
Evaluating the Performance of a Network
Management Application Based on Mobile

Agents

Marcelo G. Rubinstein1, Otto Carlos Muniz Bandeira Duarte2, and
Guy Pujolle3

1 Depto. de Eng. Eletrônica e Telecom., Universidade Estadual do Rio de Janeiro,
FEN, Rua São Francisco Xavier, 524, 20550-013, Rio de Janeiro RJ, Brazil,

2 Grupo de Teleinformática e Automação, Universidade Federal do Rio de Janeiro,
COPPE/EE, CP 68504, 21945-970, Rio de Janeiro RJ, Brazil,
3 Laboratoire LIP6-CNRS, Université Pierre et Marie Curie,

4, Place Jussieu, 75252, Paris Cedex 05, France

Abstract. This paper analyzes mobile agent performance in network
management, comparing it with the client-server model used by the
SNMP (Simple Network Management Protocol). Response time results
show that the mobile agent performs better than the SNMP when the
number of managed elements ranges between two limits determined
by the number of messages that pass through a backbone and by the
mobile agent size that grows with the variables collected on the network
elements.

Keywords: Mobile agents, network management, and scalability

1 Introduction

Most network management systems use SNMP (Simple Network Management
Protocol) [1] and CMIP (Common Management Information Protocol) [2] proto-
cols, which are based on a centralized paradigm. These protocols use the client-
server model, on which the management station acts as a client that provides
a user interface to the network manager and interacts with agents, which are
servers that manage remote access to local information stored in a Management
Information Base (MIB).
Performance management is one of the management functional areas identi-

fied in OSI Systems Management and addresses the availability of management
information, in order to be able to determine the network load [3]. This kind of
management needs access to a large quantity of dynamic network information,
which is collected by periodic polling.
The operations available to the management station for obtaining access to

the MIB are very low-level. This fine grained client-server interaction, called
micro-management, and the periodic polling generate an intense traffic that
overloads the management station [4], resulting in scalability problems. Network

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 515–526, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



516 M.G. Rubinstein, O.C.M.B. Duarte, and G. Pujolle

management can be distributed and scaled by the use of mobile agents, which
are programs that help users to perform tasks on the network, acting on behalf
of these users. These agents move to the place where data are stored and select
information the user wants; saving bandwidth, time, and money.
This paper analyzes the performance of mobile agents in network manage-

ment, which is also being investigated by several researchers. Baldi et al. [4]
evaluate the tradeoffs of mobile code design paradigms in network management
applications by developing a quantitative model that provides the bandwidth
used by traditional and mobile code design of management functionalities. Boho-
ris et al. [3] present a performance comparison between mobile agents, CORBA,
and Java-RMI on the management of an ATM switch running an SNMP agent.
Response time and bandwidth utilization results are presented for the transfer
of an array of objects (fictitious data). Gavalas et al. present experimental im-
plementation results for the transfer of an aggregation of multiple variables on
a local network of a few nodes. They also describe applications that use mobile
agents to acquire atomic snapshots of SNMP tables and to get objects, from
SNMP tables, that meet specific criteria [5]. Sahai and Morin [6] perform mea-
surements of bandwidth utilization of mobile agent and client-server applications
on an Ethernet LAN of a few nodes. None of these papers concerns the prob-
lem of scalability of network management based on mobile agents on a complex
network with a high number of nodes and similar in shape to the Internet. In
this paper, we compare the scalability of the network management based on
mobile agents against traditional SNMP through the analysis of simulation and
implementation results. Two prototypes of an application that gathers MIB-II
variables, one based on mobile agents and the other only based on the SNMP,
have been created and tested on a LAN. By acquiring parameters related to the
network management and to the agent infrastructure, new results are obtained
on large topologies similar in shape to the Internet.
This paper is organized as follows. Section 2 describes main network man-

agement systems used nowadays. Section 3 presents the implemented prototypes
and measurement results. Section 4 reports simulation results. At last, conclud-
ing remarks are presented in Section 5.

