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Abstract. This paper is a review of an approach to queueing systems
where the cumulative input is modelled by a general Gaussian process
with stationary increments. The examples include priority and General-
ized Processor Sharing systems, and a system where service capacity is
allocated according to predicted future demand. The basic technical idea
is to identify the most probable path in the threshold exceedance event,
or a heuristic approximation of it, and then use probability estimates
based on this path. The method is particularly useful for long-range
dependent traffic and complicated traffic mixes, which are difficult to
handle with traditional queueing theory.

1 Introduction

This paper is a review of an approach to queueing systems with Gaussian input.
The motivation to study such systems is twofold. On one hand, complicated
dependence structures are easiest to study first in a Gaussian framework, where
the dependence is reduced to correlation. This is also the historical origin of
this work — it started with queues with fractional Brownian motion (fBm) as
input [19], which is the simplest process that has the self-similarity property,
first observed in the famous Bellcore measurements [11]. On the other hand, it
could be expected that, thanks to the Central Limit Theorem, traffic in high
capacity systems would be rather well modelled with Gaussian processes [1].
Empirical studies indicate, however, that a good fit to Gaussian distribution
may require very high traffic aggregation levels. The Gaussian approach can
be useful in making rough performance estimates for Differentiated Services in
Internet, because one works there with large traffic aggregates.

Our interest in most probable paths started by applying the generalized
Schilder’s theorem to the fBm queue [20]. The approach was extended to ordi-
nary queues with general Gaussian input in [2,3], and further to priority queues
in [14]. In [13] and [15], we applied a similar machinery to Generalized Pro-
cessor Sharing (GPS) schedulers and presented a somewhat improved version
of the priority case. Most of this research was done within the COST Actions
257 and 279. A summary on Gaussian traffic modelling, linked to the technical
documents, can be found in the hypertext Final Report of the action [26].

The paper is structured as follows. We start with discussing the definitions
of Gaussian queueing systems in Section 2. This involves some technical details
caused by the unavoidable presence of negative traffic in Gaussian modelling.
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Section 3 presents the main ideas of our approach. A central role is played by
the most probable paths along which queue size thresholds are exceeded. The
rest is devoted to two cases, where the most probable paths obtain particularly
interesting shapes. Section 4 shows how the most probable path can experience
a kind of “phase transition” between short and long busy periods. Section 5
studies a simple model of dynamical capacity allocation. This is a new type of
application, first time presented here.

2 Definition of Gaussian Queueing Systems

2.1 Gaussian Models of Traffic

Our basic traffic model is a continuous Gaussian process A = (At)t∈� with
stationary increments. For s < t, At −As presents the amount of traffic in time
interval (s, t], and we set A0 ≡ 0. A process is called Gaussian, if all its finite-
dimensional distributions are multivariate Gaussian. The property of stationary
increments means that for any t0 ∈ �, the processes A and (At+t0 − At0)t∈�
have the same finite-dimensional distributions.

We denote A(s, t) = At −As, and use similar notation for other processes as
well.

The use of Gaussian models for big traffic aggregates can be justified by the
Central Limit Theorem. However, even the question about the Gaussian char-
acter of some traffic cannot be raised without specifying the relevant timescale,
say δ. There should be a large number of individual sources contributing to the
traffic in every time interval of size δ. Moreover, if the marginal distribution of
the contribution of an individual source in those intervals has very high variabil-
ity, the application of CLT may still be problematic. In our study on Internet
users over ISDN [10], it was found that a few Mbit/s of such traffic had good fit
with Gaussian distribution when the time resolution δ was coarser than 100 ms.
Note that this traffic was exceptionally well-behaving, because the users were
restricted to the ISDN access speed.

A non-pleasant special feature of Gaussian models is that there is always a
positive probability of negative input. Such input does not correspond to any-
thing real, and its existence destroys some classical arguments of queueing the-
ory. In a Gaussian framework, the non-problematic definitions of queueing the-
ory must be replaced by analogously defined functionals of a Gaussian process.
Moreover, we don’t have much hope to obtain other kinds of rigorous general
results on the distributions of these functionals than inequalities and limit the-
orems. At our present “state-of-art”, we must often be satisfied with heuristic
approximations.

