
A New Class of Online Minimum-Interference
Routing Algorithms

Ilias Iliadis and Daniel Bauer

IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland
{ili,dnb}@zurich.ibm.com

Abstract. On-line algorithms are essential for service providers to
quickly set up bandwidth-guaranteed paths in their backbone or trans-
port networks. A minimum-interference routing algorithm uses the infor-
mation regarding the ingress–egress node pairs for selecting a path in the
case of on-line connection requests. According to the notion of minimum
interference, the path selected should have a minimum interference with
paths considered to be critical for satisfying future requests. Here we in-
troduce a new class of minimum-interference routing algorithms, called
“simple minimum-interference routing algorithms” (SMIRA), that em-
ploy an efficient procedure. These algorithms use static network informa-
tion comprising the topology and the information about ingress–egress
node pairs, as well as the link residual bandwidth. Two typical algorithms
belonging to this class are introduced, and their performance is evaluated
by means of simulation. The numerical results obtained illustrate their
efficiency, expressed in terms of throughput, and fairness.

1 Introduction

This paper deals with the issue of dynamic bandwidth provisioning in a net-
work. This problem arises in several instances, such as in the context of dynamic
label-switched path (LSP) setup in multiprotocol label switching (MPLS) [1]
networks and in the context of routing virtual circuit requests over an ATM
backbone network [2]. In particular, this paper considers the issue of establish-
ing bandwidth-guaranteed connections in a network, in which connection-setup
requests arrive one by one and future demands are unknown. This is referred to
as an on-line algorithm, in contrast to an off-line algorithm that assumes a pri-
ori knowledge of the entire request sequence, including future requests. On-line
algorithms are essential owing to the need of service providers to quickly set up
bandwidth-guaranteed paths in their backbone or transport networks.

The primary routing problem consists of determining a path through the
backbone network that a connection should follow. Clearly, the available band-
width of all links on the path should be greater or equal to the requested band-
width. If there is insufficient capacity, some of the connections cannot be es-
tablished, and therefore are rejected. A significant body of work exists for the
on-line path selection problem. Several path selection algorithms proposed in

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 959–971, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



960 I. Iliadis and D. Bauer

the literature aim at limiting the resource consumption so that network utiliza-
tion is increased. The most important of these algorithms can be found in [3,
4]. The basic algorithms considered here along with a short description of their
functionality are listed below. Shortest-path routing (SP) algorithms select a
path with the least amount of aggregated cost. Minimum-hop routing algo-
rithms select a path with the least number of links as that path uses the smallest
amount of resources. When all links have the same cost, it is a special case of
an SP algorithm. Widest-shortest-path routing (WSP) algorithms select a
shortest path with the largest available (residual) bandwidth. Shortest-widest-
path routing (SWP) algorithms select a widest path with the least amount of
aggregated cost. A widest path is a path with maximum bottleneck bandwidth
or, equivalently, a path with the largest In addition to these algorithms, a more
sophisticated algorithm, called minimum interference routing algorithm
(MIRA), that uses the information regarding the ingress–egress pairs was re-
cently developed [5]. Despite the fact that this algorithm uses this information
pertaining to the past, present, and future requests, it is considered to be an on-
line algorithm because the future connection requests are unknown. However,
the effect of future requests is indirectly incorporated through the notion of the
minimum-interference routing.

The second problem related to the primary routing is that of admission con-
trol. Routing algorithms can be categorized into two classes according to the
control of admitting connections [6]. Greedy algorithms always establish a con-
nection as long as sufficient capacity is available. Trunk-reservation algorithms
reject a connection if assigning any of the existing paths could result in inefficient
use of the remaining capacity regarding future connection requests [7].

