Resource Allocation with Persistent and
Transient Flows

Supratim Deb!, Ayalvadi Ganesh?, and Peter Key?

1 Coordinated Science Lab., University of Illinois at Urbana-Champaign, 1308 W.
Main Street, Urbana, IL 61801, USA deb@uiuc.edu
2 Microsoft Research, 7 J J Thomson Ave., Cambridge CB3 0FB, UK
ajg,peterkey@microsoft.com

Abstract. The flow control algorithms currently used in the Internet
have been tailored to share bandwidth between users on the basis of the
physical characteristics of the network links they use rather than the
characteristics of their applications. This can result in a perception of
poor quality of service by some users even when adequate bandwidth
is potentially available, and is the motivation for seeking to provide
differentiated services. In this paper, stimulated by current discussion
on Web mice and elephants, we explore service differentiation between
persistent and short-lived flows, and between file transfers of different
sizes. In particular, we seek to achieve this using decentralized algo-
rithms that can be implemented by end-systems without requiring the
support of a complex network architecture. The algorithms we propose
correspond to a form of weighted processor sharing and can be tailored
to approximate the shortest remaining processing time service discipline.

Keywords: Service differentiation, bandwidth allocation, decentralized
control, weighted processor sharing, shortest remaining processing time.

1 Introduction

Most data in the current Internet is transferred using TCP. This protocol has
two phases: a slow start phase which probes for available bandwidth up to a
certain threshold, and a subsequent congestion avoidance phase that attempts
to stabilize around a fair share. Despite having an aggressive ramp up phase,
the throughput during slow start is typically much less than in the congestion
avoidance mode due to the small size of the initial window, time-outs triggered
by packet loss, etc. Moreover, the fair shares reached in the congestion avoidance
phase allocate equal bandwidth to all file transfers having the same round-trip
time and access bandwidth, irrespective of the sizes of the files being transferred.
This results in a poor response time for short file transfers and raises the question
of whether it is possible to improve performance for short file transfers without
significantly degrading it for long file transfers. This question assumes particular
importance in the context of the finding by a number of researchers that file sizes
on the Web have a heavy-tailed distribution [6]: when file sizes vary over several

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 455-[466] 2002.
© Springer-Verlag Berlin Heidelberg 2002

456 S. Deb, A. Ganesh, and P. Key

orders of magnitude, treating all file transfers identically may not be appropriate.
This has led to research on improving the throughput of short flows, either by
altering the slow-start behavior [2J113], or by putting short flows into a different
class [19/10], or by providing a predictive service to long flows [5].

A related problem is that of sharing bandwidth between file transfers and
real-time traffic such as Internet telephony or video conferencing. Real-time flows
are usually long-lived and can be treated as persistent sources for purposes of
analysis. They have very different quality of service requirements from file trans-
fers. Whereas what matters for file transfers is usually the transfer time, or
equivalently, average bandwidth over the entire transfer period, real-time flows
typically care about the bandwidth they receive at each instant in time (or,
more precisely, averages over time periods much shorter than the lifetime of the
connection). The value of bandwidth to a user can be described mathematically
by a utility function which captures elements of the quality of service perceived
by the user. Utility functions are commonly used in economics to represent in-
dividual preferences and to address questions of fair allocation. The resource
allocation problem can be cast as one of maximizing the aggregate utility of all
users.

We model the utility for a file transfer as the negative of the time taken
to complete the transfer. For real-time traffic, we assume that the total util-
ity obtained is the integral of an instantaneous utility over the lifetime of the
connection; the instantaneous utility, in turn, is modeled as an increasing and
concave function of the bandwidth received by the flow at that instant. Such a
concave function reflects diminishing marginal utility to the user as the allocated
bandwidth increases. Equivalently, concavity models a preference on the part of
the user for a fixed constant bandwidth over a fluctuating bandwidth allocation
with the same mean. Sources with such a utility are referred to as elastic sources
in the literature. There has recently been considerable work on bandwidth shar-
ing between persistent elastic users [I4[I7]. However, the problem of combining
such sources with transient sessions such as file transfers has received little at-
tention. One recent study [15] suggests that, when the two traffic types share a
network, file transfers should receive priority.