Despite these reservations, Gaussian models are tempting because of their
many nice features:

• a Gaussian process with stationary increments is completely characterized
by its mean m = E {A1} and cumulative variance function v(t) = Var (At);
indeed, we can write

At = mt+ Zt,
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where Z is a centered (mean zero) process, and the covariance function of A
(and Z) can be written as

Cov (As, At) = Cov (Zs, Zt) =
1
2
(v(s) + v(t)− v(s− t));

• a superposition of independent Gaussian traffic streams is Gaussian;
• multiclass traffic consisting of Gaussian traffic classes, such that their joint
distribution is Gaussian also, can be studied within the same framework;

• unlike most other traffic models, At has an explicitly known (Gaussian)
distribution for any t;

• the quantities m and v(t) can be rather well estimated from measurement
data;

• long-range dependence does not provide any extra difficulty.

In the multiclass case, let the input traffic consist of k classes, and denote
the cumulative arrival process of class j ∈ {1, . . . , k} by (A{j}

t )t∈�. We also
denote A{j}(s, t) .= A

{j}
t − A

{j}
s . For the superposition of a set of traffic classes

J ⊆ {1, . . . , k} we write
AJ

t
.=
∑
j∈J

A
{j}
t

and use similar superscript notation also for other quantities defined later. We
assume that the processes A{j} are independent, continuous Gaussian processes
with stationary increments and denote

A
{j}
t = mjt+ Z

{j}
t , m =

k∑
i=1

mi, Var
(
Z

{j}
t

)
= vj(t), (1)

Γj(s, t) = Cov
(
Z{j}

s , Z
{j}
t

)
,

where the Z{j}’s are centered (zero-mean) processes. To exclude certain degen-
erate cases, we assume that

∃α ∈ (0, 2) : lim
t→∞

vi(t)
tα

= 0, i ∈ {1, . . . , k} . (2)

Finally, let us specify the mathematical framework completely. Define a path
space Ω1 as

Ω1 =
{
ω : ω is continuous � → �, ω(0) = 0, lim

t→±∞
ω(t)
1 + |t| = 0

}
.

(The relation limt→∞ Z
{i}
t /t = 0 a.s., is a consequence of (2) — see [3].) Equipped

with the norm

‖ω‖Ω1 = sup
{

ω(t)
1 + |t| : t ∈ �

}
,

Ω1 is a separable Banach space. We choose Ω = Ωk
1 as our basic probability

space by letting P be the unique probability measure on the Borel sets of Ω such
that the random variables Z{i}

t (ω1, . . . , ωk) = ωi(t) form independent Gaussian
processes with covariance functions Γi(·, ·).
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2.2 Definition of Simple Queues

Consider first the case of a simple queue, i.e. k = 1, and let the server have a
constant capacity c. The storage process (queue length process) is then naturally
defined as

Qt = sup
s≤t
(A(s, t)− c(t− s)). (3)

The process Q is obviously stationary, and a sufficient stability condition is that
m < c.

Because only the net input process At − ct matters in this definition, it can
be extended to the case that the service process is stochastic as well. Indeed,
assume that the cumulative service capacity process Ct is a Gaussian process
with stationary increments such that the difference At − Ct is also Gaussian
with stationary increments and a negative mean rate. The queue length process
is then

Qt = sup
s≤t
(A(s, t)− C(s, t)), (4)

and all results for simple Gaussian queues are applicable. One example of this
is given in Section 5.

2.3 Definitions of GPS and Priority Queues

The Generalized Processor Sharing (GPS) service discipline [23] (an idealized
version of Weighted Fair Queueing) is a theoretical model which isolates flows
and provides service differentiation. Let us consider a GPS queueing system for
our k traffic classes, such that the guaranteed service rate for each class i is µic,
where c > m =

∑
i mi, µi > 0 for each i, and

∑
µi = 1.

It is not at all obvious how a GPS queue should be defined when negative
input is allowed. An elegant definition which results in positive queue length
processes even in our case was given by Massoulie [16]. Assume that the amount
of potential service for each class i in time interval (s, t) is µicT (s, t), where
T (s, t) = Tt − Ts and T is a non-decreasing stochastic process with T0 ≡ 0. T
varies according to the number of backlogged classes. The queue of class i, Q{i},
and the total queue Q then satisfy

Q
{i}
t = sup

s≤t
(A{i}(s, t)− µicT (s, t))

Qt = sup
s≤t

(
k∑

i=1

A{i}(s, t)− c(t− s)

)
.

(5)

Together with the requirement Qt =
∑k

i=1Q
{i}
t , the equations (5) uniquely

define the k + 1 processes Q{1}, . . . , Q{k} and Qt [16]. The construction works
and yields non-negative queues in the Gaussian case also.

Let us then turn to priority queues. Assume that there are k priority classes,
numbered with descending priority. There is no distinction between preemptive
and non-preemptive priority, because the model is continuous. Since lower class
traffic does not disturb upper class traffic, a simple approach is the following:
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define Q{1}, Q{1,2}, Q{1,2,3} etc. as ordinary queues with service rate c, and then
set

Q{2} = Q{1,2} −Q{1},
· · · (6)

Q{k} = Q{1,...,k} −Q{1,...,k−1}.

