Modeling a Mixed TCP Vegas and TCP Reno
Scenario

Andrea De Vendictis and Andrea Baiocchi

INFOCOM Dept. - University of Roma La Sapienza
{devendictis,baiocchi}@infocom.uniromal.it

Abstract. In this paper we describe and validate the analytic model
of a mixed TCP Reno and TCP Vegas network scenario. There is ex-
perimental evidence that TCP Vegas overcomes the widespread TCP
version, called TCP Reno, in a number of network environments. The
incompatibility between TCP Vegas and TCP Reno in heterogeneous
network scenarios has been also verified by means of several simulations.
The model presented in this work allows to quantitatively evaluate this
incompatibility, by computing the average throughput of a TCP Vegas
source in presence of a concurrent TCP Reno source. This model can
help us to better understand the reasons of the vulnerability of TCP
Vegas in competing with TCP Reno sources.

1 Introduction

In the last years TCP congestion control has received great interest from the
networking research community. A number of analytic and experimental stud-
ies have pointed out the shortcomings of TCP and they conceived changes able
to cope with some TCP limitations. The recent standardized modifications are
a result of these efforts (for an updated report see [1]). However, most of these
modifications concerned improvements in avoiding unnecessary timeouts and fast
retransmit caused by packet reordering, isolated packet loss and multiple packet
loss due to temporary network congestion. Hence, the changes are intended in
order to optimize the mechanisms that regulate the response to loss detection.
Conversely, the mechanisms that avoid protracted network congestion (slow start
and congestion avoidance) and define how TCP sources share the available band-
width among them are quite unchanged (at least as standards).

TCP Vegas, proposed in [2], represents a valid alternative to the congestion
control performed by the currently standard and most widespread version of
TCP, called TCP Reno. Although it introduces new techniques into all the main
mechanisms of TCP, it is fully compatible with all the standard versions of TCP,
because the changes only concern the TCP sending side.

TCP Reno congestion control reacts to the network congestion only after loss
detection, thus when the network congestion has already arisen. This avoids con-
gestion collapse, since the transmission rate is reduced as soon as a packet loss
occurs; however this generates an intrinsic instability of the congestion control,
whose evidence is the permanent oscillation of the source transmission rate.

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 612-[623] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Modeling a Mixed TCP Vegas and TCP Reno Scenario 613

The key idea of TCP Vegas is to prevent the packet loss (and the network
congestion) by adapting the transmission rate to the value of the round trip
delay experienced by the transmitted packets.

Several simulation works have verified that TCP Vegas is better than TCP
Reno in terms of throughput (between 37% and 71% better than Reno), fair-
ness, stability, packet loss probability, end-to-end delay and ability in avoiding
network congestion in a very large number of network environments [2][3][4][5].

However, some works [3][4][6] also pointed out by means of simulations and
experimental trials the extreme vulnerability of TCP Vegas in competing with
TCP Reno sources to take the available bandwidth. The problem is that TCP
Reno is intrinsically much more aggressive than TCP Vegas, because it reduces
its transmission rate only after packet loss detection.

This represents the main reason why TCP Vegas cannot be widely proposed
to the users as a reliable transport protocol.

Given that TCP Vegas basic approach is a sound one, there is a need for
a thorough understanding of the fine tuning of its parameters and possibly for
some modifications of the basic congestion control algorithm. To this end it is
useful to have an accurate analytic tool for the evaluation of TCP Vegas in a
mixed TCP environment.

This paper describes an analytic model to evaluate the average throughput
of a TCP Vegas source interacting with a TCP Reno source in a mixed scenario.

Since the works [3][7] already modeled the competition of TCP Vegas and
TCP Reno in a network environment with small bandwidth-delay product (less
than the bottleneck link buffer size), we will only analyze the case of a network
with large bandwidth-delay product (larger than the buffer size). This is even
more interesting as the small delay-bandwidth product case, since optical net-
working and high speed processing devices promise very high network capacity
also in the wide area network environment.

The aim is to give a quantitative measure of the vulnerability of TCP Vegas
in presence of a source implementing TCP Reno and to gain insight as to what
might be acted upon to reverse this outcome.

This study can represent a starting point to find mechanisms that make TCP
Vegas competitive in a heterogeneous network scenario: given the distributed na-
ture of the Internet, this is a key element to stimulate the use of TCP Vegas as
a reliable transport protocol and to improve the TCP congestion control.