Our main results and the organization of the paper are as follows. In Sec-
tion 2, we consider persistent elastic sources sharing a link with transient sessions
transferring a fixed volume of data. We pose the bandwidth allocation problem
as an optimization problem and solve it numerically. We then derive practical
flow-control schemes that can be easily implemented in a decentralized manner,
and show that these are close to optimal. In Section 3, we consider a scenario
where the transient sessions have different amounts of data to transfer. The
shortest remaining processing time (SRPT) policy yields the optimal bandwidth
allocation. We propose a practical scheme that approximates SRPT and study
its performance through simulation. We show that there is an advantage to in-
creasing the throughput given to short flows, and that this can be done without
appreciably penalizing long flows. We present our conclusions and discuss direc-
tions for future research in Section 4.

Resource Allocation with Persistent and Transient Flows 457

2 Bandwidth Sharing between Persistent and Transient
Flows

Consider a single link of capacity C shared by a fixed number, K, of persistent
flows and a variable number of short-lived flows (also called Mice). The persis-
tent flows are modeled in aggregate as having an increasing and strictly concave
instantaneous utility function KU, (x.), where z. is the aggregate bandwidth
allocated to these flows at a specified time. The utility over a time period is
given by the integral of the instantaneous utility over that period. To simplify
technicalities in the analysis below, we assume in addition that U, is differen-
tiable. Short flows correspond to file transfers. They arrive into the system at
the points of a Poisson process of rate A and leave when the file transfer is com-
plete. The file sizes are assumed to be exponentially distributed with mean f.
Let p = Af/C denote the load offered by the short flows. We shall assume that
p <1l

There is a unit holding cost per unit time for each short flow in the system.
The goal is to maximize the time average of KU, (z.(t)) — N(t), where N(t)
denotes the number of short flows in the system at time t. To this end, we
introduce the performance objective,

1

T—o0

T
| UG = N |N<o>=n] &)

and seek a policy m that maximizes this objective. By Little’s law, the time
average of N (t) is the same as A times the mean sojourn time of a file transfer,
so the objective is to maximize the utility of long flows, subject to a bound on
the mean sojourn time of file transfers. The objective function above is precisely
the Lagrangian for this optimization problem.

We seek stationary optimal policies for the optimization problem described
above. By the assumption of exponential file sizes, the state of the system is fully
described by the number of short flows in progress and we have a semi-Markov
decision problem. If the number of short flows is restricted to some ny.x, and
non-zero capacity is allocated to short flows whenever any are present, then the
Markov process is irreducible and has a finite state space. Under these conditions,
it can be shown that there is a stationary optimal policy, and that it can be
computed numerically using value iteration. The proof is omitted due to lack of
space, but can be found in [8] along with a discussion of structural properties of
the optimal control policy.

In order to compare the optimal policy with sub-optimal policies that we shall
consider below, we need the following elementary bound on the performance of
the optimal policy.

Lemma 1. Suppose the state space is not truncated, i.e., Nymax = 0. Then, for
any policy ™ and any initial state n, we have Jr(n) < KU.((1 — p)C).

Proof. Since the load offered by the short flows is p, any policy 7 that allocates
capacity less than pC to these flows on average will be unstable in the sense that

458 S. Deb, A. Ganesh, and P. Key

N(t) = oo as t — oo. Thus, for any such policy, J(n) = —oo, starting from any
n. Therefore, we can restrict attention to policies w that, on average, allocate
capacity no more than (1 — p)C to the persistent flows. Since U, was assumed
to be concave, we now obtain from Jensen’s inequality and the non-negativity
of N(t) that

T T
7 | EU0) = N o) < KU, G / w)) _

Taking expectations and using Jensen’s inequality once more, we get

LMM<KM<E

%/0 xe(t”N(O) = TL‘|> S KUe((l - p)C)) (2)

since E[1 fOT ze(t)] < (1—p)C for all T sufficiently large, and U, is an increasing
function. ad

Implementing the optimal policy requires knowledge of the number of short
flows in progress and may not be practical. This leads us to consider simpler
policies that are practically realizable. We show for two such policies below that
they are close to optimal. In the rest of the paper, we will work with utility
functions of the form

U R 3
e\Le) = - s > 0.

(ze) 1—6(0))
If 3 =1, we take U(ze) = log(x./C). These constitute a fairly general class
of utility functions and have been considered by a number of authors; see, for
example, [1§]. The bandwidth shares assigned by TCP approximately maximize
a utility function of this form with g = 2.