Using this definition with Gaussian traffic has the non-desirable effect that it
does not yield non-negative queue lengths to other classes than the first one.
This has, however, little significance in the cases where Gaussian modeling is
adequate, so we prefer using it. (Massoulie’s GPS definition does not work, as
such at least, with µ2 = 0, which would correspond to a two-class priority queue.
It is shown in [15] how discrete time Gaussian priority queues can be defined in
such a way that the individual queues are non-negative and sum up to the total
queue, and the continuous time could probably be obtained as a limit when the
discretization step goes to zero.)

3 Probability Estimates Based on Most Probable Paths

3.1 The Reproducing Kernel Hilbert Space and Large Deviations
of Gaussian Processes

For i = 1, . . . , k, the reproducing kernel Hilbert space (RKHS) Ri of the process
Z{i} is defined as follows (see, e.g., [4]): start with the functions Γi(t, ·), t ∈ �,
define their inner products as

〈Γi(s, ·), Γi(t, ·)〉Ri

.= Γi(s, t),

extend to a linear space (with pointwise operations), and complete the space
with respect to the norm ‖f‖Ri

.= 〈f, f〉Ri
. It is easy to verify that Ri is a linear

subspace of Ω1, and the topology induced by ‖ · ‖Ri is finer than that induced
by ‖ · ‖Ω1 .

The RKHS of the multivariate process (Z{1}
t , . . . , Z

{k}
t ) is, by the indepen-

dence of the Z{i}’s, R .= R1 × · · · ×Rk with the inner product

〈(f1, . . . , fk), (g1, . . . , gk)〉R
.=

k∑
i=1

〈fi, gi〉Ri
.

The reproducing kernel property, which is a straightforward consequence of
the definition of the inner products, tells that within R, the functions can be
evaluated by taking an inner product with a corresponding vector of covariance
functions:

〈(f1, . . . , fk), (Γ1(t1, ·), . . . , Γk(tk, ·)〉R =
k∑

i=1

fi(ti). (7)

The above construction can be further extended to the case that the compo-
nent processes are dependent, as long as all joint distributions are Gaussian.

A large deviation principle for Gaussian measures in Banach space is given
by the generalized Schilder’s theorem (Bahadur and Zabell [6], see also [5,9]).
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Theorem 1. The function I : Ω → � ∪ {∞},

I(ω) =
{ 1

2‖ω‖2R, if ω ∈ R,
∞, otherwise,

is a good rate function for the centered Gaussian measure P , and P satisfies the
following large deviation principle:

for F closed in Ω : lim sup
n→∞

1
n
logP

(
Z√
n

∈ F

)
≤ − inf

ω∈F
I(ω);

for G open in Ω : lim inf
n→∞

1
n
logP

(
Z√
n

∈ G

)
≥ − inf

ω∈G
I(ω).

Thus, the essential problem is to find a path ω that minimizes I(ω) in a given
set B, or, equivalently, the norm ‖f‖R in the set B ∩ R. We call it the most
probable path in that set. Intuitively, one can can think of e−I(ω) as something
like the probability density of our infinite dimensional Gaussian measure, so that
minimizing I(ω) corresponds to maximizing likelihood. In most cases, the most
probable path is unique, but the examples in Section 4 show that non-unique
paths may appear and even have interesting meaning as “phase transitions” of
the queueing system.

The approach presented here was originally motivated by the generalized
Schilder’s theorem [20]. However, our main interest is not in large devia-
tions limits but in estimates that are applicable for whole distributions. It
was shown in [2] by examples of ordinary queues that estimates of the type
P(A) ≈ exp(− infω∈A I(ω)) give indeed often a reasonable approximation of the
whole queue length distribution, not only for tail behavior. On the other hand,
note that it is problematic to even formulate large deviations limit theorems
with Gaussian traffic, because the Gaussian character is already the result of
another kind of limit procedure, the Central Limit Theorem.

3.2 Half-Space Approximations

Consider first the case of a simple queue. What can be said about the marginal
distribution of Qt? Writing (cf. [17])

{Qt > x} =
{
sup
s≤t

Zt − Zs

x+ (c−m)(t− s)
> 1
}

we see that this event is in fact of the form
{
sups Y

(x,t)
s > 1

}
for the centered

Gaussian process Y (x,t)
s = (Zt − Zs)/(x + (c − m)(t − s)). Thus, we encounter

the very classical problem of estimating the distribution of the maximum of a
centered Gaussian process. Consider the obvious lower bound

P(Qt > x) ≥ sup
s≤t

P

(
Y (x,t)

s > 1
)
= Φ

(
x+ (c−m)u∗√

v(u∗)

)
= ((x), (8)
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where Φ is the residual distribution function of the standard normal distribution
and u∗ > 0 minimizes (x + (c − m)u)2/v(u) w.r.t. u. The value u∗ has the
important practical meaning of characterizing the relevant timescale of queues
of length x.