The rest of the paper is structured as follows. In Section Zlthe TCP Reno and
TCP Vegas congestion control is described. In Section [3] we present the analytic
model. In Section Hl the validation of the model is shown. Finally, in Section Bl
the conclusions and hints to further work.

2 TCP Vegas and TCP Reno Congestion Control

TCP Reno and TCP Vegas adopt an end-to-end closed-loop adaptive window
congestion control. It is based on five fundamental mechanisms: slow start, con-
gestion avoidance, retransmission time-out, fast retransmit and fast recovery.

TCP Reno and TCP Vegas use slow start at the beginning of the connection
and whenever a packet loss is detected via timeout.

614 A. De Vendictis and A. Baiocchi

When the congestion window reaches a threshold value (called slow start
threshold), TCP Reno and TCP Vegas enter congestion avoidance.

The maximum limit of the congestion window is advertised by the receiver
to the sender during the connection.

Both the protocols can detect packet losses by means of two mechanisms:
when the timeout (set when the packet is sent) expires, they reduce their con-
gestion window to one packet sizd], then they start again in slow start?. Other-
wise, if three duplicated acknowledgments arrive back to the sender before the
timeout expiration, the protocols perform fast retransmit and fast recovery.

TCP Vegas differs from TCP Reno by the way slow start, congestion avoid-
ance and fast retransmit are implemented.

During slow start, TCP Reno congestion window Wg increases by one packet
for every incoming acknowledgment. So the congestion window has an exponen-
tial growth. During congestion avoidance TCP Reno opens its congestion window
Wr linearly, because for each incoming acknowledgment it updates the conges-
tion window by incrementing it by 1/Wg.

In fast recovery TCP Reno halves the current congestion window and goes
in congestion avoidance, without performing slow start.

The TCP Vegas congestion control is based on two parameters representing
respectively the expected and the actual rate, calculated as follows:

Fli .
Wy Actual — lightSize

E SR A A
wpected = B BT RTT

where Wy is the value of the current congestion window, BaseRTT is the min-
imum round trip time experienced by the connection, FlightSize is the number
of packets currently not acknowledged yet, RT'T is the round trip time experi-
enced by the considered packet.

For each incoming acknowledgment, TCP Vegas computes the normalized
difference Dif f between Expected and Actual:

Diff = (Expected — Actual) - BaseRTT (1)

During congestion avoidance, TCP Vegas compares Di f f with two thresholds
« and ﬂa TCP Vegas updates its congestion window Wy as follows:

Wy + g if Diffp (2)
Wy, otherwise

The slow start mechanism is based on the same concepts of congestion avoid-
ance: TCP Vegas computes Dif f and compares it with a unique threshold ﬂ;
as long as Dif f is less than v or Wy, is less than the slow start threshold, TCP

! From now on, we measure the window size in number of packets

2 Actually, the initial slow start congestion window value depends on the implemen-
tation for both TCP Reno and TCP Vegas.

3 Suggested values are a = 1 and § = 3

1 Suggested value is v = 1.

Modeling a Mixed TCP Vegas and TCP Reno Scenario 615
1O Rene

: |
1 ldsds
..\.- / :I:I:[O .

TP Weuas

Fig.1. Network model.

Vegas increases its congestion window by one packet every other round trip de-
lay. Then, TCP Vegas performs congestion avoidance.

After fast retransmit, TCP Vegas reduces the window threshold to the half
of the current congestion window and its window by a factor 3/4.

We finally observe that the retransmission mechanisms of TCP Vegas are
enhanced with respect to TCP Reno because of the use of a fine-grained clock.

3 The Model

We are interested in analyzing the behavior of the TCP Reno and TCP Vegas
mechanisms under the same conditions and with interacting sources exploiting
the two protocols.

Therefore, we consider a network scenario with two isolated TCP sources
sharing a common route. One source implements the TCP Reno variant,
whereas the other the TCP Vegas variant. We assume the sources always have
data to send and the transmitted packets have all the same length L.

Along the forward path there is a single bottleneck link with capacity u
packets/sec and a FIFO buffer of size B packets. The others links (including
those crossed by the TCP acknowledgments) have a capacity such that they do
not limit the source throughput.

The sources experience the same propagation delay T, because they have
the same route and destination. For propagation delay T" we mean here the time
elapsing since the transmission of the packet from the source and the arrival of
the corresponding acknowledgment, with the exclusion of the waiting time in
the bottleneck buffer. The figure [[l depicts the reference network scenario.