Section 2 reviews the concept of minimum-interference routing and briefly de-
scribes the MIRA algorithm, the first such algorithm presented in [5]. The main
contributions of this paper are presented in Sections 3 and 4. In Section 3, we
present a new class of minimum-interference routing algorithms, called “simple
minimum-interference routing algorithms” (SMIRA). This class of algorithms
is not based on the principle of calculating maximum flows, but rather uses a
more efficient (in terms of computational complexity) approach, hence the term
“simple”. In Section 4, we examine the efficiency of the algorithms proposed by
means of simulation, and compare them with the SP, SWP, WSP, and MIRA
algorithms. The efficiency assessment is based on performance metrics includ-
ing the throughput, expressed as the total bandwidth of the routed (accepted)
connections, the blocking-free range, and the fairness achieved among different
ingress–egress node pairs. In particular, we demonstrate that the effectiveness of
a given algorithm strongly depends on the performance criterion chosen. Finally,
we draw conclusions in Section 5.

2 Minimum-Interference Routing

In this section, the notion of minimum-interference routing and the first MIRA
algorithm are reviewed. Although for on-line algorithms future connection re-



A New Class of Online Minimum-Interference Routing Algorithms 961

quests are unknown, the effect of future requests can be indirectly incorporated
through the notion of minimum-interference routing. A new connection should
follow a path that does not “interfere too much” with a path that may be critical
to satisfy a future request. Note that this notion can only be used in conjunc-
tion with knowledge of all ingress–egress pairs. An explicit path between a given
ingress–egress pair can in principle be calculated according to a defined inter-
ference criterion. For example, the criterion could be the maximization of the
smallest maxflow value of all remaining ingress–egress pairs, the maximization of
the weighted sum of the remaining maxflows (referred to as WSUM-MAX) [5],
or the maximization of the maximum throughput of the corresponding multi-
commodity flow problem [7]. These problems are quite complex, therefore alter-
native, simplified approaches are highly desirable. One possibility is to turn the
original problem into an equivalent shortest-path routing problem with appro-
priately selected link-cost metrics. In [5], this transformation is done as follows.
The amount of interference on a particular ingress–egress pair, say (s, d), due
to the routing of a connection between some other ingress–egress pair is defined
as the decrease of the maximum flow value between (s, d). Then, the notion of
critical links is introduced. These are links with the property that whenever a
connection is routed over them, the maxflow values of one or more ingress–egress
pairs decrease. For this definition, it turns out that the set of critical links corre-
sponding to the (s, d) pair coincides with the links of all minimum cuts for this
pair. Links are subsequently assigned weights that are an increasing function of
their “criticality”: the weight of a link is chosen to be the rate of change in the
optimum solution of the original WSUM-MAX problem with respect to chang-
ing the residual capacity of the link. This choice results in critical links being
assigned the highest weights. Finally, the actual explicit path is calculated using
an SP algorithm.

3 Simple Minimum-Interference Routing Algorithms

In this section, we introduce the class of the simple minimum-interference routing
algorithms (SMIRA). The term “simple” reflects the fact that they do not define
the critical links according to maximum-flow calculations, as done by MIRA,
but rather employ a simpler approach, which, as will be seen below, has a lower
computational complexity than the MIRA maximum-flow approach.

To devise an alternative notion for the critical links we resort to the funda-
mental objective of minimum-interference routing, namely that a new connection
must follow a path that interferes as little as possible with a path that may be
critical to satisfy a future request. This requires that paths associated with future
requests be taken into account and also that links associated with such critical
paths be identified and weighted accordingly. One possible way to achieve this is
the following. Let P be the set of ingress–egress node pairs, and suppose that the
connection request is between nodes a and b. For every of the remaining ingress–
egress pairs (s, d) we identify a set of critical paths, and each link of such a path
is weighted accordingly. When this process has been completed, links having



962 I. Iliadis and D. Bauer

minimum weight are associated with paths that do not interfere with future re-
quests. Routing the current connection request on a shortest path with respect
to these weights results in a residual network in which the interference of the
remaining ingress–egress pairs is kept to a minimum.