Note the geometry of the set {Qt > x}: it is the union over s of the sets
{A(t− s)− c(t− s) > x} which are half-spaces, and thus the complement of a
convex set containing the origin. Let f∗ be a most probable path in {Qt > x}.
The following proposition, which we formulate directly in the multiclass case,
gives an explicit expression of f∗.

0

f*

Fig. 1. The half-space {−Z−t∗ ≥ x + (c − m)t∗} is contained in the set {Q0 ≥ x}. For
both sets, the closest point to origin is f∗.

Proposition 1. Most probable path vectors f∗ in the set
{
Q

{1,...,k}
0 ≥ x

}
have

the form

−x+ (c−m)t∗∑k
i=1 vi(t∗)

(Γ1(−t∗, ·), . . . , Γk(−t∗, ·)),

where t∗ > 0 minimizes the expression

h(t) =
(x+ (c−m)t)2∑k

i=1 vi(t)
. (9)

Proof. Note that{
Q

{1,...,k}
0 ≥ x

}
=
⋃
s≤0

{
A{1,...,k}(s, 0)− c(0− s) ≥ x

}

=
⋃
s≤0

{
Z{1,...,k}(s, 0) ≥ x+ (c−m)(0− s)

}
,

and, by the reproducing kernel property,
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f ∈
{
Z{1,...,k}(s, 0) ≥ x+ (c−m)(−s)

}
∩R

⇔ f ∈ R, −f1(s) + · · · − fk(s) ≥ x+ (c−m)(−s)
⇔ −〈f, (Γ1(s, ·), . . . , Γk(s, ·)〉R ≥ x+ (c−m)(−s).

Thus, the problem reduces to minimizing the Hilbert norm when the in-
ner product with a fixed element is given, and the solution is a proper
multiple of that element. It remains to minimize the norm of ((x + (c −
m)t)/

∑
vi(t))(Γ1(−t, ·), . . . , Γk(−t, ·)) with respect to t > 0.

Let f∗ ∈ R be a most probable path in a closed set B ⊂ Ω such that f∗ �= 0.
We call the set

B∗ .= clΩ {g ∈ R : 〈g − f∗, f∗〉R ≥ 0} ,
where clΩG denotes the closure of G in the topology of Ω, the half-space ap-
proximation of B. In particular, it is easy to see that

{Q0 ≥ x}∗ = {−Z−t∗ ≥ x+ (c−m)t∗} ,

and the lower bound (8) is a consequence of the fact that in this case the half-
space approximation is contained in the original set. See Figure 1.

It is worth of noting also that the most probable path vector in a set{
A

{1,...,k}
t ≥ y

}
, where y > mt, is in fact the conditional expectation

E

[
(Z{1}

s , . . . , Z{k}
s )

∣∣∣A{1,...,k}
t = y

]
.

This is a consequence of the fact that the conditional distribution of a Gaussian
vector w.r.t. a linear condition is Gaussian, and its expectation equals the point
where the density is highest.

More accurate estimates take, in some way or other, the geometry of the set
{Q0 ≥ x} around f∗ into account. For different methods, see the books by Adler
[4] and Piterbarg [25]. An original geometric reasoning, after transforming the
problem into Fourier space, was given in [18].

Identifying most probable paths is interesting with its own rights — it is like
“seeing what really happens” when the rare event occurs. For ordinary queues,
this has mainly heuristic value, but we shall see that identifying these paths
has an essential role in choosing a good approximation in the case of GPS and
priority queues.

3.3 General Heuristic Approximations

Within logarithmic accuracy, the lower bound can be replaced by the still simpler
approximate expression

P(Qt > x) ≈ exp
(

− (x+ (c−m)u∗)2

2v(u∗)

)
, (10)
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which was called the basic approximation in [3]. Simulations of many cases in-
dicate that the basic approximation may in fact be a general upper bound of
P(Qt > x), but no proof of this is known.