2 Network Management Systems

In the SNMP, operations available to the management station for accessing the
MIB are very low-level. This interaction does not scale well because of the genera-
tion of intense traffic and computational overload on the management station [4].
Some steps towards decentralization have already been taken by IETF and

ISO organizations. In event notification, SNMP agents notify the management
station upon the occurrence of a few significant events. These agents use traps,
i.e., messages sent without an explicit request from the management station, to
decrease the intensive use of polling. ISO uses more complex agents that have
higher processing capacity. In both the approaches, the agent is only responsible
for the notification of an event.



Evaluating the Performance of a Network Management Application 517

A more decentralized approach is adopted in SNMPv2 [1] (SNMP version 2),
on which there are multiple top-level management stations, called management
servers. Each such server is responsible for managing agents, but it can dele-
gate responsibility to an intermediate manager. This manager, also called proxy
agent, plays the role of a manager in order to monitor and control the agents
under its responsibility and also works as an agent to provide information and to
accept control from a higher-level management server. Version 3 of the SNMP,
SNMPv3 [1], incorporates a new security scheme to be used with SNMPv2 (pre-
ferred) or SNMPv1. SNMPv3 is not a stand-alone replacement for SNMPv1 or
SNMPv2.
The RMON (Remote MONitoring) [7] uses network monitoring devices called

monitors or probes to perform proactive LAN monitoring on local or remote
segments. These probes provide information about links, connections among
stations, traffic patterns, and status of network nodes. They also detect failures,
misbehaviors, and identify complex events even when not in contact with the
management station.
These proposals seem to reduce the traffic around the management station,

but as the computational power of the network nodes is increasing, it is possible
to delegate more complex management functions to nodes. Moreover, in order to
satisfy the diverse needs of today’s network, new network management systems
that analyze data, take decisions, and take proactive measures to maintain the
Quality of Service (QoS) of the network must be developed. Mobile agents seem
to be a good alternative to satisfy these needs.
Main advantages that may justify mobile agent utilization in network man-

agement are: reduced cost by using a semantic compression, which filters and
selects only relevant information; asynchronous processing that allows the de-
coupling from the home node; flexibility that permits the substitution of the
behavior for management agents in real-time; and autonomy, since the agent
can take decisions, performing a reactive management based on task delegation.
Since SNMPv2 is not as spread as SNMPv1 and network management based

on SNMPv1 does not scale when size or complexity of the network increases,
mobile agents can be used to increase network management scalability.

3 Implementation of a Management Application

We compare two different solutions for gathering MIB-II [8] variables on managed
elements: a mobile agent-based one and one only based on the SNMP.
The Mole infrastructure [9] is used in the mobile agent implementation. This

system provides the functionality for the agents to move, to communicate with
each other, and to interact with the underlying computer system. Two different
kinds of agents are provided: system agents and user agents. System agents
are usually interface components to resources outside agent systems. They have
more rights than non-system agents (e.g., only system agents can read or write
to a file), but they are not able to migrate. User agents are agents that have a
“foreigner status” at a location, which means that they are not allowed to do



518 M.G. Rubinstein, O.C.M.B. Duarte, and G. Pujolle

something outside the agent system as long as they can not convince a system
agent to give them access to outside resources [9].
Mole uses TCP to transfer mobile agents, which are implemented in Java.

A weak migration scheme is provided, where only the state related to data,
which contains global and instantiated variables, is transfered. As a consequence,
the programmer is responsible for encoding the agent’s execution state, which
includes local variables, parameters, and execution threads, in program variables.
This migration scheme is implemented by using the object serialization of Java.
After the calling of the migrateTo()-method by an agent thread, all threads
belonging to the agent are suspended. The agent is serialized by creating a
system-independent representation. This serialized version is sent to the target
that reinstantiates the agent. A new thread is started and as soon as this thread
assumes control of the agent, a message is sent to the source that finishes all
threads belonging to the agent and removes it from the system.
Both the implemented prototypes, one with mobile agents and the other with-

out, use the SNMP protocol to gather MIB-II variables. The AdventNet SNMP
library [10] and the snmpd from package ucd-snmp are used on the prototypes.
The AdventNet SNMP package contains APIs to facilitate the implementation of
solutions and products for network management. Version 2.2 of the AdventNet
SNMPv1 has been used. The daemon snmpd, which is included in the Linux Red
Hat, is an SNMP agent that responds to SNMP request packets. The package
versions used on this experiment have been the 3.5.3 (for machines running the
Red Hat 5.2) and the 4.0.1 (for the Red Hat 6.x).