3.1 Critical Paths

There are several ways to identify a set of critical paths corresponding to the
ingress–egress pair (s, d). Here we introduce a procedure for obtaining the set
of critical paths called K-widest-shortest-path under bottleneck elimination. This
procedure identifies a set of critical paths by making use of a WSP algorithm. The
paths are enumerated in descending order of their significance. The algorithm
starts with selecting the widest-shortest path between pair (s, d). Let L

(1)
sd denote

the set of links constituting this widest-shortest path, and let btl
(1)
sd be the corre-

sponding (bottleneck) bandwidth of this path. Let also Btl
(1)
sd denote the subset

of link(s) of this path whose residual bandwidth is equal to the bottleneck value
btl

(1)
sd . The next (second) member is found by computing the shortest-widest

path when the links of the set Btl
(1)
sd are removed from the network. This proce-

dure is repeated until either K paths are found or no more paths are available,
whichever occurs first. It is realized by using the Dijkstra algorithm [8] in each
iteration, therefore its complexity is of order O(K(n log n+m)), n and m being
the number of nodes and links, respectively.

An alternative procedure can be derived by using an SWP algorithm – or
any other path-computation method – to enumerate the critical paths. This pro-
cedure, called K-shortest-widest-path under bottleneck elimination, is realized by
using the Dijkstra algorithm twice in each iteration [3], therefore its complexity
is also of order O(K(n logn+m)).

For networks of practical relevance, it turns out that the value of K is typ-
ically a small number. Therefore, the complexity of the above procedures is of
order O(n log n + m). On the other hand the complexity of the procedure for
determining the set of critical links in the case of the MIRA algorithm is of
order O(n2√m+m2) [5]. This complexity results from the two phases used by
MIRA. The first consists of a maximum flow calculation with a computational
complexity of O(n2√m). The second consists of the process of enumerating all
links belonging to minimum cuts with a complexity of O(m2). Thus, the total
complexity is of order O(n2√m+m2). In particular, in the case of sparse topolo-
gies, MIRA’s complexity is of order O(n2+ 1

2 ) as m is of order O(n), whereas that
of our algorithm is of order O(n log n). In the case of dense topologies, MIRA’s
complexity is of order O(n4) as m is of order O(n2), whereas that of our al-
gorithm is of order O(n2). Therefore, our proposed procedures have a shorter
expected execution time, justifying the use of the term “simple”.



A New Class of Online Minimum-Interference Routing Algorithms 963

3.2 Link-Weight Assignment

Each link is initially assigned a static cost. For critical links this cost is scaled by
a factor that includes two weight components. The first one is associated with
the path(s) to which this link belongs. Naturally, higher weights are assigned to
paths with higher significance. The second reflects the importance of the links
constituting each of the critical paths.

We now turn our attention to the first weight component. Let L
(i)
sd denote the

set of the links constituting the i-th path associated with the ingress–egress pair
(s, d), and w

(i,l)
sd denote the corresponding weight contributed to link l of this

set. Let also btl
(i)
sd be the corresponding bandwidth of this path, and Btl

(i)
sd be

the subset of the corresponding bottleneck link(s). The paths are enumerated in
descending order of their significance. In accordance, the links of the L

(i)
sd path

are weighted with a factor v
(i)
sd , which is a decreasing function in i such that

the weight for link l should be proportional to this factor, i.e. w
(i,l)
sd ∼ v

(i)
sd . Our

rationale is the following: if all candidate paths for the new connection contain
links that have already been marked by this process, i.e. the interference cannot
be avoided, then the links associated with the most critical paths corresponding
to the other ingress–egress pairs should be avoided by assigning them the highest
weights. In this way the interference is relegated to secondary paths. There are
infinitely many discounting value functions one could choose. Here we consider
the following two functions: v

(i)
sd = 1 and v

(i)
sd = (K − i+ 1)/K.