In all empirical studies and simulations one works in discrete time. The dis-
crete time queue is always a little smaller than the corresponding continuous
time queue. Indeed, if A is our continuous time model, the cumulative input
process in discrete time is simply (An)n∈Z,

Qdiscr
n = sup

m≤n, m∈Z

(A(m,n)− c(n−m)) ≤ sup
s≤n, s∈R

(A(s, n)− c(n− s)) = Qcont
n .

It was observed in [3] that one often gets fairly good approximations for a
discrete time Gaussian queue Qdiscr by multiplying the basic approximation by
an appropriate constant p such that

p lim
x→0+

exp
(

− (x+ (c−m)u∗
x)

2

2v(u∗
x)

)
≈ P

(
Qdiscr

t > 0
)
.

A good heuristic approximation for the non-emptiness probability of a discrete
time queue with time resolution δ is (see [3])

P
(
Qdiscr

t > 0
) ≈ 2P(Aδ > cδ) .

3.4 Approximations for GPS and Priority Queues

The structure of our method for getting estimates of queue length distributions
in GPS and priority systems is the following. In order to get an approximation
for
{
Q

{i}
0 > x

}
, do

Step 1. Find the most probable path vector f∗ of the event
{
Q

{1,...,k}
0 > x

}
.

The path vector can be immediately written and plotted using Proposition
1.

Step 2. Check whether Q{1,...,k}\{i}
0 (f∗) = 0. If yes, go to Step 3, otherwise go

to Step 4.
Step 3. (Empty Buffer Approximation) f∗ is the most probable path vector in{

Q
{i}
0 > x

}
; use the corresponding half-space approximation. Stop.

Step 4. (Rough Full Link Approximation) Find a certain fRFLA, where the only
positive queue is Q{i}

0 (or the others are much smaller); use the half-space
approximation corresponding to fRFLA.

The Empty Buffer Approximation uses the true most probable path vector,
and it can be considered as reliable as the simple queue estimates of Section
3.2. In the Rough Full Link Approximation, the path vector fRFLA also is just
a heuristic approximation of the true most probable path vector. Both approxi-
mations are discussed in more detail below.
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The Empty Buffer Approximation. The idea of the Empty Buffer Approximation
(EBA), first studied by Berger and Whitt [7,8], is that in a two-class priority
queue, the total queue usually consists almost exclusively of lower class traf-
fic, and therefore its distribution is a good approximation to that of the pure
lower class queue. Our approach gives a straightforward method to check the
applicability of EBA in any particular combination of Gaussian traffic streams.
Our examples indicate that EBA is a very good principle in most practically
interesting priority scenarios with Gaussian traffic.

The EBA is also often useful in the study of a GPS system. However, it is
never sufficient, because the classes are in a symmetric position in GPS, and the
distribution of at most one class can be estimated with EBA.

Whereas it may require some work to check analytically whether the most
probable path vector producing joint queue x satisfies the EBA condition, an
approximately similar condition is much easier: in the two-class priority case,
just check the “rough EBA condition”

−A
{1}
−t∗(f∗) ≤ ct∗. (11)

This also leads to some interesting insight. Consider the priority system with two
classes and assume, without restricting generality, that m1 = 0. The condition
11 can be written as

x

t∗
−m2 ≤ v2(t∗)

v1(t∗)
c. (12)

In particular, we see that (12) holds ifm2 ≥ x/t∗ (note, however, that t∗ depends
on the other quantities). In the special case that v1 is a multiple of v2, say
v2(t) = av(t), v2(t) = bv(t), the condition becomes still simpler. Then t∗ is
independent of a and b, and we obtain the rather surprising result that when m2
exceeds a certain threshold, then we are roughly in the EBA irrespective of the
variance coefficients a and b! For example, if both Z(i)’s are fractional Brownian
motions with same self-similarity parameter H, then t∗ = Hx/((1−H)(c−m2)),
which gives the conditionm2 ≥ (1−H)c. The higherH, the lower is the threshold
for m2 above which a typical large class 2 queue consists of class 2 traffic alone.

The Rough Full Link Approximation. Consider the case of two traffic classes.
For priority queues this does not restrict generality (since we neglect the effect
of negative traffic). For GPS queues, the idea below could be extended to a
larger number of classes, but the details would be much more complicated and,
moreover, the heuristic probability estimates would be less reliable.

Consider a GPS system with weights µ1 and µ2. In the two class case, the
priority system is obtained as the special case µ2 = 0. Assume that we are
interested in the number P

(
Q

{2}
0 ≥ x

)
. As before, we first identify the most

probable path pair f∗ of
{
Q

{1,2}
0 ≥ x

}
. If Q{1}

0 (f∗) = 0, we can use the EBA,

as discussed in Section 3.4. So assume that Q{1}
0 (f∗) > 0.

