for the input network of Figure[ll But, not all
these paths can meet the desired QoS requirement. Our algorithm will look for
the set of non-dominated paths that will satisfy the three different QoS param-
eters, namely end-to-end delay, bandwidth guarantee and residual bandwidth
utilization. We assume the network to satisfy the following properties:

— The links are assumed to be service queues where packets are transmitted
and get serviced. The service rate is assumed to follow Poisson distribution
which makes the service time to obey Fxponential distribution. The link
delays introduced due to service time, should also follow an Fzponential
distribution with parameter equal to A. Since the path consists of a chain of
k hops, the delay along the entire path should follow Erlang-K distribution
[17], which is the convolution of k¥ independent random variables, each having
the same exponential distribution. The probability that the delay (d,,) over a
path p (from the source to one of the multicast destinations) of length & is less

than ¢ is given by: Pr(d, < t) = 24— The probability that the delay
(d) of the selected multicast tree (7)) will meet the specific delay constraint,
can be obtained by taking the product of delays over individual paths in
that multicast tree. This is expressed by: Pr(dr <t) = [[,c7 Pr(d, <?1).

Our algorithm attempts to mazimize this probability.
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— To measure the second optimization factor, bandwidth guarantee, a similar
model for the network links is assumed. Assume the service or transmis-
sion rate, a good measure of link bandwidth, follows a Poisson distribution.
Then the probability that a link [ € F is capable of providing a bandwidth

of B is given by: Pri(B) = )‘Bg!fk. The probability with which the band-
width guarantee of B is satisfied for an entire multicast tree (7)) is given by:
Pry(B) = [,y Pri(B). Our algorithm will try to mazimize this probability
also.

— Our third optimization factor is residual bandwidth utilization. Generally, the
multicast path capable of providing greatest residual bandwidth is taken as
the best possible choice. The total residual bandwidth in the network after
allocating bandwidth for multicast is given by >, _ (¢ — by), where ¢; is the
capacity of a link [ € E and b; is the bandwidth allocated for different hops
along the multicast tree (7). One can easily notice that b, = 0 if [ ¢ p, where
p € T. The fraction of total bandwidth available as residual bandwidth is

—b
given by: Ry(T) = M This measure is the third objective function
T 1

that our protocol shoul(’ftry to maximize.

We have also taken the call blocking rate as the measure of performance to
compare our protocol with other existing ones. In order to determine the
number of blocked calls, we first estimate the minimum available bandwidth
for the multicast tree as ™" = minje7 (b, ,.;), where bl .. = ¢ — b is
the residual bandwidth on a network link belonging to the multicast tree
T. Any multicast session request is considered as blocked if its bandwidth
requirement is more than biwail.

We now proceed to develop an efficient algorithm for on-demand QoS mul-

ticasting.

3.2 Proposed Algorithm

The underlying concept of the algorithm in Figure[ is that it does not combine
the three QoS objective functions on an ad hoc basis to form a scalar objective
function, but attempts to tackle the problem from the perspectives of multi-
objective optimizations. The motivation behind developing such an algorithm is
to provide the user with a set of Pareto-optimal solutions, and give the liberty
to choose the best solution from the set, depending on the specific requirements.
We now discuss the implementation details of our algorithm and highlight the
basic flow in Figure [l

3.3 Implementation Details

The detailed implementation of the algorithm is discussed below.

Line 1: The Network-generation part of the algorithm takes the number
of nodes as input and dynamically generates the graph using adjacency matrix
representation with random connectivity.
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MOGA-based Multicast-routing Algorithm
1. Generate a network (input: number of nodes) with random connectivity;

2. Obtain the initial set of multicast trees (input: source, destinations);

3. Map each of the multicast tree to a string sequentially consisting network nodes;
4. Generate the initial population by taking a specific number of such strings;