The next consideration is the weight assignment for the links constituting
path L

(i)
sd . Let g

(i,l)
sd denote the corresponding weight for link l. Intuition dictates

that bottleneck links should be assigned a higher value than other links. Here
again, there are infinitely many discounting value functions one could choose.
In this paper, we consider two functions defined as follows. The inversely pro-
portional function g

(i,l)
sd = btl

(i)
sd /r(l) and the step function g

(i,l)
sd = �btl(i)sd /r(l)�,

where r(l) denotes the residual bandwidth of link l ∈ L
(i)
sd . Note that btl

(i)
sd /r(l) is

a decreasing function in r(l) with btl
(i)
sd /r(l) ≤ 1. Consequently, �btl(i)sd /r(l)� = 1,

if and only if r(l) = btl
(i)
sd , otherwise �btl(i)sd /r(l)� = 0. Thus, in the case of the step

function, it holds that g
(i,l)
sd =

{
1 l is a bottleneck link of the path L

(i)
sd ,

0 otherwise .

We proceed by choosing the weight contributed to link l to be proportional
to the factors defined above, i.e. w

(i,l)
sd ∼ v

(i)
sd and w

(i,l)
sd ∼ g

(i,l)
sd . In particular, we

choose w
(i,l)
sd = w v

(i)
sd g

(i,l)
sd , (l ∈ L

(i)
sd ) , where w is a scaling factor.

By taking into account all contributions, the weight of each link is then
calculated by w(l) = c(l)

{
1 +

∑
(s,d)∈P\(a,b) asd

∑K
i=1

∑
l∈L

(i)
sd

w
(i,l)
sd

}
, or

w(l) = c(l)


1 + w

∑
(s,d)∈P\(a,b)

asd

K∑
i=1

v
(i)
sd

∑
l∈L

(i)
sd

g
(i,l)
sd


 , (1)



964 I. Iliadis and D. Bauer

where c(l) is a static cost that could, for example, depend on the capacity of
the link, and asd is the weight of the ingress–egress pair (s, d). Note that for
noncritical links it holds that w(l) = c(l).

3.3 The SMIRA Algorithm

In summary the SMIRA algorithm is as follows:
INPUT: A graph G(N,L), the residual bandwidth r(l) for each link, and a set
P of ingress–egress node pairs. An ingress node a and an egress node b between
which a flow of D units have to be routed.
OUTPUT: A route between a and b with a bandwidth of D units, if it exists.
ALGORITHM:
1. Compute the K-critical paths ∀(s, d) ∈ P\(a, b). Let L

(i)
sd be the set of the

links constituting the i-th path.
2. Assign weight on each link according to Eq. (1).
3. Eliminate all links that have residual bandwidth smaller than D and form a
reduced network.
4. Use Dijkstra’s [8] algorithm to compute the shortest path in the reduced
network with w(l) as the weight of link l.
5. Route the demand of D units from a to b along this shortest path, and update
the residual capacities.

SMIRA, as defined above, clearly constitutes a general class of algorithms
containing an unlimited number of particular instances (implementations). Here
we consider two particular algorithmic instances, and investigate their perfor-
mance. The first is called minimum-interference bottleneck-link-avoidance algo-
rithm (MI-BLA), and is derived from the following choices:
– The set of critical paths is obtained using the K-widest-shortest-path under
bottleneck-elimination procedure, with K equal to 6.
– All paths are considered to have the same weight, i.e. v

(i)
sd = 1.

– Links are valued according to the step function, i.e. g
(i,l)
sd =

⌊
btl

(i)
sd /r(l)

⌋
.

– Setting asd = 1 and w = 2, the weight of each link is then calculated by

w(l) = c(l)
{
1 + 2

∑
(s,d)∈P\(a,b)

∑K
i=1

∑
l∈L

(i)
sd

⌊
btl

(i)
sd

r(l)

⌋}
.