3.1 The Two Implemented Prototypes

The mobile agent implementation (Figure 1) consists of one mobile agent, which
migrates to all network elements to be managed, one SNMP agent, which accesses
the MIB-II variables, and one translator agent, which converts the mobile agent
request into an SNMP request. The mobile agent migrates to a network element
(arc 1 of Figure 1) and communicates by Remote Procedure Call (RPC) with
the translator agent (arc 2). This translator agent sends a request (GetRequest
PDU of SNMP) to the SNMP agent (arc 3) and obtains the response (arc 4) that
is passed to the mobile agent (arc 5). Then, the mobile agent goes to the next
element (arc 6) and restarts its execution. After finishing its task, which consists
of visiting all network elements to be managed, the mobile agent returns to the
management station (arc n).
In the implementation that is only based on the SNMP, we have used the

traditional model of this protocol. The manager sends an SNMP packet to an
SNMP agent that responds to this manager. The manager sends requests to all
elements to be managed, one after the other, i.e., a new request is started after
receiving the response from the previous one, until the last network element
receives a request and sends the response to the manager. This manager has
been implemented in Java directly over the Java Virtual Machine.



Evaluating the Performance of a Network Management Application 519

(1)

(6) (11)

(n)

MA - Mobile Agent
MA

Host A

Host B

MA

Host C

MA MA

Host X

(2)

(5)

(3)

(4)

MA
Agent

Translator
Agent
SNMP

Host B

Fig. 1. Network management by using a mobile agent.

3.2 Experimental Study

We perform an experimental study in order to evaluate the scalability of the two
implementations. The topology used on this experiment consists of one man-
agement station (host A) and two managed network elements (hosts B and C)
interconnected through a 10Mbps Ethernet LAN. Host A is a Pentium MMX
233Mhz, with 128Mbytes of memory and running Linux Red Hat 6.2. HostsB
and C are Pentiuns II 350MHz, respectively with 64Mbytes and 128Mbytes of
memory and running Linux Red Hat versions 6.1 and 5.2.
In order to evaluate the performance of the two prototypes for a great number

of managed elements, we alternately repeat the two elementsB and C, e.g., if we
want 5 elements to be managed, we use an itinerary {B, C, B, C, B, and A}.
The considered performance parameter is response time in retrieving the

MIB-II [8] variable ifInErrors from elements to be managed. This variable de-
notes the number of received packets discarded because of errors.
The JDK (Java Development Kit) 1.1.7 version 3 has been used. All mea-

surements have been performed early in the morning or at night in order to
limit the variations of network performance, which would influence the response
time results. Both the implementations have been tested in the same conditions,
using the same itinerary. We have made all the tests with the mobile agent
platforms running uninterruptedly. The number of managed network elements



520 M.G. Rubinstein, O.C.M.B. Duarte, and G. Pujolle

has been varied from 1 to 250. For each measured parameter, 10 samples have
been observed and we have calculated a 99% confidence interval for mean. These
intervals are represented in the figures by vertical bars.
The mobile agent carries with itself the name of the variable to be collected,

the itinerary, and the already gotten responses. The SNMP sends a GetRequest
PDU and receives a GetResponse PDU.
The effect of the number of managed elements in response time has been

analyzed. In all figures, we present the sample mean.
Response time for the SNMP grows proportionally with the number of man-

aged elements, since the time to manage a network element is approximately the
same for all network elements (Figure 2). For the mobile agent, response time
increases faster when the number of managed elements grows, due to the mobile
agent size that grows with the collected variables on each network element. In
the topology used on this experiment, the SNMP performs much better than the
mobile agent.