The idea of our approximation in the non-EBA case is that any superfluous
queue buildup decreases the likelihood of our path pair. Since we are only re-
quiring that Q{2}

0 (ω) be big, Q{1}
0 (ω) must be close to zero with the optimal ω.
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Thus, a class 2 queue of size x is most easily made so that the role of class 1 is
essentially to fill its quota (in the priority case, to fill the whole link) without
making a queue, while class 2 fills its quota and additionally builds a queue of
size x.

To make this condition still simpler, we reduce this behavior to the one-
dimensional conditions

A{1}(−t, 0) = µ1ct,

A{2}(−t, 0) = µ2ct+ x, (13)

write down the most probable path pair fulfilling this, and finally minimize their
norm with respect to t. We call this procedure the Rough Full Link Approxima-
tion (RFLA).

It is again an easy Hilbert space exercise, similar to Proposition 1, to deter-
mine the most probable paths in RFLA (see [15]):

Proposition 2. The most probable path pair fRFLA satisfying (13) is of the
form

fRFLA(·) = (fRFLA1 (·), fRFLA2 (·))
=
(
(µ1c−m1)t∗

v1(t∗)
Γ1(t∗, ·), −x+ (µ2c−m2)t∗

v2(t∗)
Γ2(t∗, ·)

)
,

where t∗ < 0 minimizes, w.r.t. t, the expression

(µ1c−m1)
2
t2

v1(t)
+
(x− (µ2c−m2) t)

2

v2(t)
. (14)

In the case that both classes are Brownian motions (counterpart of Poisson
processes), the RFLA gives the true most probable path pair in the non-EBA
case. In general, however, the class 1 path in RFLA does not fill its quota over
the whole interval (−t∗, 0), thus part of class 2 traffic is “wasted”, and there is a
small class 1 queue at time 0, whereas the class 2 queue remains correspondingly
smaller than x.

Using the reproducing kernel property and the fact that evaluation at a time
point is a continuous linear functional both in R and Ω, we see that the half-space
corresponding to fRFLA can be written as E =

{
Y ≥ ‖fRFLA‖2R

}
, where

Y =
(µ1c−m1)t∗

v1(t∗)
Z

{1}
t∗ +

x− (µ2c−m2)t∗

v2(t∗)
Z

{2}
t∗ .

Thus, our RFLA approximation, which the simulations indeed indicate to be a
lower bound, is

P

(
Q

{2}
0 ≥ x

)
≈ P(E) (15)

= Φ



√
(µ1c−m1)

2
t∗2

v1(t∗)
+
(x− (µ2c−m2) t∗)

2

v2(t∗)


 .
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In order to check accuracy of our estimates, we have compared them to the
empirical measures calculated from simulations. The simulation traces were gen-
erated using an extension of random midpoint displacement algorithm (RMDmn,
see [21]). Many examples are included in the papers [3,15], and they show rea-
sonable accuracy of the method. In particular, the “basic approximations” turn
always out to be upper bounds and the probabilities of the half-space approxi-
mations lower bounds. In the present overview paper, we restrict to the following
example taken from [15].

Example: two fBm traffic classes with same self-similarity parameter. Let us
consider a GPS system with two classes with vi(t) = σ2i t

2H for i = 1, 2, and the
parameter H is any number in (0, 1). In this case we can compute the above
quantities analytically.

First, fix x > 0 and consider the total queue. We have (see, e.g., [3])

t∗ =
Hx

(1−H)(c−m)
.

Second, the rough EBA criterion (cf. (12)) for estimating class 1 reads

(µ2c−m2)t∗ ≥ f∗
2 (t

∗) = (x+ (c−m)t∗)
σ22

σ21 + σ22
.

Substituting t∗, we obtain the criterion

(µ2c−m2)H
c−m

≥ σ22
σ21 + σ22

. (16)

Note that only the mean and service rates appear on left and only the variance
coefficients on right. If (16) is satisfied, the “basic approximation” reads

P

(
Q

{1}
0 ≥ x

)
≈ P

(
Q

{1,2}
0 ≥ x

)
≈ exp

(
− (c−m)2H

σ21 + σ22
· x2−2H

2κ(H)2

)
,

where κ(H) = HH(1−H)1−H .
Third, if (16) does not hold, we use the RFLA. The squared R-norm of the

most probable path in the set{
−A{1}

−t ≥ µ1ct+ x, −A{2}
−t ≥ µ2ct

}
is

((µ1c−m1)t+ x)2

σ21t
2H

+
(µ2c−m2)2

σ22
t2−2H .