5. Repeat

6 Calculate the initial fitness values of three QoS parameters separately;

7 Generate the comparison set (C) from population;

8 While (not all strings are examined)

9. Take out two strings at random;

10. Compare each of their fitness values with the strings in C;

11. If (one string dominates the other (considering all fitness values))
12. Mark the non-dominated string;

13. End-If;

14. If (tie occurs (i.e. both the strings are dominated / non-dominated ))
15. Calculate niche count;

16. Mark the string with lower niche count as non-dominated;

17. End-If

18. Add the non-dominated strings into Pareto-Optimal set (S);

19. End-While

20. Perform cross-over and mutation operations;

21. Obtain the new set of strings to get new population;

22. Until ({fitness}s, ., — {fitness}s,, cpions < €);

Fig. 3. Multi-Objective QoS-Multicasting Algorithm

Line 2: The algorithm now takes as input the source node vs and a specific
number of multicast destination nodes, say, v4,,Vd,,...,vq, and finds a set of
possible multicast paths from v to each of vq,,va,, ..., va, , using the depth first
search (DFS) algorithm. This gives the initial set of multicast trees. Our goal is
to find the multicast trees which will satisfy the required QoS parameters. The
next step is to map the problem in a search space suitable to MOGA.

Lines 3-4: Each of the generated multicast trees is mapped to a string
consisting of the sequence of nodes along the path from the source v, to each of
the destinations vg,,v4,, ..., v4,. To mark the end of a path from a source to a
single destination, we use -1 as the sentinel. Figure [l gives depicts this scenario
where the second multicast tree of Figure [2] is represented by a string. The set
of all such initial strings constitute the initial population.

Line 6: The fitness_computation computes the values of the three pre-defined
QoS parameters individually. The objective of the algorithm now boils down to
a search for different multicast paths which will improve the values of these QoS
parameters at each iteration.

Line 7: The key idea behind developing Pareto-optimization is to use a
ranking selection method to emphasize the good points and incorporate the
concept of niching to maintain stable subpopulations of good points. In order
to achieve good selection, a comparison set, of individuals are picked at random
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Fig. 4. Flowchart of the Algorithm

Fig. 5. String representing the first Multicast tree of Figure

from the population. The size of this comparison set, tjom, gives us a good control
over the selection pressure. If a small 4., is chosen, only a few Pareto-optimal
points would be found. Instead, choosing a very large tqo,;, might result into a
premature convergence. In this algorithm we have taken ¢ 44, = 0.20 X (popsize).

Lines 8-16: From the population, two strings are randomly selected at a
time and each of them is compared against each individual in the comparison
set. If one candidate is dominated and the other is not then the latter is selected
for selection. On the other hand, if both of the individuals are dominated or
both non-dominated then we use niche count to resolve the tie. We compute
the value of niche count for every individual string present in the population, is
computed as:

popsize

mi= Y Shlds ), (1)

Jj=1

where dg; s2is the distance between individuals sl and s2 and Shlds s2] is
the sharing function. For simplicity, triangular sharing function has been used:

dS S
Shldg s) =1 — =252 (2)

Oshare
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for d < ogpare and Sh[d] = 0 otherwise. Here ogpqre is the niche radius,
and it is a good estimate of minimal separation expected between the goal of
solutions. Individuals within ogp4. distance of each other degrade each other’s
fitness, as they are in the same niche. We introduce a new concept of adaptive
sharing, i.e., the value of o4pqre is no longer kept fixed. Depending on the fitness
values of the particular string chosen and the population density in the search
space, Ospare is dynamically updated in every iteration of the algorithm. We
compute phenotypic Eucledian distance [9] between the different fitness values
as a good measure of this gspare.

A2 = \/ Guctaysr,2)? + O )2 + Boit.)? (3)

where dgelay,, .. = Pr(ds <t)—Pr(ds <t), Opw,, ., = Prs(B)—Prs(B)
and  Opit,, ., = Ri(s1) — Ry(s2), B and Ry are the bandwidth and residual
bandwidth respectively.