0

5

10

15

20

25

30

35

40

1 50 100 150 200 250

R
es

po
ns

e 
T

im
e 

(s
)

Number of Managed Elements

MA
SNMP

Fig. 2. Response time per number of managed elements.

Figure 3 presents time to access the MIBs and for the RPCs related to the
communication between the mobile agent and translator agents. In this exper-
iment and for the SNMP, for 250 managed elements, 99.6% of the total time
is spent on access to the MIBs. For the mobile agent, the access to the MIBs
and the RPCs take 52.8% of the total time for 250 managed elements. For the
SNMP, the access to the MIBs grows proportionally with the number of man-
aged elements and spends 65ms per element. This MIBs access added to the
RPCs related to the communication between the mobile agent and translator
agents also grow linearly and spend approximately 78ms per element.
The mobile agent remaining time is calculated by the difference between

the total time for the mobile agent and the time for accessing the MIBs and



Evaluating the Performance of a Network Management Application 521

0

2

4

6

8

10

12

14

16

18

20

1 50 100 150 200 250250

T
im

e 
(s

)

Number of Managed Elements

MA (MIB + RPC)
SNMP (MIB)

Fig. 3. Time to access the MIBs and for the RPCs.

for the RPCs (Figure 4). Since, for this experiment, agent transmission time is
very small comparing to other times that constitute the total response time,
the remaining time corresponds to infrastructure related times, e.g., serializa-
tion/deserialization, threads creation, and internal messages transmission.

0

2

4

6

8

10

12

14

16

18

20

1 50 100 150 200 250

T
im

e 
(s

)

Number of Managed Elements

MA remaining time
Approximation of the MA remaining time

Fig. 4. Mobile agent remaining time.

The mobile agent remaining time grows exponentially with the number of
managed elements, so the curve of the Figure 4 can be approximated to:

y = ax, where a = 1.01176 . (1)

This approximation has been chosen to allow, in a simple way, its use in simu-
lations assessed for more general topologies (Section 4).



522 M.G. Rubinstein, O.C.M.B. Duarte, and G. Pujolle

4 Performance Analysis by Simulation

The applicability of mobile agents in carrying out network management tasks is
also assessed by simulation.
The Network Simulator (NS) [11] is used in these simulations. This discrete-

event simulator provides several implemented protocols and mechanisms to sim-
ulate computer networks with node and link abstractions. In these simulations,
we have used the functionalities of Ethernet, topologies similar in shape to the
Internet, and UDP and TCP protocols. Some UDP and TCP modules of the NS
have had to be modified in order to allow the transmission of mobile agents.
The NS works with packets sent through a network and usually does not

take into account processing time of the application layer on each node. For this
reason, some parameters related to network management have been added to
the simulation model. These parameters depend on the agent infrastructure, on
the operational system, and on computer load, but their use turns simulation
results more reliable to a real implementation. Table 1 contains the parameters
used in the simulations.

Table 1. Parameters used in the simulations

Parameter Value
Initial size of the agent 1500 bytes
Request size for ifInErrors 42 bytes
Response size for ifInErrors 51 bytes
MIB access time per node for the agent 78ms
MIB access time per node for the SNMP 65ms
Related to the remaining time for the agent 1.01176

The simulation model assumes that links and nodes have no load and that
links are error-free. The Maximum Segmentation Size (MSS) used in the simula-
tions is 1500 bytes, therefore, there is no fragmentation of SNMP messages since
they are small. For the mobile agent, since the initial size is 1500 bytes, after vis-
iting the first element, its size will be higher than the MSS, and so the agent will
be fragmented and sent in different packets, damaging the performance. Every
request of a variable is sent on a different message. In all simulations, the mobile
agent follows a predetermined itinerary. The mobile agent uses the TCP-Reno
as a transport protocol, because of its great use in the Internet, and the UDP
protocol is used in the SNMP simulations.
Two kinds of topologies have been used in the simulations. The first type

consists of elements in a 10Mbps Ethernet LAN, with 250 nodes and latency
of 10µs. The second kind is similar in shape to the Internet. This topology is
called transit-stub, because each routing domain in the Internet can be classified
as either a stub domain or a transit domain [12]. A domain is a stub domain if