The second is called minimum-interference path avoidance algorithm (MI-PA),
and is derived from the following choices:
– The set of critical paths is obtained using the K-widest-shortest-path under
bottleneck-elimination procedure, with K equal to 4.
– Paths are weighted according to the discounting function v

(i)
sd = (K − i+1)/K.

– Links are valued inversely proportional, i.e. g
(i,l)
sd = btl

(i)
sd /r(l).

– Setting asd = 1 and w = 2, the weight of each link is then calculated by

w(l) = c(l)
{
1 + 2

∑
(s,d)∈P\(a,b)

∑K
i=1

K−i+1
K

∑
l∈L

(i)
sd

btl
(i)
sd

r(l)

}
.



A New Class of Online Minimum-Interference Routing Algorithms 965

S1

D3

S2

D4D2

S3

S6

D5

D6

S4

D1

S5

S1

D3

S2

D4D2

S4

D1

S3

N2+N1

10

1

3

2

5

12

14

13

9 15

8

4

7

6

11

10

1

3

2

5

12

14

13

9 15

8

4

7

6

11

Fig. 1. Example networks N1 and N2+.

4 Numerical Results

In this section, we compare the performance of the two SMIRA-type algorithms
MI-BLA and MI-PA with the shortest-path (SP), shortest-widest-path (SWP),
widest-shortest-path (WSP), and, where results are available, with the S-MIRA
and L-MIRA algorithms. The experiments are carried out using network topol-
ogy N1 of [5], see Figure 1. Links are bi-directional with a capacity of 1200 units
(thin lines) and 4800 units (thick lines).1 Each link l is assigned a static cost
c(l) of one unit. The network contains the four ingress–egress pairs (S1→D1),
(S2→D2), (S3→D3), and (S4→D4). Path requests are limited to those pairs
only. We have chosen this network such that the performance results can be
directly compared with those published in [5].

All experiments are conducted using “static” requests, i.e. the bandwidth
allocated for a request is never freed again. Requests are selected randomly and
are uniformly distributed among all ingress–egress pairs. In all experiments, 20
test runs were carried out, and the results shown are the mean values obtained.
They have a 99% confidence interval not exceeding 1% of the mean values.

4.1 Experiment 1: Uniform Link Costs

In a first experiment, network N1 is loaded with 7000 requests. The bandwidth
demand of each request is uniformly distributed in the range of 1 to 3 units (only
integer values are used). Because the cost of the links in network N1 is set to 1,
the SP algorithm is reduced to a minimum-hop algorithm.

The bandwidth of accepted requests of experiment 1 is shown in Figure 2.
For each algorithm, the bandwidth increases with the number of requests until
a saturation point is reached at which no more requests can be accommodated.
The first performance measure we use is the bandwidth of successfully routed
requests after the saturation point has been reached. The SP shows the weakest
1 Owing to an error in the production of the final version of [5], links 2-5, 2-3, and

14-15 are erroneously shown as having a capacity of 1200 units. For the experiments
described in [5], those links had a capacity of 4800 units.



966 I. Iliadis and D. Bauer

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

3500 4000 4500 5000 5500 6000 6500 7000

Maximum throughput
MI-BLA

Widest-Shortest Path
Shortest-Widest Path

MI-PA
Shortest Path

Fig. 2. Throughput of accepted requests using demands of 1 to 3 in N1.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

3000 3500 4000 4500 5000 5500 6000 6500 7000

MI-BLA
Widest-Shortest Path
Shortest-Widest Path

MI-PA
Shortest Path

Fig. 3. Blocked requests using demands of 1 to 3 in N1.