Similarly, we obtain the niche radius, ospare, as some fraction (precisely half)
of the maximum separation possible in the population, i.e.,

Odelaymas)® + (Obwnmas)? + (Obitnas )?
Oshare = \/( Y ) ( 5 ) ( ! ) (4)

where Sgciayne. = Prmaz(d < t) — Propg(d < t), Obw,ee =
Prma:z(B) - Prmzn(B) and 6bitmaz = (Rb)maz - (Rb)min-

Lines 17-18: The cross-over and mutation operations are same as normal
genetic algorithms. But a close look into the structure of the chromosome in
Figure [l reveals that these genetic operations can not be performed on any
arbitrary gene (network nodes), as that may result in some illegal paths. Both
the cross-over and mutation operations can only be performed at the end of an
existing path, i.e., immediately after the particular sentinel, represented by -1. To
give an equal probability to all such possible cross-over and mutation points, we
randomly select one such point. To combine the good strings and simultaneously
preserve the effective ones, we have taken the probability of cross-over as 0.7 and
that of mutation as 0.1.

Loop 5-19: As the algorithm executes, at every iteration the genetic oper-
ations dynamically update the chromosomes (strings) and try to improve the
corresponding probabilities until the difference of fitness values between the cur-
rent Pareto-optimal set and the previous one is less than the precision e.

3.4 Illustrative Example

Let us work out a small illustrative example to explain the essence of the algo-
rithm, considering the network represented in Figure [[] with same source and
destination nodes. The possible routes to nodes 6, 7 and 9 are respectively
(1-2-256,123—26,124—6);(1=22—-71—23—=71—4—7);and
(1—-2-91—-3—-9,1—4—9). Thus, we have 3% = 27 possible multicast
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trees. We take (1 -2 —-7,1-53—-6,1-4—-9);(1—-2—-91—>4—>7,
1—-4—6);and (1 >2—-6,1—4—7 1—3—9) as our initial multicast
trees which will form the initial strings in the population set. The three QoS
parameters Pr(dy < t) for end-to-end delay, Pry(B) for bandwidth guarantee
and Ry(7) for residual bandwidth utilization are evaluated on this set and the
QoS-based fitness values obtained are shown in table [I]

Table 1. Initial Multicast Trees with QoS Parameters

Initial multicast trees Pr(dr < t)|Prr(B)| Ru(T)
15356152571 545904x10 7] 0003 | 054
1542561247 1—2—9/03x10°] 0.001 |R(T)=0.52
15256 12457,153-5901x10°] 0004 | 0.46

As the initial population is too small to generate an effective comparison set,
probabilistically both string-1 and string-2 is initially included in this set. We
pick out two strings (1 and 2) randomly from the initial population and compare
them with the string in the comparison set. From the QoS parameters it is clear
that string-1 dominates the string-2. Hence, string-1 is now included in the non-
dominated set. In the next trial strings 2 and 3 are randomly picked up and
the same procedure results in a tie as the fitness values indicate both of them
as non-dominated. Hence, as discussed in the algorithm, we calculate the niche
count using Equations (@), @), @), @) and obtain ds 2 = 0.0204, dsos3 =
0.0101, ds1,63 = 0.08105 and 0ospare = 0.0405, which leads to my = 0.2375
and mg = 0, as m3g > Ogpare- Lhe lower niche count of string 3 includes it in
the non-dominated, Pareto-optimal front. Since, all strings of the population are
examined, we now exit from the while loop.

Since the probability of cross-over is quite high, it is performed over both
the pairs of strings 1,2 and 2,3 by selecting the cross-over points at nodes 6
and 7 respectively. The resulting four new strings are : (1 -3 —6,1 —4 — 7,
1-2-29,1-24-6,1-2->71-54-59,1—24—-6,1—-2-=>7,
1—-+3—>9),and (1 -2 —6,1—>4—71—=2—9). On the contrary,
as mutation is a rare event it has not occurred in the first iteration. The
above process is repeated at every iteration until the improvement is less than
our precision. We tabulate the QoS based non-dominated, Pareto-optimal
solutions of every iteration in Table 2| Within 4 iterations the improvement of
the Pareto-optimal set becomes less than the precision and we conclude that
the algorithm has obtained a good solution. The final non-dominated set of
multicast trees are shown in Figure From Table [2] it is clear that no single
multicast tree gives the best solution in terms of all three QoS parameters, but
the first, second and third multicast tree gives the best probabilities for meeting
end-to-end delay, residual bandwidth utilization and bandwidth guarantee
respectively.