Static Policy. A fixed amount of bandwidth C' < C'is reserved for the persistent
sources and the remainder is shared equally among file transfers. This can be
implemented by logically partitioning the link between persistent and short flows
and using TCP for the short flows, for example.

Now, irrespective of the file size distribution, the number of short flows
in progress evolves like the queue size in an M/G/1 — PS queue, with load
o = Af/(C = C). The equilibrium queue length distribution is geometric with
parameter a (see [L3], for example), and so the mean number of short flows in

progress is Er[n] = a/(1 — a). The bandwidth allocated to persistent flows, C,
can be expressed as C = C — (A f/a) = (o — p)C/a. Hence,

EnKU.(a.(n) = n] = KU (“—LC) - 2. (4)

Taking a =1 — a/\/f? and using (@), we obtain

aow/K K-aVK [1—-p—(a/VK) 17ﬁ_\/£+1
1-(a/VK)

Ex[KUe(we(n) —n] = —5 + ——5

a

Resource Allocation with Persistent and Transient Flows 459

— p)i-8

:Kulmﬂ+mVK):KuﬂLqMD+m¢Ky (5)
Recall that pC' is the rate at which work is brought in by short flows, and aC
is the capacity allocated to them. The choice @« = 1 — a/ VK corresponds to
allocating most of the available capacity to short flows, reserving only a small
fraction a/v/K for persistent sources.

How much worse than optimal is the static policy? One way to quantify this
is to ask how large a capacity C is needed, so that the total utility achieved
using the static policy on a link of capacity C' is the same as the utility achieved
using the optimal policy on a link of capacity C. Recall that, by @),

(1-pC

K
ExlKUcze(m) =nl < =5 | ¢

for a link of capacity C, using any policy. Comparing this with (B), we see that
C =C(1—-0(1/VK)). In so far as K is large in the typical operating regime of
interest, this shows that the static policy is close to optimal.

Implementation of the static policy requires that bandwidth partitioning be
carried out by network routers. In contrast, the weighted processor sharing policy
discussed next can be implemented at end systems.

Weighted Processor Sharing. Suppose each persistent source has weight 1
and each file transfer in progress has weight w, and that capacity is shared be-
tween users in proportion to their weights. In particular, each file transfer in
progress gets the same share of capacity. Thus, irrespective of the file size distri-
bution, the number of file transfers in progress can be modeled by a symmetric
queue (see Lemma 3.9 in Kelly [13]), and has the invariant distribution of a
birth-death process with constant birth rate A, and state-dependent death rate
pn = (C —xc(n))/f. Here z.(n) is the capacity allocated to persistent sources
when n short flows are in progress, and f is the mean file size. If we assume
further that k := K/w is an integer, then it can be shown that the invariant
distribution is given by

n

o = (1) o (6)

and a simple calculation yields E.[n] = (k+ 1)p/(1 — p) for the mean number
of short flows in the system. Details are omitted for brevity, but can be found
in [§]. It is not possible to obtain a closed-form expression for Er[U.(z(n))] in
general, but we can obtain approximations using a Taylor expansion for U, when
k is large. After routine calculations detailed in [§], we obtain

[e(xe n)) — n]
(-7 Kp(l=p)'? KBp(1-p)'P (k+1)p
5 2 - ok 7, =

460 S. Deb, A. Ganesh, and P. Key

Recall that k = K/w, where w is the weight given to short-lived flows. It follows
from the above that, by choosing w = VK, we get E;[KU,(zc(n)) —n] >
KU.((1—p)C) —O(vK). Since no policy can achieve a total utility greater than
KU,((1 = p)C), we conclude that the minimum bandwidth, C, required by an
optimal policy to achieve the same utility as achieved by the weighted processor
sharing policy is given by C' = C(1 — O(1/VK)).

Thus, the weighted processor sharing policy is nearly optimal, in the same
sense as the static policy. Moreover, it can be implemented by the end systems
rather than the network, for example by having end systems use a weighted
analogue of TCP with weights chosen as above. An alternative implementa-
tion would be to use a willingness-to-pay scheme, as described in [9], with a
willingness-to-pay parameter proportional to the weights above.