performance, with a saturation point around 10200 bandwidth units. The best
performance is shown by MI-BLA with 10800 units, followed very closely byWSP
with 10770 units, and MI-PA and SWP with 10610 and 10550 units, respectively.
Note that also the theoretical maximum is 10800 units. This maximum results
from the solution of the multicommodity flow problem that maximizes the total
flow of four commodities between the four ingress–egress pair. This is referred
to as the maximum throughput problem [9]. Because requests are uniformly dis-
tributed among all ingress–egress pairs, we are also interested in a solution where
the flow of each of the four commodities has the same value. This refers to the
maximum concurrent flow variant of the multicommodity flow problem [9]. If the
network is uniformly loaded, it is clear that a greedy routing algorithm cannot
result in a flow that exceeds the maximum concurrent flow without rejecting
any request. In our case, it turns out that the maximum throughput and the
maximum concurrent flow have the same value of 10800. This implies that there
is a solution where 2700 units can be transported between each ingress–egress
pair, resulting in a total throughput of 10800 units. This maximum throughput
is indicated by the “Maximum-throughput” line in Figure 2.



A New Class of Online Minimum-Interference Routing Algorithms 967

Table 1. Blocking rate per ingress–egress pair in N1.

Algorithm (S1→D1) (S2→D2) (S3→D3) (S4→D4)
MI-BLA 16.88% 16.81% 16.86% 16.82%
WSP 26.26% 8.42% 24.96% 8.43%
MI-PA 32.38% 8.81% 23.81% 8.79%
SWP 18.83% 18.64% 18.59% 18.59%
SP 45.25% 7.55% 25.54% 7.58%

Table 2. Number of blocked requests of total 5000 requests in N1.

Algorithm Blocked requests Algorithm Blocked requests
Avg Min Max Avg Min Max

Min-Hop ≈400 ≈350 ≈450 SP 404 353 448
WSP ≈340 ≈310 ≈380 WSP 86 28 151
S-MIRA ≈80 0 ≈150 SWP 0 0 0
L-MIRA 0 0 0 MI-BLA 0 0 0

A second performance measure looks at the number of blocked requests.
Figure 3 shows the number of blocked versus total requests. After 3450 requests,
the SP algorithm starts to block some requests. MI-PA blocks after 3950 requests,
WSP starts to block after 4750 requests, followed by SWP at 5230 and MI-BLA
at 5350. From the above, it is clear that the blocking-free range strongly depends
on the algorithm used. Note that although WSP starts to block quite early, it
still achieves a throughput close to the theoretical maximum. Similarly, MI-PA
has a short blocking-free range but achieves a higher total throughput than WSP
does. This is due to the fact that the request-blocking rates of WSP and MI-PA
differ significantly among the ingress–egress pairs. Table 1 shows the blocking
rate per ingress–egress pair of various algorithms after 6500 requests have been
processed, i.e. at a saturation point. MI-BLA and SWP almost achieve perfect
fairness among the pairs, whereas WSP, MI-PA, and SP favor pairs 2 and 4.

Our results on the number of blocked requests are directly comparable with
some of the results published in [5]. Figure 7 in [5] shows the number of blocked
requests out of a total of 5000 requests for minimum-hop, WSP, S-MIRA, and
L-MIRA. Table 2 compares the results presented in [5] (first four columns) with
our results (columns 5 to 8). For all algorithms, the average, minimum, and
maximum number of blocked requests are given.

We observe that Min-Hop closely matches our results of SP. Because uniform
link costs have been used, SP actually computes minimum-hop paths. The results
for WSP, however, do not match. In our experiment, WSP achieves a similar
performance as S-MIRA does. Furthermore, we observe that L-MIRA achieves
a perfect score with no blocked requests. In our experiment, we obtain the same
result for both SWP and MI-BLA.

4.2 Experiment 2: Costs Inversely Proportional to Link Capacity

In the next experiment, we study the effect of static link costs on the perfor-
mance. In network N1, all links have a cost of 1. We obtain network N2 by



968 I. Iliadis and D. Bauer

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

3500 4000 4500 5000 5500 6000 6500 7000

Maximum throughput
MI-BLA

Widest-Shortest Path
Shortest-Widest Path

MI-PA
Shortest Path

Fig. 4. Throughput of accepted requests using demands of 1 to 3 in N2.