The minimum is obtained at t∗ = ηx, where η is the positive root of a quadratic
equation:

η =
b+

√
b2 + 4aH
2a

, where

a = (
(µ1c−m1)2

σ21
+
(µ2c−m2)2

σ22
)(1−H), b =

(µ1c−m1)(2H − 1)
σ21

.
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The basic approximation of P

(
Q

{1}
0 ≥ x

)
is then

P

(
Q

{1}
0 ≥ x

)
(17)

≈ exp
(

−1
2

(
((µ1c−m1)η + 1)2

σ21η
2H

+
(µ2c−m2)2

σ22
η2−2H

)
x2−2H

)
.

Simulations indicate that the approximations of this section work quite well
— see [14,13,15].

4 “Phase Transitions” of Typical Queues

Even for simple queues, the most probable paths need not be unique. Nice exam-
ples of this were found by P. Mannersalo by superposing a periodic source and a
fBm source [3,15]. A kind of phase transition was observed: typical small queues
were caused by the periodical fluctuation of the periodic traffic, whereas typical
long queues were caused by sustained heightened activity of the fBm traffic. (Cf.
also [12].)

Another and, most importantly, non-artificial example was encountered by
Pazhyannur and Fleming [24]. They studied a queue with input consisting of
periodic coded voice traffic, modelled as follows. A source transmits with period
d and uniformly distributed phase U . Volume in ith period is Xi. The Xi’s can
be strongly dependent. There are n i.i.d. sources. See Figure 2.

d 2d 3d0

X1

U

X2

X3

X4

Fig. 2. The structure of vocoder traffic in [24]. Each source transmits periodically
bursts whose sizes are random but correlated. The Xi’s in the picture come from the
same source.

Assuming that the number of sources is large enough for Gaussian modelling,
our technique can be applied in a straightforward way. We only need to compute
v(t) for a single source — using a mathematical computer tool, the rest follows
“according to the recipe”. Denote the phase of our source by U and choose, for
simplicity, d = 1. Then

At =

t�∑
i=1

Xi + 1{U<t−
t�}X
t�+1

v(t) = tVar (X0)
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+2

t�∑
k=1

(t− k)Cov (X0, Xk) + (t− �t�)(1− (t− �t�))(E {X0})2

Γ (s, t) =
1
2
(v(|s|) + v(|t|)− v(|s− t|)

Consider, as an example, the case m = 0, Cov (X0, Xk) = ρk, ρ = 0.9. Figure
3 shows a clear bend in the complementary distribution function of the queue
length (resembling the shift from the “cell scale queue” to the “burst scale queue”
in many ATM analyses — see, e.g., [22]). What happens when the queue size
increases from 0.3 to 0.4?

0.1 0.2 0.3 0.4 0.5

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

Fig. 3. Estimate of log10 P(V > x).

Look first at the function h(t) = (x + t)2/v(t), which has to be minimized
with respect to t. For x = 0.3 or smaller, we have t∗ ≈ x, whereas for x = 0.4,
t∗ ≈ 4. Somewhere between 0.3 and 0.4 is a value of x = x0 where the two local
minima are equal. As a function of x, t∗ makes big jump at x0.

2 4 6 8 10

1.2

1.4

1.6

1.8

2

2 4 6 8 10 12

1.2

1.4

1.6

1.8

2

Fig. 4. Plot of the function
(x + t)2

v(t)
. Left: x = 0.3. Right: x = 0.4.

Finally, the most probable paths shows that there is a very clear difference
between typical queues of sizes 0.3 and 0.4. In the former, the queue is caused
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only by the bursts from different users, which are independent. In the latter, the
busy period is larger than the period of the sources, which has the effect that the
strong correlations between bursts of each source have become dominant, and
the distribution tail decreases much slower than it did for small x’s. Pazhyannur
and Fleming discovered this queue behavior originally using more traditional
heavy traffic approximations, but our method added an immediate visual insight
which agreed with their interpretation. Moreover, they found that the Gaussian
approximations were also quantitatively quite good.

-6 -4 -2 2 4 6

0.05

0.1

0.15

0.2

0.25

0.3

-6 -4 -2 2 4 6

0.1

0.2

0.3

0.4

Fig. 5. Most probable queue path. Left: x = 0.3. Right: x = 0.4.

5 A Simple Model for Bandwidth Allocation by
Prediction

Our last example analyses the performance of a queue whose service capacity
is dynamically adjusted according to predicted demand, with a fixed prediction
delay. The following setup is probably the simplest possible model for that kind
of system.