Numerical Results. We now derive explicit formulas in the special case § = 2,
ie., U.(x) = —C/z. Recall that this is the utility function implicitly maximized
by TCP. The static policy allocates fixed capacity pC/«a to the short flows; when

- . : : —1_ _1l=p
B = 2, we obtain from (@) that the optimal value of o is o = 1 oY and
that
_ K+VKp Bofn] = vVEp+p

l—p 7 77 l—p

When 3 = 2, we can also explicitly calculate E.[U,(z.(n))] for the weighted-PS
policy. We obtain

sioaon -5, [(ghse)| -5 52 -gh2ty

Ex[KUe(ze(n))] =

A simple calculation now yields that the optimal value of k is VK, i.e., each
transient flow should be given a weight w = v/ K relative to each persistent flow.
With this choice of k, we get

_K+\/Ep Faln] = VEp+p

EW[KUe(xe(n))] = 1—p 1—-p

We compare the mean utility and number in system for the static and
weighted-PS policies with those for the optimal policy, obtained numerically.
For this purpose, we choose the system parameters C' = 1000, K = 25, f = 100,
and vary A so that p = Af/C spans the interval [0.1,0.7]. We truncate the state
space at nyax = 100 for the value iterations. The results are plotted below. Fig-
ure 1 shows the mean utility for the optimal, static and weighted policies, while
Figure 2 shows the mean number of short flows in progress for each policy. The
figures show that neither the persistent nor the transient flows suffer much by
using the sub-optimal policies considered. Figure 3 shows the additional capac-
ity required by the static policy if it is to achieve the same total utility as the
optimal policy; 3(a) corresponds to K = 25 and 3(b) to K = 5. We see that the
loss incurred by the sub-optimal policies is small, even for small values of K.

Resource Allocation with Persistent and Transient Flows 461

A ,\“\1 Optimal dynamic policy —~— A R Optimal dynamic policy ——
i Hss, Optimal static policy - ! Optimal static policy -+
& -2 S Weighted PS e o 18 T Weighted PS &+
> =]
3 -3] 2
€ €
2 o
g 4 % 25
] o)
Q Q
2 -5 2 -3
S s
z -6 z 35
=] 3

7 4

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normalized load offered by the Mice -------- > Normalized load offered by the Mice -------- >

Fig. 1. Average utility of the long flow under three different allocation strategies. C =
1000, Mean file size=100, Ue(z) = _TC, Nmaz = 100. K = 5 in the left panel and
K = 25 in the right panel. The arrival rate is varied along the z-axis

3 Bandwidth Sharing between Transient Flows

We now consider how capacity should be shared between file transfers when the
sizes of the files being transferred might vary over several orders of magnitude.
If the objective is to minimize the number of file transfers in progress (equiva-
lently, the mean holding cost or mean sojourn time) and the amount remaining
to be transferred is known, then a simple interchange argument shows that the
optimal policy is to give priority to the file with shortest remaining processing
time (SRPT). This policy has been proposed in the context of Web servers [12]
1]. However, it is not suited to our problem for a couple of reasons. First, it
needs a centralized controller to assign priority (or a distributed leader election
protocol, which imposes a high overhead). Second, while the concept is clear
for a single bottleneck link or resource, it does not generalize easily to multiple
bottlenecks. This motivates us to consider a generalization of the weighted PS
policy introduced in the previous section and show that it can be made to ap-
proximate SRPT. Though the analysis and simulations in this paper pertain to
a single link, the algorithms we propose generalize easily to networks.

We also note that, in networks, the stability region of priority policies such
as SRPT is not easily obtained; it is known that the “p < 1” condition that the
offered load on each link be smaller than its capacity is not sufficient for stability.
On the other hand, this condition does guarantee stability for the algorithms we
consider, as shown in [4]. That is another advantage of the proposed algorithms
in the network context.

We continue to work with the optimization problem posed in the previous
section. There, we considered how to split capacity between persistent and tran-
sient flows but did not consider further how the capacity allocated to transient
flows should be shared between them. If file sizes are exponentially distributed
and the allocation decision has to be made without knowing the sizes of all file
transfers in progress, then it does not matter how this allocation is made; any

462 S. Deb, A. Ganesh, and P. Key

14 18
Optimal dynamic policy Optimal dynamic polic!