Complexity of the Algorithm: The genetic operators cross-over and mu-

tation requires O(n) time, where n is the total number of network nodes. Since,
the genetic operations are performed on every string in the population, the com-
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Table 2. Chart of Multicast Trees with QoS Parameters

Multicast Trees in Different Iterations| Pr(dy < t) |Pry(B)|Rs(T)
1-356,124—>71—52—-9 | 04x10 3 [0.0045 | 0.58
1-4—-56,1-2—>7,1-4—9 [ 06x102 | 0.007 | 0.55
152—-6,152—-7,153-9 | 07x10"2 | 0.005 |0.575
1-3-26,152—-7,1-54—9 [0.55x10"°[ 0.006 |0.500
153—6,152—-7,152-9 | 07x10"2 [ 0.006 |0.565
1-4-6,1-52—-7,1-52—-9 |05x107°] 0.008 | 0.55
152-26,1-2-7,1—>4—9 [0.475x 10| 0.0058 | 0.625
153—6,153-57,154—-9 [061x10°]0.0065 |0.601
152—26,122—-7,1-3—=9 [095x10"3] 0.008 [0.645
154—6,154—-7,1-53-9 [0.775 x 10~2] 0.0095 | 0.635
154—6,153>7,154—-9 [0.821 x 10~°| 0.0081 | 0.665
153—6,152—-7,1-4—-9 [095x10°]0.0082 [0.641
1-4-6,1-3—-7,1—-3—=9 [0.90x 10-3]0.0090 | 0.667
152—6,1>54—-7,1-53—9 [0.88x10~°[0.0097 | 0.655

i T

Fig. 6. Final Non-dominated Set of Multicast Trees

plexity of a single iteration of the algorithm will be: O(P x n), where P is the
population size. Finally, since, the algorithm is executed for g generations, the
total complexity of the algorithm becomes O(g x P x n). The simulation experi-
ments in Section [f]makes it clear that in most of the cases, only a few generations
will give a near-optimal result. It is true that the number of iterations (g) varies
with the population size (P). A poor guess of choosing the initial population
might increase the number of iterations leading to a relatively slower solution.
However, such penalty is often tolerated while solving such a NP-hard problem.

Before going into the simulation results of the developed protocol, let analyze
the algorithm to show its power, complexity and convergence.

4 Evolutionary Properties and Convergence

The general behavior of the algorithm depends on the fitness values of the indi-
viduals in the population. Using fitness distribution before and after the selection
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operation, several properties of the algorithm can be unveiled to show its power.
But before proceeding further, we need to define the following distributions:

Cumulative Fitness distribution: Fitness distribution is a function that
assigns to each fitness value f; € R, the number of individuals in a population
P carrying this fitness value. If n < N is the number of unique fitness values
and f1 < fa < ... < fy is the ordering of the fitness values, then the cumulative
fitness distribution S(f;) is the number of individuals with fitness value f; or
worse, i.e. S(f;) = Ziz s(f;), for 0 <14 <.

Expected Fitness distribution: A selection method M is a function that
transforms a fitness distribution s into another fitness distribution s’ such that
s’ = M(s, parameter — list). The expected fitness distribution M* after allow-
ing a selection method s to the original fitness distribution (M) is given by
M* (s, parameter — list) = E(M(s, parameter — list)), [7]. However, for sim-
plicity, the notation s* is often used to represent this expected fitness distri-
bution. We will try to predict it out of a given distribution. In the selection
process used in the algorithm, an individual with fitness f; or worse can win
the tournament if all other individuals have a fitness of f; or worse. Hence,
we need to calculate the probability that all other ¢ individuals have worse
fitness. As the probability to choose an individual with fitness f; or worse is

t
%, we can say S*(f;) = N (%) . Now, combining this with the relation

s*(fi) = S*(fi) — S*(fi—1) from definition of cumulative fitness distribution, we
get the expected fitness distribution on the multi-objective tournament selection
process as:

)t [ (S0 - (S ] )

4.1 Analysis Using Continuous Distribution

We have assumed that the fitness values are continuously distributed. The con-
tinuous distribution s(f) will have the same range as its discrete counterpart.
Hence, S(f) = f}é 5(x)0x will be the expression for continuous cumulative dis-
tribution. We derive the probability of an individual with fitness f or worse to

win the tournament as S*(f) = N(%)t. Again, as 5*(f) = aSa*;f), we obtain:

(=M = (5P ©

Selection Intensity: The intensity (Z) of the selection, defined as the ex-

pected average fitness value of the population after the iteration of the algo-

2
rithm. Using normalized Gaussian distribution G(0,1)(f) = ﬁe? we have

7= ffooo fM*(G(0,1))(f)0f. Thus, the expression for selection intensity of our
algorithm is given by
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Z(t) = /Z tx\/%efg2 </a; J%egzay)tl Oz (7)

We have varied the tournament-size 4., and investigated the changes in Z.
The plot in Figure [1l demonstrates that the intensity of selection increases with
increasing tournament-size until the saturation arrives.

Selection Variance: The selection variance V is the expected variance of
the fitness distribution of the strings after the algorithm completes its selection
process over Gaussian distribution G(0,1). To calculate this variance with respect
to our algorithm we evaluate the equation:

V() = /_O; e — I(t))Z\/%e_é </_Oo jﬂe—fay)t_l or (8

Figure [§ shows the values of this selection variance with ¢go.,.
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This provides us a trend of the selection pressure used in our algorithm.
The selection pressure has its strong influence on selecting the good strings
and punishing the bad ones, which eventually guides the improvement of the
performance of our algorithm. Now, we will highlight on the convergence of the
algorithm.

4.2 Convergence

While examining the convergence of the algorithm, we keep in mind that the
proposed algorithm operates on the principle of elitist GA, i.e., in every iteration
at least the current best individual strings survive. Intuitively, as the algorithm
iterates, the fitness of the strings does not decrease. Let us assume that for
every population P, there exists a non-zero probability @ such that in the next
generation the fitness of the population is better. Next, we divide the population
into classes according to their fitness values. Suppose that the initial population
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has fitness value fiyi:, and the optimal fitness value is f,,:. Moreover, there are
r > 1 intermediate fitness values. Also, let p denotes the minimum of all the
probabilities @(P).

Now, we will proceed to give bounds for the probability that our algorithm
reaches optimality in at most t iterations. In, the worst case this optimum will
be obtained in exactly ¢t > r — 1 generations, if the (r — 1)** improvement takes
place in the #*" iteration. In order to realize this, we need to pick up r — 2
different values from the set {1,2,3,...,t —1}. Indeed, these numbers correspond
to the steps where an improvement takes place. Here, we deal with the worst
case scenario, in which improvements are as small as possible.

The lowest probability that the algorithm takes precisely ¢ steps equals
pTH(1 —p)tortt (::;), since we have r — 1 improvements in the worst case,
and t — (r — 1) times we get no improvement, i.e., the strings stay in the same
class with probability 1 — p. So, the probability that we reach the optimum in
at most t > m — 1 steps is bounded by p™~! Zzzr_l(l —p)i=rHl (i:;)

Using elementary calculus this sum equals:

r— ) r— t

pT_lﬁé?Ti (Zﬁ:l ql_l) = pT‘lﬁg’Ti (%), where ¢ = 1 — p.

Differentiating and taking limits for t — oo we get,

r—1 1 87“72 1 _ =1 1 T _
P (r—=2)19¢"=2\1-¢q —P 1—gq =1 ©)

r—2 1

since % (—) —0ast— 0.

1—q

Therefore, we can conclude that the algorithm converges asymptotically to
provide the optimum solution. In the next section we develop a suitable perfor-
mance model for the proposed algorithm.

5 Performance Modeling Using Markov Chains

Markov chains can be used to model each generation of the algorithm by com-
bining the effects of various stochastic events like initial population generation,
selection, cross-over, mutation [I8]. However, the major difficulty of it is that the
transition probability matrix becomes large and unwieldy. To make the analysis
simpler, we encode the node numbers in binary form to represent every string
by 0s and 1s.