We assume the following hypotheses:

1. The receiver does not pose any limitation to the value of the sender
congestion window.

2. The bandwidth-delay product is larger than the buffer size (1T > B).

3. The sources detect a packet loss via duplicate acknowledgment by using the
fast retransmit and fast recovery algorithms. Thus, after observing a packet
loss the sources perform the congestion avoidance algorithm.

4. The buffer is empty at the beginning of the congestion avoidance.

5. The sources experience packet loss almost simultaneously; therefore they
begin the congestion avoidance together.

These hypotheses lead to a cyclical model for the steady-state behavior of the
sources. In figure 2] the periodic evolution of the congestion windows is shown

616 A. De Vendictis and A. Baiocchi

W
F s
i TCT Reha
EL [W) e
T ‘
W) '
Clemgeaiom Aveidamee Cyale

“I'VV‘
W1 Woogas
e _‘-‘--‘_""‘-\-..
-
RN i, \| V.
L1
; Crongestion Avoidance Cvela b
}— J '

. lirries

Fig. 2. Congestion Window Evolution of TCP Reno and TCP Vegas.

respectively for TCP Reno (upper plot) and TCP Vegas (lower plot).

Each cycle, called from now on congestion avoidance cycle, begins after a
packet loss is detected. During each cycle the congestion avoidance algorithm
regulates the window evolution.

By applying the approach already adopted in [9], we consider a congestion
avoidance cycle divided in N mini-cycles of duration {6(¢),7 = 1,2,3,..., N}. The
mini-cycle is the time interval during which the same window is maintained. The
value of the window during the i-th mini-cycle is denoted by W (7). Formally,
the mini-cycles are defined as follows: 6(1) is T, {6(¢),7 = 2,..., N} is the time
elapsing since reception of the acknowledgment of the last packet sent in the
window W (i — 1) and the arrival of the acknowledgment of the last packet sent
in the window W (7).

As for TCP Vegas, we assume in our analysis it has a unique threshold,
i.e. @ = B. This simplification does not strongly change the nature of TCP
Vegas, because it only eliminates the stable interval without modifying the prin-
ciples of its mechanisms. Moreover, we can assume that FlightSize = Wy and
BaseRTT =2 T. Therefore, from (@) the congestion window Wy is updated for
every incoming acknowledgment as follows:

. W W
Wy = WV+V[}V Zf (TV_RT‘éF).TSOé (3)
M | (P W (O R
V= wy T

In order to derive the throughput of the sources we must calculate the number
of packets sent during a single congestion avoidance cycle and its duration.

First, we calculate the window size of the sources at the end of each cycle,
because they affect all the window dynamics.

Let {Wy(i),is = 1,...,N} and {Wg(3),i = 1,..., N} be the size of the i-th
congestion window respectively for TCP Vegas and TCP Reno.

To find the final value Wy, (N) of the TCP Vegas congestion window, we must
consider the behavior of TCP Vegas congestion control.

Modeling a Mixed TCP Vegas and TCP Reno Scenario 617

Let py be the available bandwidth for TCP Vegas:

by = 7WR n WV,U

If g is the average size of the queue experienced by the packet corresponding
to the incoming acknowledgment:

Wy +Wg =puT +q (5)

(4)

From (@), TCP Vegas tries to reach an equilibrium in which its congestion

window Wy, is such that:
Wy Wy .
<T - m) T=a (©)

Because Wy /RTT can be interpreted as the available bandwidth py, from
), @) and (@), the equilibrium value for the TCP Vegas congestion window is:

_ ol +q)
q

Since at the end of the congestion avoidance phase we can assume ¢ = B:

_a(l'+B)

B B

Since the total number of packets that can be accommodated in the network
is uT + B, we observe a packet loss when Wy (N) + Wg(N) = uT + B + 1.

Hence, the congestion window of the Reno source at the end of the congestion
avoidance cycle is:

Wy (7)

Wy (N)

Wr(N) = (uT + B) (B;a> +1

Because in the TCP Reno variant the congestion window is halved after
detecting a packet loss via triple duplicate acknowledgments, we have for its
initial congestion window size Wr(1):

Wr(N)
5 (8)

Instead, in TCP Vegas the congestion window Wy (1) is generally set to 3/4
of the final congestion window Wy (N). However, since we want to analyze the
impact on the TCP Vegas performance of the amount of the window decreasing,
we can generically assume:

Wr(1) =

Wy (1) =X Wy (N) (9)

with A a positive constant less than 1.
Because during congestion avoidance TCP Reno congestion window Wg(i)
grows by 1 packet every mini-cycle:

WR(Z> == WR(l) +i—1 fOT 1= 1, ...7N (10)

618 A. De Vendictis and A. Baiocchi

Thus, the total number Pge,, of packets transmitted from the TCP Reno
source during a single congestion avoidance cycle is:

N
. N(N -1)
Preno = ;WR(z) =N- WR(I) + f
To calculate the number of packets transmitted by TCP Vegas during a
single congestion avoidance cycle and its duration, we can distinguish three
phases:

1. From mini-cycle 1 to a: as long as Wy + Wgr < uT' we can assume there is
no packets in the bottleneck buffer, so {6(i) = T,i = 1, ...,a}. TCP Vegas
increases its congestion window by 1 packet every T', because RTT = T

2. From mini-cycle (a + 1) to b: the duration {6(¢),7 = a + 1,...,b} of the
mini-cycles increases because of the queuing delay experienced by the
transmitted packets; however TCP Vegas still enlarges its window by 1
packet every §(i), because it has not reached the equilibrium value in [@) yet.

3. From mini-cycle (b+ 1) to N: TCP Vegas reduces its congestion window to
preserve the equilibrium in (7) while the queuing size increases because of
the TCP Reno source.

In the first phase the congestion windows increase for each mini-cycle by one
packet and the window growth is identical for the two sources; then, the number
a of mini-cycles of duration 7T is:

a=Wy(a) = Wy(1)+1) = (Wg(a) — Wg(1)+1) (11)
When the link is saturated, the sum of the windows of the two sources is:
Wv(a) + WR(G) = ,uT (12)

From (1) and ([I2)):

Wi (a) = ¢ (T + W (1) — Wa(1)

Wr(a) = 3 (4T + Wir(1) = Wy (1)

a = % (/,(,T — WR(I) — Wv(l)) +1

The number of packets sent by TCP Vegas during the first phase and its
duration A, are respectively:

ala—1)

7 ; Ay=a-T

Ay =3 Wy (i) =a-Wy(1) +

Modeling a Mixed TCP Vegas and TCP Reno Scenario 619

After the first phase the available bandwidth p of the bottleneck link is
divided between the two sources proportionally to the their respective windows.
Thus, the TCP Vegas available bandwidth py (7) at the i-th mini-cycle is:

Wiy (4)

) =) = +1,...,N].3
i) = G ey 4 Jor = (13)

The duration of each mini-cycle is:

L Wy (i) ,
(i) = - for di=a+1,...N 14
) fv (4) 14
From (I3) and (I4):
sy = YO +Wel) N (15)
I

where the sum of the windows along the second phase is obtained by considering
that the average queuing size increases by two packets every mini-cycle:

Wy (i) + Wgr(i) =pT 4+ 2(i—a) for i=a+1,..,b
From (T3], the duration A, of the second phase is:

Ay = i: 8(i) = <T+b_z+1> (b— a)

i=a-+1
The number of packets sent by TCP Vegas during 4, is:

(a+140b)(b—a)
2

BV = (b — a)Wv<G,) +

From (), TCP Vegas begins to reduce its congestion window when the queu-
ing size ¢ is 2(b — a), with b satisfying the following equation:

a(pT +2(b—a))
2(b—a)

Since Wy, (b) = Wy (a) + b — a, we calculate b by solving (IG):

Wy (b) = (16)

— (Wi (@) — @) + /(W (@) — 0)® + 2auT
2
The window size of TCP Reno is Wg(b) = Wr(a) +b— a. In the third phase,
the queuing size in each mini-cycle can increase at most by 1 packet. Thus, the

congestion window of TCP Vegas can follow the equilibrium value given in ().
Thus, by solving (@) with ¢ = Wy (i) + Wg(b) +i — b — puT', Wy (4) is

) (i) +/C(i)2 + 4a [Wg(b) + i — b)]
Wvli) = 2 (17)
for i=b+1,.,.N

b=a+

where C'(i) = Wg(b) +i—b— a — uT.