12 Optimal static policy. - 16 Optimal static policy =+ 7
A Weighted PS A 14 Weighted P
i 10 ;
8 3 12
= =
= 8 = 10
53 3
o Qo 8
e ° g
2 4 3 6
o f=4
3 3 4

T S
0.1 0.2 .3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normalized load offered by the Mice -------- > Normalized load offered by the Mice -------- >

Fig. 2. Average number of short flow under three different allocation strategies. C' =
1000, Mean file size=100, Ue(z) = ’TC, Nmaz = 100. K = 5 in the left panel and
K =25 in the right panel. The arrival rate is varied along the z-axis

6 2.8
T 5.5 ? 2.7
> 5 o 2.6
S 45 5 2
2 2 2.4
H 4 5
S 3 S 2.3
£ 5 o
S 2 22
<] 3 S
= 2 2.1
S S
8 25 8 2
8 3
X 2 X 1.9
1.5 1.8
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0., 0.6 0.7
Normalized load offered by the Mice -------- > Normalized load offered by the Mice -------- >

Fig. 3. Capacity over-provisioning sufficient for optimal static allocation to outperform
optimal dynamic allocation. C' = 1000, f = 100, U.(z) = _TC, Nmaz = 100. K =5 in
the left panel and K = 25 in the right panel

allocation that doesn’t leave capacity idle achieves the same mean number in
system. If file sizes are known or if they aren’t exponentially distributed, then
this is no longer true; for example, if file sizes are heavy-tailed, the first-come-
first-served policy performs worse than processor-sharing. We noted above that,
if file sizes are known, then SRPT is optimal.

We now consider a weighted processor sharing policy where each transient
flow chooses its own weight based on its residual file size. Suppose the weights
are chosen according to

W; = Wmin + (wmaw - wmzn) eXp(_afir)) (8)

where w; and f; denote the weight assigned to the i flow and its residual
file size, and Wyin, Wmae and a are system parameters. The link capacity C' is
shared between flows in proportion to their weights, i.e., flow i receives capacity
w;C' /W, where W denotes the sum of w; over all flows in the system. A similar
policy has been proposed recently in [7].

Resource Allocation with Persistent and Transient Flows 463

We shall assume that W is constant over time. Such an assumption is plau-
sible in a large system operating in a steady-state regime. In particular, if the
system carries a large number of persistent flows, then the fluctuation in W is
only due to short flows entering and leaving the system, and can be neglected to
a first approximation. With this assumption, we can calculate the sojourn time
of a file transfer as a function of the initial file size. Letting f; denote the size of
file 7, we have

po=f. S = - "Wo Q

where w;(t) is specified in terms of f7(t) via (§). Here, ¢t denotes the time since
the arrival of flow ¢ into the system. Let T; = inf{t > 0: f/'(t) = 0} denote the
sojourn time of flow i. A straightforward calculation using (8) and (@) yields

o Wmin afi
TZ N acwmin log 1 + Wmax (e 1)

The (unweighted) processor sharing policy is recovered in the limit ¢ — 0, in
which case T; = W f; /wmaz. The sojourn time of a file is thus proportional to its
size, which is desirable in terms of fairness but has the disadvantage that small
files see poor performance.

In order to quantify the extent to which the proposed service discipline favors
short flows, we compute the ratio of sojourn times for two different files, of sizes
f1 and fo. With plain sharing, this ratio is T(f1)/T(f2) = f1/f2. Denoting the
ratio Wiin/Wmaz DY <, we obtain for the scheme proposed above that

T(f1) _log[1+a(er —1)]
T(f2) ~ log[l + o> —1)] -

(10)

We observe that if f; and f, are both large relative to 1/a and if, moreover, ae®/
is much bigger than 1 for i = 1,2, then T'(f1)/T(f2) = f1/f2. In other words, the
stretch, defined as the ratio of sojourn time to file size, is roughly constant for
large files, meaning that the scheme approximates processor sharing at large file
sizes. In particular, it avoids starvation of very large file transfers. On the other
hand, if f; and f5 are both small relative to 1/a, then again T'(f1)/T(f2) = f1/ fe.
Finally, suppose f; is large and fo is small relative to 1/a. Then, by (I0),

T(fl) ~ afl +10g0& ~ lé _ wmazﬁ
T(f2) aafs afy Wmin fo

In other words, the large file has a stretch approximately 1/a times greater,
or receives a bandwidth share approximately & = Wpin/Wmax as much as a
small file. Loosely speaking, files much smaller than 1/a are “mice”, files much
larger than 1/a are “elephants”, all mice are treated roughly equally, as are
all elephants, but mice are favored over elephants. Note that this is achieved
without explicitly splitting files into classes, but simply by having them choose
individual weights based on their residual file sizes.