For a binary string encoded population of size P and M different states, a
particular state ¢ in the model represents a population with exactly ¢ ones and
(P — i) zeroes. The algorithm chooses a member k of the current population
to reproduce with probability proportional to its fitness relative to total fitness
of the population. Thus, leaving the effect of niche counts, we can choose an
individual k£ with probability f 7 where fi, is the fitness of k and Y f is the
sum of the all individuals in the current population. Now, if f; and fy denotes
the fitness of “1” and “0” respectively, then the probability p; of choosing a 1 for

the next generation’s population will be: p; = z‘*fﬁ?gii)*fo = f*if(*;fi), where
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7= % is the fitness ratio. Similarly, the pg probability of choosing a zero will
be: pg = Wf(i_gﬂ) The probability of going from a state of ¢ 1s to a state with j

1s will be: p; j = (7;) (p1)?(po)” 7. Substituting the values of p; and py, we get,

. J . P—j
Pij = (7;) <r*zﬁkfv—z)) (f*if(;—i)) :

The above equation gives a probability transition matrix for the population
size and the fitness ratio. However, the absence of niche counts is not incor-
porated in the equation. Hence, our next objective is to extend the equation
to include the niche count into feature and model the algorithm exactly. As
discussed earlier, the niche GA seeks to maintain several subpopulations, or
individuals at different good solutions and it gives a good view of the fitness
landscape. Each peak of such landscapes forms a niche. The sharing values now
will modify the fitness values to spread the population out in different peaks.
The niche counts for 1s, will be m; =i+ (P —i)(1 — ash,lmg)’ since we have to
take care of the shared value of each zero. Similarly, the niche count of Os will
be mg = (P —i) +i(1 — ﬁ) The fitness values will also be changed to
fi/mq and fo/mg respectively. Substituting these degraded fitness values to the
previous equation, we get

J P—j
P 1 1
N Gy (10
b e |\ L et

9share 9share

This equation gives the probability of the transition matrix as the algorithm
iterates from one state to another.

Absorbing Markov Chain: While calculating such transition probabilities,
before talking about steady states, we need to address the absorbing states
Bl. Although transition matrix will tell that the quasi-steady states can not
last, we usually do not wait long enough to see that the algorithm has reached
the equilibrium. We keep ourselves satisfied with just a noisy steady state. One
possible way to deal with this problem is to ignore the steady states and just
analyze only the transient states. Applying the well known partitioning of states

of an absorbing Markov chain,we get: P = (C(Q)?)

We take only the @ partition to be the entire matrix, ignoring R, 0, I, which
consists of only the absorbing states. If we normalize the Q matrix, the resulting
matrix Qpnorm, is an ergodic Markov chain that allows us to calculate the steady
state probabilities for all non-absorbing states. Before analyzing Q.,orm, we will
try to justify the “chopping off” the absorbing states. Intuitively, we can say
that we are only looking for the expected absorption time.

Ergodic Markov chain: We now have an irreducible Markov chain,
Qnorm, with all ergodic states. Calculation of the steady-state probabilities
is quite straightforward. We seek the steady-state probability-vectors =
{m1, 2, ..., mp_1}, where 7; denotes the steady-state probability for state j. To
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find ﬁ, we need to solve the equation ﬁQ = ﬁ, where szz—ll m; = 1. Ana-
lyzing the vector b helps us to understand the behavior of the steady state
probabilities, plotted in Figure [ against changing ospqre values.
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Fig. 9. Steady State Probabilities

All the steady state distribution curves are almost symmetric about the equi-
librium point. As ogpare increases, the steady state distribution curve flattens
and demonstrates the changing probabilities for different fitness sharing values.

6 Simulation Results

Simulation experiments are first performed over a network of n = 100 nodes with
the number of multicast destination nodes being 10. The capacity of the network
links are taken as uniformly distributed in the interval of [90-110]Mbps.Recall
that our multicast QoS routing algorithm attempts to maximize the probabilities
of meeting end-to-end delay, bandwidth requirement and bandwidth utilization
within a few generations by building the Pareto- optimal fronts. We have com-
pared the performance of our algorithm with an existing scalar-optimization [T]
and heuristic algorithms [14] and observed that our algorithm performs better
in terms of scalability and multicast call blocking rates.