620 A. De Vendictis and A. Baiocchi

From (I3)), the duration A, of the third phase is:

N N . .
s= 30 o= 30 WA+
i=b+1 i=b+1

with Wg(7) and Wy (i) respectively calculated according to (I0) and (7).
The number of packets sent by TCP Vegas during the third phase is:

N
Cv= > Wy(i)

i=b+1

Therefore, the average throughput Aycgqs of TCP Vegas is the ratio of the
total number Py ¢g4qs of transmitted packets to the time A:

A :PVegas:AV+BV+CV
Vegas A Aa+Ab+Ac

The average throughput Agen, of TCP Reno is:

A _ PReno _ PReno
Reno — A - Aa+Ab+Ac

The above analysis is valid if the buffer size is sufficient to allow TCP Vegas
to reach the equilibrium status expressed by (). If this is not the case, we
have again the first and the second phases shown if figure 2], whereas the third
phase is absent. When the buffer size is less than a threshold By, TCP Vegas
behaves like TCP Reno as already argued in [I0)], and the average throughput
of the two sources only depends on how much TCP Vegas reduces its congestion
window after detecting loss, i.e. on the amount of A. For instance, if A = 1/2
the two sources are perfectly equivalent and they experiment the same average
throughput. Otherwise, if A > 1/2 TCP Vegas pushes more packets than TCP
Reno into the pipe. The technique used to calculate the average throughput of
the two sources in this case is similar to that adopted above and is shown in
Appendix A. The buffer threshold By is calculated by imposing that the final
TCP Vegas congestion window Wy (V) is equal to the congestion window at the
equilibrium:

uT + By + 1) a(uT + Byp)

Wy () = & 3-2\ By

Thus, the buffer threshold By, =2 «(3 — 2X).

4 Validation of the Model

In order to validate the analytic model, we carried out simulations under ns [11],
a network simulator widely used in the networking research community.

The network topology used in the simulations reproduces that shown in fig-
ure [[I The two sources start at time 0 and the simulation lasts 600 seconds.

Modeling a Mixed TCP Vegas and TCP Reno Scenario 621

N«

T s A

T = e e ’

6N -
+ TCT Wegaz dsimualaticn)

= — = TN Rena (mindel)

0 TP Reno (simulatics)

Average Thronghpd (pkls's)

s 1e 15 m 2F a0 35 o s
Buller B ipkist

Fig.3. Model Validation - Varying the buffer size B (1 = 1080pkts/s, « = 8 = 3,

A =3/4, d = 500 bytes)

I 1oy

Lo | TCT Vegas (uedel)
+ TCP Vepas (sirnulalicn)

= = = TP Reno imodel)

Qi

QTP Kenna Gsitrnglalion)

Average Througlpul (pkls's)

200
| Cth e mee oo

o -5'(_' e

“200 600 800 1000 1200 1400

Lank Capacily o (pkisfs)

Fig.4. Model Validation - Varying the link capacity p (B=20, « = 8 =3, A = 3/4,
L = 500 bytes)

The source average throughput is calculated over the last 400 seconds, in order
to capture the steady-state dynamics. In the simulations the sources exhibit a
steady-state periodic behavior, as assumed in our model.

Given the particular ns implementation of TCP Vegas, we could not compare
our analytic model with the simulations for buffer size between the threshold By,
and [Byp, 4+ 3(3 — 2X)]. The reason of this is that the implementation is such that
TCP Vegas congestion window oscillates between the equilibrium () and the
equilibrium plus three packets. This phenomenon is negligible for larger buffers.

In figure Bl we show the model performance obtained by varying the buffer
size B. The other parameters in these simulations are fixed to: u = 1080 pkts/s,
a=pF=3, A=3/4, L =500 bytes.

The model captures very well the behavior of the sources. In particular, the
dynamics of TCP Vegas are faithfully reproduced with the maximum absolute
percentage error of 12.2% (Buffer B=30pkts), whereas as for TCP Reno the
maximum absolute percentage error is of 9.9% (Buffer B=5pkts).

As we expected, for small buffers TCP Vegas outperforms TCP Reno. In fact,
under the buffer threshold (in this case the threshold By, was 5) TCP Vegas be-

622 A. De Vendictis and A. Baiocchi

haves like TCP Reno, because it is not able to reach a stable status. Moreover,
TCP Vegas reduces its congestion window after the fast retransmit by A = 3/4,
whereas TCP Reno halves it.Hence TCP Vegas goes better.

According to the model, the behavior of the sources changes quickly around
the buffer threshold Byy: it is sufficient to change the buffer from 5 packets to

10 packets to change from a throughput ratio of AV“;“ 2.58 to a throughput

ratio of ﬁ = 0.76. Thus, for large buffers TCP Vegas performance quickly
deteriorate: its average throughput tends to go to zero.

In figure @] we show the average throughput of the two sources obtained by
varying the bottleneck link capacity pu. The other parameters are fixed in this
case to: B = 20 pkts, a = =3, A =3/4, L = 500 bytes.