464 S. Deb, A. Ganesh, and P. Key

The degree to which mice are favored is determined by the ratio 1/a =
Wmaz /Wmin. This can be seen clearly in Figure 4, where we have plotted the
stretch, T'(f)/ f, as a function of the normalized file size af over the range [0, 20].
We take W/(Cwpqq) = 1 for convenience. From top to bottom, the 3 curves on
the plot correspond to 1/a = 5,10 and 20 respectively.

The plots suggest that large files receive much less capacity on average than
do short files. It needs to be kept in mind that this is under the assumption
that W is constant, which is not valid if there are no persistent flows. A model
with no persistent flows and with an SRPT service discipline has been studied
in [1], where it is shown that the stretch of long flows remains bounded. The
intuition is that there will be epochs when the long flow is competing with very
few or no short flows, at which times it is not handicapped by its small weight. A
similar intuition applies to our model, and in fact the plots of stretch in Figure
4 correspond to “worst-case” values.

Simulation Results. We simulate a system with capacity C' = 1000 carrying
K = 25 persistent flows, each of which has weight 1 and has the utility function
U.(x) = —C/x. File transfers arrive at rate A, and file sizes have the Pareto
distribution, P(file-size > x) = 1/(1 + (x/f))?, * > 0, with mean file size
f =100. We take a = 1/f, Wpmar = 50 and wy,i, = 10. Performance measures
for processor sharing with the scheme described above, and processor sharing
with constant (file-size independent) weights w for three different weights, 10,
50 and 25, are shown in Figure Bl The left panel shows the utility received by
the persistent flows under each policy. The panel on the right shows the mean
number of transient flows in the system. The simulation results are based on
12,000 events (file arrivals) with a burn-in period of 1000 time units for the
system to reach stationarity, and, are averaged over multiple runs. Clearly, when
w = 50, the average stretch of the transient flows go down but at the cost
of a reduced utility for the persistent flow. When w = 10, the persistent flows
perform better but the average stretch of the short flows increases a lot. However,
by using the processor sharing described in this section when the weights of the
transient flows are varied in a dynamic manner, the transient flows can achieve a
small stretch without starving the persistent flow much. We have also shown the
plots for the case when the weights are kept constant at w = 25. The proposed
processor sharing scheme still does better.

4 Concluding Remarks

We considered the problem of optimal bandwidth allocation in a system consist-
ing of both persistent and transient flows. Treating all transient flows as identical,
we first described simple algorithms that achieve a nearly optimal partitioning
of the available bandwidth between the persistent and transient sources. We
then studied the problem of how to share the bandwidth allocated to transient
flows among file transfers of different sizes. We described a distributed scheme

Resource Allocation with Persistent and Transient Flows 465

i8

BooRR
vB o
T T T

Normalized stretch
5
T

15 20

10
Normalized file size

Fig. 4. Stretch vs. file size for Wmae/Wmin = 20(top), 10(middle) and 5(bottom)

A O A 0.005
i T e i 10<W<50 ———
. -200 = 0.0045 T, S—-—
z 2 =50 o
o h [} 25
w L W=, ..
T 400 i 0,004 fro WE B by
o =S F—
k] 8 0.0035
® -600 0<w<5 g
o welo oo g o0.003
S 800 WS 5
<) = < 0.0025
= S
= - [
5 o & o0.002
i @ g
g -1200 g 0.0015
o]
> >
< -1400 < 0.001
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normalized load -----; > Normalized load -----; >

Fig. 5. Plots showing comparison of of average utility of a persistent flow (left), and,
average stretch of short flows (right) with four schemes: in one the weights of the short
flows are varied between 10 (wmin) and 50 (Wmae) according to the scheme discussed in
this section, and the other three are with fixed weights (w) as 10, 50 and 25 respectively.
The different parameters are, C = 1000, f = 100, Uc(z) = _ZC,K = 25 (the number
of persistent flows). The arrival rate \ is varied along the z-axis

that can be viewed as approximating SRPT or, equivalently, as discriminating
in favor of “mice” over “elephants”.