Evaluating the Performance of a Network Management Application 523

the path connecting any two nodes u and v goes through that domain only if
either u or v is in that domain. Transit domains do not have this restriction.
The purpose of transit domains is to interconnect stub domains efficiently. A
transit domain comprises a set of backbone nodes, which are typically fairly well
connected to each other. In a transit domain, each backbone node also connects
to a number of stub domains, via gateway nodes in the stubs.
These transit-stub topologies can be used in the network management of a

matrix-branch organization, on which a matrix wants to manage their branches
spread geographically. The management strategy used in this experiment for
transit-stub topologies considers that the management station belongs to a node
of a stub domain and managed network elements are located in other stub do-
mains (Figure 5). In the matrix-branch case, the management station from the
matrix manages the branch routers and each branch is represented by a stub
and contains some routers.

M- Management station
E - managed network Element

M

E

E
E E

E

E
E

E E

Stubs

Stubs

Transit

Fig. 5. Network management on a transit-stub topology.

The considered performance parameter is response time in retrieving the
MIB-II variable ifInErrors.
We have used the LAN topology in order to compare the simulation model

with the implementation results of Section 3.2.
Figure 6 presents response time for the mobile agent and for the SNMP, in

implementation and simulation studies. We can say that the simulated models
reproduce the behavior of the implementations. There is a little difference in the
response time for the mobile agent due to the approximation of the remaining
time that has been used in the simulations (Section 3.2).



524 M.G. Rubinstein, O.C.M.B. Duarte, and G. Pujolle

0

5

10

15

20

25

30

35

40

1 50 100 150 200 250

R
es

po
ns

e 
T

im
e 

(s
)

Number of Managed Elements

SNMP-simul.

MA−implem.

SNMP−implem.

MA−simul.

SNMP (simulation)
MA (simulation)

SNMP (implementation)
MA (implementation)

Fig. 6. Response time for implementation and simulation studies.

Mobile agent performance is also evaluated in a situation closer to the one
found on the Internet, on which latencies are much greater than on LANs. Three
different transit-stub topologies created by the topology generator GT-ITM [12]
are used. The topologies have 272 nodes and links of these topologies have a
2Mbps bandwidth and latency of a few milliseconds. The management station
controls groups of 16 network elements, which is the number of nodes of a stub
domain. Management is performed in a predetermined way: all elements of a
stub are accessed, after that, the next stub is managed, until all the 16 stubs
are accessed. If not specified, figures present mean response time for the three
topologies.

Figure 7 shows that the mobile agent’s behavior does not change with the
topology, but for the SNMP, there is a little difference in response time for the
three topologies. This variation is due to the great number of SNMP packets that
traverse the backbone (transit) links and to the configuration of the backbone
nodes that changes with the topology. Figure 7 also presents mean response
time. For a small number of managed elements, the SNMP performs better
than the mobile agent, due to the fact that the SNMP messages are smaller
than the initial size of the mobile agent. As the number of managed elements
increases, response time for the SNMP grows proportionally, since the time to
manage a stub is approximately the same for all stubs. For the mobile agent,
response time increases faster when the number of managed elements grows, due
to the incremental size of the mobile agent. By extrapolating the analysis, we
can conclude that the mobile agent performs better than the SNMP when the
number of managed network elements ranges between two limits, an inferior and
a superior one, respectively determined by the number of messages that pass
through a backbone and the size of mobile agent that grows with the variables
collected on network elements.



Evaluating the Performance of a Network Management Application 525

0

20

40

60

80

100

120

140

1 64 128 192 240

R
es

po
ns

e 
T

im
e 

(s
)

Number of Managed Elements

SNMP on the 3 topologies
MA on the 3 topologies

Mean time for the SNMP
Mean time for the MA

Fig. 7. Response time for the mobile agent and for the SNMP.