9500

10000

10500

11000

11500

12000

12500

13000

13500

14000

5000 6000 7000 8000 9000 10000

Maximum flow
MI-BLA

Widest Shortest Path
Shortest Widest Path

MI-PA
Shortest Path

Fig. 5. Throughput of accepted requests using demands of 1 to 3 in N2+.

assigning different costs to the links. Following a common practice, we assign
link costs inversely proportional to the link capacities. Links with capacity 1200
are assigned a cost of 4, and links of capacity 4800 are assigned a cost of 1. As
shown in Figure 4, all algorithms perform almost equally well. The bandwidth
routed by all algorithms is very close to the theoretical maximum of 10800 units.
However, SP and in particular MI-PA achieve this maximum later than the other
algorithms do.

4.3 Experiment 3: Additional Ingress–Egress Nodes

In a third experiment, we increase the possibility of “interference” by increasing
the number of ingress–egress pairs. To obtain the example network N2+, two
additional ingress–egress pairs have been added to N1, see Figure 1. A number
of 11000 requests are issued, and as in the previous experiments, the requests
are uniformly distributed among the six ingress–egress pairs.



A New Class of Online Minimum-Interference Routing Algorithms 969

Table 3. Maximum concurrent flow in N2+.

(S1→D1) (S2→D2) (S3→D3) (S4→D4) (S5→D5) (S6→D6) Sum of flows
Step 1 2000 2000 2000 2000 2000 2000 12000
Step 2 2400 2000 2400 2400 2000 2000 13200
Step 3 2400 2000 2800 2400 2000 2000 13600

As shown in Figure 5, the best performance is achieved by MI-PA, reaching
a total throughput of close to 13600 units. WSP and SP exhibit a very similar
behavior: both start to block requests early, but are able to successfully route a
total of 13400 and 13300 units, respectively. MI-BLA, on the other hand, starts
to block later, but saturates earlier, at 13000 units. WSP is the least successful
strategy in this environment, it reaches its saturation point already at 12600.

To compute the theoretical maximum performance of greedy algorithms, we
resort to the multicommodity flow problem that maximizes the flow of six com-
modities corresponding to the ingress–egress pairs. In this case, it turns out
that the maximum concurrent flow and the maximum throughput of the mul-
ticommodity flow problems do not coincide. In a first iteration, we find that a
maximum of 2000 units of flow can be transported between each pair, resulting in
a maximum concurrent flow of 12000 units. The flow can no longer be increased
because some pairs are saturated. In our case it turns out that there still is
residual bandwidth left between pairs (S1→D1), (S3→D3) and (S4→D4). If we
compute the maximum concurrent flow in the residual network for the unsatu-
rated pairs, we find that these pairs support another 400 units of flow. In a third
step, we find that pair (S3→D3) supports another additional 400 units of flow.
With this three-step approach, we obtain the maximum throughput as 13600
units. Table 3 summarizes the three maximum concurrent flow computations.

Table 3 also defines how the optimum algorithm works in the settings of
experiment 3. Requests for pairs (S2→D2), (S5→D5) and (S6→D6) are blocked
after 2000 units of bandwidth have been routed over those pairs. Next, request for
pairs (S1→D1) and (S4→D4) are blocked after 2400 units of bandwidth. Finally,
requests for pair (S3→D3) are blocked. At this point, an optimum algorithm
reaches its saturation point, with 13600 units of bandwidth routed in total. For
an average request size of 2, the saturation point is expected to be reached at
8400 requests.