The analysis in this paper pertains to idealized systems in which bandwidth
is shared perfectly between users in proportion to their weights. In fact, such an
allocation can be approximately achieved by decentralized adaptive mechanisms
described in [T4J9/T6] etc., which can be implemented by end systems with mini-
mal support from the network. Second, the optimal choice of parameters for the
policies described in Section 2 requires knowledge of system parameters, which
is often unrealistic. We believe that comparable performance can be achieved by
adaptive policies that tune their parameters based on measurements, but this
remains a topic for future research.

The policies studied here for a single link can be extended easily to networks.
The extensions have the desirable property that the network is stable under
the natural condition that the offered load at each resource is smaller than its
capacity. This is in contrast to priority schemes which can be unstable even

466 S. Deb, A. Ganesh, and P. Key

when this condition is satisfied. A detailed investigation of the performance of
the algorithms described here in a network context is a subject for future work.

References

1. N. Bansal and M. Harchol-Balter, “Analysis of SRPT scheduling: investigating
unfairness”, Proc. ACM Sigmetrics, 2001.

2. C. Barakat and E. Altman, “Performance of Short TCP Transfers”, Proc. Net-
working, Paris, 2000.

3. Y. Bhumralkar, J. Lung and P. Varaiya, “Network Adaptive TCP Slow Start”,
2000. http://www.path.berkeley.edu/~varaiya/papers_ps.dir/jeng.pdf

4. T. Bonald and L. Massoulié “Impact of fairness on Internet performance”, Proc.
ACM Sigmetrics, 2001.

5. D. D. Clark and W. Fang, “Explicit Allocation of Best-Effort Packet Delivery
Service”, IEEE/ACM Trans. Networking, 6(4): 362-373, 1998.

6. M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: Evi-
dence and possible causes”, IEEE/ACM Trans. Networking, 5(6): 835-846, 1997.

7. G. de Veciana, “Enhancing Both Network and User Performance Metrics for Net-
works Supporting Best Effort Traffic”, Thirty-Ninth Annual Allerton Conference
on Communication, Control, and Computing, Allerton House, Illinois, 2001.

8. S. Deb, A. Ganesh and P. Key, “Resource allocation with persistent and transient
flows”, Microsoft Research Technical Report, 2001.
http://research.microsoft.com/scripts/pubs/view.asp? TR_ID=MSR-TR-2001-
114

9. R. J. Gibbens and F. P. Kelly, “Resource pricing and the evolution of congestion
control”, Automatica, 35: 1969-1985, 1999.

10. L. Guo and I. Matta, “The war between mice and elephants”, Technical Report,
Boston University, BU-CS-2001-0005, 2001.

11. T. Hammann and J. Walrand “A new fair algorithm for ECN-capable TCP”, Proc.
Infocom, 2000.

12. M. Harchol-Balter, M. Crovella and S. Park, “The case for SRPT scheduling in
Web servers”, Technical Report, MIT-LCS-TR-767, 1998.

13. F. P. Kelly, Reversibility and Stochastic Networks, John Wiley and Sons, New York,
1979.

14. F. P. Kelly, A. Maulloo and D. Tan, “Rate control in communication networks:
shadow prices, proportional fairness and stability”, J. Oper. Res. Soc., 49: 237-252,
1998.

15. P. Key and L. Massoulié “User policies in a network implementing congestion
pricing”, Workshop on Internet Service Quality Economics (ISQE), 1999.

16. R. J. La and V. Anantharam, “Charge-sensitive TCP and rate control in the In-
ternet”, Proc. Infocom, 2000.

17. S. H. Low and D.E. Lapsley, “Optimization flow control — I: Basic algorithm and
convergence”, IEEE/ACM Transactions on Networking, 7: 861-875, 1999.

18. J. Mo and J. Walrand, “Fair end-to-end window-based congestion control”,
IEEE/ACM Trans. Networking, 8(5): 556-567, 2000.

19. S. Yilmaz and I. Matta, “On class based isolation of UDP, short lived and long lived
flows”, Proc. Ninth Intl. Symp. Modeling, Analysis And Simulation of Computer
And Telecommunication Systems, Cincinnati, 2001.

	Introduction
	Bandwidth Sharing between Persistent and Transient Flows
	Bandwidth Sharing between Transient Flows
	Concluding Remarks