Let At again be a Gaussian traffic process with parameters m and v(t).
Assume that instead of a fixed service rate, the service capacity is allocated
dynamically with a delay ∆, with a relative surplus capacity ε. That is, we
define the cumulative service process as

Ct
.= (1 + ε)(At−∆ −A−∆) (18)

(the last term is included in order to have C0 = 0). The queue length process is

Qt = sup
s≤t
(A(s, t)− C(s, t))

D= sup
t≥0
(Ut − εmt),

where Ut = Zt − (1 + ε)(Zt+∆ − Z∆). A straightforward computation gives
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Var (Ut) = (1 + (1 + ε)2)v(t)− (1 + ε)(v(t−∆) + v(t+∆)) + 2(1 + ε)v(∆).

In the space R we have

f(t)− (1 + ε)(f(t+∆)− f(∆)) = 〈f, Γ (t, ·)− (1 + ε)(Γ (t+∆, ·)− Γ (∆, ·))〉R.

Thus, by our general method, the most probable path of Z creating a queue of
size x at time 0 is

f∗
x(s) = −x+ εmt∗

Var (Ut∗)
(Γ (−t∗, s)− (1 + ε)(Γ (−t∗∆, s)− Γ (−∆, s)),

where t = t∗ > 0 minimizes
(x+ εmt)2

Var (Ut)
.

In fact, the delay in such a system is bounded by ∆. The delay of a “fluid
molecule” entering the system at time t can be expressed as

Dt
.= inf {τ : C(t, t+ τ) ≥ Qt} .

Now,

Qt − C(t, t+ τ) = sup
s≤t
(A(s, t)− (1 + ε)A(s−∆, t−∆))

−(1 + ε)A(t−∆, t−∆+ τ)
= sup

s≤t
(A(s, t)− (1 + ε)A(s−∆, t−∆+ τ)) ≤ 0

for τ ≥ ∆, assuming that At is nondecreasing (which does not hold strictly for
a Gaussian traffic model). (I thank P. Mannersalo for this insight.)

As an example, let us look at some paths in the case of fBm input At =
mt + σZt, where Z is a normalized fBm with self-similarity parameter H. The
figures below were made with ε = 0.1, ∆ = 1, m = 3, σ2 = 1, and H = 0.75.

Figure 6 compares the dynamically varied service with fixed service rate and
same 10% overallocation. It is no surprise that very big queues arise when such
a high load is offered to a fixed capacity server, whereas the queue remains
essentially bounded in the former case (remember that the delays are strictly
bounded). Figure 7 shows lower bound estimates of the complementary distri-
bution functions. Indeed, the distribution tail of the dynamically served queue
decreases very fast (faster than exponentially).

Figure 7 shows the most probable paths of the input rate and the queue of size
4. Note how cleverly our system makes its big (by its scale) queues: in order to
fool the prediction, the input is first very slow and then, when the control cannot
react any more, it suddenly speeds up. The queue path also has a noteworthy
feature: after an input peak, the typical queue first decreases quickly, but then
shifts to much slower decrease, whose slope corresponds to the overhead ε.
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Fig. 6. Queue length processes of a system with prediction based dynamic allocation
with ε = 0.1, ∆ = 1 (left), and a system with fixed service capacity (1+ε)m (right). The
input processes are identical discrete time fBm traces with m = 3, σ2 = 1, H = 0.75.
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log10P(Q>x)

Fig. 7. Queue length distribution lower bounds log10 �(x) (see (8)) for a system with
prediction based dynamic allocation with ε = 0.1, ∆ = 1 (squares), and a system with
fixed service capacity (1+ε)m (stars). The input processes are fBm with m = 3, σ2 = 1,
H = 0.75.
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Fig. 8. The most probable path with queue size x = 4 in a system with prediction
based dynamic allocation with ε = 0.1, ∆ = 1. The input process is fBm with m = 3,
σ2 = 1, H = 0.75. Left: rate. Right: queue length.
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6 Conclusion

We have presented a straightforward method for studying various queueing sys-
tems with general Gaussian input traffic. These included priority queues, two-
class GPS queues, and an example of dynamic server capacity allocation.

Using any advanced mathematical tool, it is possible to build expert systems,
which make the analyses in this paper half or fully automatic once the parameters
are given. In particular, the traffic in each class in described simply with mean
rate and the cumulative variance function.

The novel theoretical aspect in this work is that we are looking for approxi-
mations and bounds in a Gaussian space — not large deviation theorems, which
at least “officially” tell only about certain logarithmic limits. Although most
of our quantitative estimates are more or less heuristic, we hope that this new
point of view to queueing phenomena will prove fruitful in rigorous mathematics
also. One of the key challenges may then be understanding the geometry of the
threshold exceedance set in the neighborhood of the most probable path.
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