MI-PA achieves near-optimum performance with respect to the total through-
put. Figure 6 shows that also MI-PA is very close to the optimum solution with
respect to the request-acceptance rate of individual pairs. MI-PA slightly over-
allocates requests for pair 3 at the expense of pair 6. The request-acceptance
rates of individual pairs differ significantly for WSP and SP. Compared with the
optimum solution (shown on the left), both WSP and SP over-allocate requests
for pairs 3 and 4, while under-allocating requests for other pairs. MI-BLA and
SWP, on the other hand, show a greater fairness among the pairs.



970 I. Iliadis and D. Bauer

Fig. 6. Bandwidth of accepted requests per ingress–egress pair.

5 Conclusions

Here we have addressed the issue of on-line path selection for bandwidth-guaran-
teed requests. We have presented a new class of minimum-interference routing
algorithms called “simple minimum-interference routing algorithms” (SMIRA),
designed for a reduced computational complexity compared with the existing
MIRA maximum-flow approach. Two typical algorithms, called MI-BLA and
MI-PA, belonging to this class were introduced, and their efficiency in terms
of the throughput of accepted requests and blocking-free range, as well as their
fairness were assessed by means of simulation. The results obtained in the topolo-
gies considered demonstrate that these algorithms can achieve a similar optimum
performance as the earlier MIRA algorithm, however, at reduced computational
complexity. Comparisons with the performance of some of the established rout-
ing algorithms revealed that employment of MI-BLA and MI-PA in networks
with a high degree of interference improves the performance compared with
that of the shortest-path, widest-shortest-path, and shortest-widest-path algo-
rithms. Furthermore, our algorithms exhibit a higher degree of fairness among
the ingress–egress node pairs. An investigation and assessment of how the algo-
rithms proposed perform in dynamic environments is a significant area of future
work. A more systematic approach for determining the optimum algorithmic
instance within the SMIRA algorithm is also a topic for further investigation.

References

1. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architec-
ture. RFC 3031 (January 2001).

2. The ATM Forum: Private Network-Network Interface Specification Version 1.0.
Specification Number af-pnni-0055.000 (March 1996).

3. Ma, Q., Steenkiste, P.: On Path Selection for Traffic with Bandwidth Guarantees.
In: Proc. IEEE Int’l Conf. on Network Protocols, Atlanta, GA (1997) 191-202.

4. Gawlick, R., Kalmanek, C., Ramakrishnan, K. G.: On-line Routing for Permanent
Virtual Circuits. In: Proc. IEEE INFOCOM ‘95, Boston, MA, Vol. 1 (1998) 278-
288.



A New Class of Online Minimum-Interference Routing Algorithms 971

5. Kar, K., Kodialam, M., Lakshman, T. V.: Minimum Interference Routing of Band-
width Guaranteed Tunnels with MPLS Traffic Engineering Applications. IEEE J.
Sel. Areas Commun. 18 (2000) 2566-2579.

6. Gibbens, R. J., Kelly, F. P., Key, P. B.: Dynamic Alternative Routing – Modelling
and Behavior. In: Proc. 12th Int’l Teletraffic Congress, Turin, Italy (1988) 1019-
1025.

7. Suri, S., Waldvogel, M., Warkhede, P. R.: Profile-Based Routing: A New Frame-
work for MPLS Traffic Engineering. In: Boavida, F., Ed., Quality of Future Internet
Services, LNCS 2156 (Springer, Berlin, 2001).

8. Dijkstra, E. W.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1 (1959) 269-271.

9. Aumann, Y., Rabani, Y.: An O(log k) Approximate Min-Cut Max-Flow Theorem
and Approximation Algorithm. SIAM J. Comput. 27 (1998) 291-301.


	Introduction
	Minimum-Interference Routing
	Simple Minimum-Interference Routing Algorithms
	Critical Paths
	Link-Weight Assignment
	The SMIRA Algorithm

	Numerical Results
	Experiment 1: Uniform Link Costs
	Experiment 2: Costs Inversely Proportional to Link Capacity
	Experiment 3: Additional Ingress--Egress Nodes

	Conclusions