5 Conclusion

This work has analyzed the scalability of mobile agents in network management.
The performance of mobile agents has been compared with the SNMP (Simple
Network Management Protocol) one.
We have compared two prototype implementations for gathering MIB-II

(Management Information Base - II) variables on managed elements: a mobile
agent-based one and the pure SNMP. Results show that the mobile agents re-
quire a higher processing capacity and that the SNMP uses a larger number
of messages related to the management station when the number of managed
elements exceeds a value related to the overhead of several retrievals of GetRe-
quest PDUs. The mobile agent infrastructure turns the execution of Java code
slower, mainly because of serialization/deserialization, threads creation, and in-
ternal messages transmission. The topology used on the measurements is adverse
to the mobile agent, since the great availability of bandwidth on the Ethernet
turns message transmission times negligible comparing with processing times.
Therefore, in this topology, the SNMP performs much better than the mobile
agent.
Simulations of the two implementations have also been performed in the

NS Network Simulator, in order to obtain results on large topologies similar
in shape to the Internet. Response time results show that the mobile agent
performs better than the SNMP when the number of managed elements ranges
between two limits, an inferior and a superior one, respectively determined by
the number of messages that pass through a backbone and by the mobile agent
size that grows with the variables collected on network elements.
In a general way, we conclude that the mobile agent paradigm significantly

improves the network management performance when subnetworks must be man-



526 M.G. Rubinstein, O.C.M.B. Duarte, and G. Pujolle

aged remotely; mainly if the links between the management station and the
elements to be managed have a small bandwidth and a large latency.

Acknowledgements. This work has been supported by UFRJ, FUJB, CNPq,
CAPES, COFECUB, and REENGE. We would like to thank FAPERJ for the
grant to Mr. Rubinstein during the execution of this work on the Departamento
de Engenharia Eletrônica e de Computação da UFRJ.

References

1. Stallings, W.: SNMP and SNMPv2: The infrastructure for network management.
IEEE Communications Magazine 36 (1998) 37–43

2. Yemini, Y.: The OSI network management model. IEEE Communications Maga-
zine 31 (1993) 20–29

3. Bohoris, C., Pavlou, G., Cruickshank, H.: Using mobile agents for network perfor-
mance management. In: IEEE/IFIP Network Operations and Management Sym-
posium (NOMS’00), Honolulu, Hawaii (2000) 637–652

4. Baldi, M., Picco, G.P.: Evaluating the tradeoffs of mobile code design paradigms in
network management applications. In: 20th International Conference on Software
Engineering (ICSE’98), Kyoto, Japan (1998) 146–155

5. Gavalas, D., Greenwood, D., Ghanbari, M., O’Mahony, M.: Mobile software agents
for decentralised network and systems management. Microprocessors and Microsys-
tems 25 (2001) 101–109

6. Sahai, A., Morin, C.: Towards distributed and dynamic network management. In:
IEEE/IFIP Network Operations and Management Symposium (NOMS’98), New
Orleans, USA (1998)

7. Waldbusser, S.: Remote network monitoring management information base. RFC
1757 (1995)

8. McCloghrie, K., Rose, M.: Management information base for network management
of TCP/IP-based internets: MIB-II. RFC 1213 (1991)

9. Baumann, J., Hohl, F., Straber, M., Rothermel, K.: Mole - concepts of a mobile
agent system. World Wide Web 1 (1998) 123–137

10. Advent Network Management Inc.: AdventNet SNMP release 2.0.
http://www.adventnet.com (1998)

11. Fall, K., Varadhan, K.: NS Notes and Documentation. Technical report, The VINT
Project (1999)

12. Zegura, E.W., Calvert, K.L., Donahoo, M.J.: A quantitative comparison of graph-
based models for internet topology. IEEE/ACM Transactions on Networking 5
(1997) 770–783


	Introduction
	Network Management Systems
	Implementation of a Management Application
	The Two Implemented Prototypes
	Experimental Study

	Performance Analysis by Simulation
	Conclusion