Also in this case the model captures very well the behavior of the two sources.

According to the model the ratio of TCP Vegas throughput to TCP Reno
throughput goes lightly reducing itself when the capacity p increases. However
the slope is too slow to be appreciated in the simulation results.

5 Conclusions

In this paper we presented an analytic model to compute the average throughput
of two interactive sources, one implementing as transport protocol the TCP
Vegas variant, the other implementing the TCP Reno variant. The aim of the
model is to quantitatively establish the vulnerability of TCP Vegas with respect
to a concurrent TCP Reno source.

The simulations we carried out show the large accuracy of the model in
capturing TCP Vegas and TCP Reno dynamics.

Even if the model reproduces a very simple network scenario with only two
sources, it can give interesting indications about TCP Vegas shortcomings.

As further work, our intention is to use the model as a base point to find
possible mechanisms to improve TCP Vegas performance in scenarios where
there are also TCP Reno sources, in order to stimulate the use of TCP Vegas in
the future Internet.

Appendix A

When the buffer B is less than the threshold By, TCP Vegas and TCP Reno
behave in the same way: they increase their congestion window by 1 packet for
each mini-cycle until a packet loss occurs. Thus, they have respectively Wy (N) =
Wy (1) + N — 1 and Wgi(N) = Wg(1) + N — 1. Since:

Wy (1) = Xy (N); Wa(1) = sWa(N); Wi(N)+ Wa(N) = uT + B +1

the number N of mini-cycles and the packets transmitted by the sources are:

(wWT'+B+1)(1-X

N = 3_2)

+1

N
. 3 1+/\
PReno = ZWR(Z) = §N(- 1 PVegas ZWV N(N — 1)

Modeling a Mixed TCP Vegas and TCP Reno Scenario 623

We distinguish two phases to calculate the duration of the congestion avoid-
ance cycle: from mini-cycle 1 to mini-cycle a we have §(i) = T, because we have
no packets in the buffer; from mini-cycle (a+1) to N for their duration we must
also consider the waiting time in the buffer. Therefore, the duration A of the
congestion avoidance phase is:

A:aT+% [(]U+Na+1) (Na)}

where a is the number of mini-cycles taken to saturate the bottleneck link :

References

1. S. Floyd, A Report on Recent Developments in TCP Congestion Control, IEEE
Communications Magazine, Vol. 9, No. 4, April 2001.

2. L. S. Brakmo, L. L. Peterson, TPC Vegas: end-to-end congestion avoidance on a
global Internet, IEEE JSAC,Vol.13, No.8, October 1995.

3. J. Mo, R. L. V. Anantharam, J. Walrand, Analysis and comparison of TCP Reno
and Vegas, Proc. of IEEE Globecom’99, Rio de Janeiro (Brazil), December 1999.

4. Yuan-Cheng Lai, Chang-Li Yao, The performance comparison between TCP Reno
and TCP Vegas, Proc. of Seventh International Conference on Parallel and Dis-
tributed Systems, Iwate (JAPAN), July 2000.

5. U. Hengartner, J. Bolliger and Th. Gross. TCP Vegas Reuvisited, Proc. of IEEE
INFOCOM 2000, Tel Aviv (Israel), March 2000.

6. C. Fuet al., Performance Degradation of TCP Vegas in Asymmetric Networks and
its Remedies, Proc. of ICC2001, Helsinki (Finland), June 11-14, 2001.

7. G. Hasegawa et al., Analysis and Improvement of Fairness between TCP Reno and
Vegas for Deployment of TCP Vegas to the Internet, Proc. of ICNP, 2000.

8. R. W. Stevens, TCP/IP Illustrated, Vol I The protocols, Addison-Wesley, U.S.A.,
1994.

9. T.V. Lakshman, U. Madhow, The Performance of TCP/IP for Networks with High
Bandwidth-Delay Product and Random Loss, IEEE/ACM Transactions on Net-
working, Vol. 5, No. 3, June 1997.

10. Ait-Hellal, O.; Altman, E., Analysis of TCP Vegas and TCP Reno, Proc. of IEEE
ICC 97, Vol. 1, Montreal (Canada), June 1997.
11. ns-LBL v.2.1b5, available via http://mash.cs.berkeley.edu/ns/ns.html.

	Introduction
	TCP Vegas and TCP Reno Congestion Control
	The Model
	Validation of the Model
	Conclusions