An exhaustive search method, which finds the optimal values of the three QoS
parameters by exhaustively searching them one after another is used to compare
our results. The three plots (one for each QoS parameter) in Figures[IQ, [TT] and
[@lvividly explains how these Pareto-optimal fronts are developed and proceeded
towards a global-optimal solution in a feasible time. The novelty of our algorithm
is that it is capable of obtaining near-optimal values of all three QoS parameters
simultaneously by building the non-dominated fronts. However, for the sake of
clarity we have shown it in three different plots. Finally, after completing the
execution of the algorithm, we get the final solution sets represented by the
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Figure From the above plots one can derive the amount of optimization
obtained by our algorithm. Table [3] demonstrates that our algorithm is capable
of obtaining more than 95% of the global-optimal values of end-to-end delay,
bandwidth guarantee and residual bandwidth utilization within 100 iterations.
As all the near-optimal solutions are achieved in a probabilistic approach, we
conclude that our algorithm is robust enough to operate with imprecise network
information. Note that the solution set may contain solutions which are not
the best from any single objective’s point of view, but is non-dominated by all
three individual best solutions, when all three objectives are considered. Since
the three individual best solutions will always be non-dominated, they are by
default included.
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The solutions are provided in a generalized manner and a user can readily
choose his choice-able solution depending on his needs. For example, in real time
video transmission we are more careful about the end-to-end delay. Such a user
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Table 3. Percentage of Global-optimal Solutions Obtained

End-to-end Delay [96.78
Bandwidth Guarantee|95.55
Bandwidth Utilization|98.39

will be having delay as a hard constraint and will choose the solution which will
meet that constraint. On the other hand, while transmitting a scientific data
from the remote satellite, the correctness is more important than the delay. So,
for such cases an end-user will prefer to meet the bandwidth guarantee than
the delay. We repeat the simulation with increasing number of network nodes
and observe the efficiency of our algorithm. As the network becomes highly
condensed, our algorithm exhibits a more linear and stable pattern than existing
scalar optimization algorithm. This approzimate linearity of the curve in Figure
[[4] corroborates the scalability of the algorithm. Finally, the non-dominated set
of solutions are given as input to the call-blocking algorithm. Performance of
our protocol is plotted against the increasing call arrival rate in Figure[ITH. The
mean rate of arrival of multicast session request is assumed to be 10 requests/sec.
Results show that the percentage of calls blocked in our protocol is less than the
two existing QoS routing protocols based on scalar optimization [I] and heuristics
[14]. The peak data rate for this comparison is taken as 35Mbps. Although the
performance of all the schemes degrades with the increase of call arrival rate,
our algorithm gains consistently over the existing ones. Hence, we can conclude
that the designed protocol offers a graceful degradation of performance with
increasing session arrival rates.
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Fig. 14. Performance of the Algorithm Fig. 15. Percentage of Calls Blocked
with Increasing number of nodes with Call-Arrival Rates
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7 Conclusions

On-demand multicast routing in networks is currently an active area of research.
In most of the real world scenarios routings need to meet stringent measures of
different quality of services. Seamless transmission of wireless audio and video
traffic has already become a real challenge of current and future generation wire-
less systems. It is quite natural that real time multimedia traffic should meet
a number of different and conflicting QoS issues. Optimizing a particular ob-
jective function may sacrifice optimization of another dependent and conflicting
objective. In this paper, we studied QoS-based multicast routing problem from
the perspective of multi-objective-optimizations. The blessing of multi-objective-
genetic algorithms (MOGA) has paved the way to develop the algorithm for a
new QoS-based multicast on-demand routing algorithm. The mathematical anal-
ysis shows the power of selection and complexity of the algorithm. We have also
shown the asymptotic convergence of the algorithm to the optimal point. How-
ever, often we do not need to wait till the convergence and settle with a near
optimal point. We have also developed a suitable model of the algorithm using
Markov chains to track the transition probabilities and plot the steady state val-
ues of such probabilities. Simulation results delineates the efficiency, performance
and scalability of the protocol. Our future interests is to adapt this technique
to develop a mechanism for renegotiable-QoS in wireless multicasting. We ex-
pect our work will be helpful in solving some new problems in the domain of
quality-of-service (QoS) routing.
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