
Efficient Simulation of Blocking Probabilities for
Multi-layer Multicast Streams

Jouni Karvo

Networking Laboratory, Helsinki University of Technology,
P.O.Box 3000, FIN-02015 HUT, Finland.

Jouni.Karvo@hut.fi

Abstract. This paper presents an efficient algorithm for Monte-Carlo
simulation of time blocking probabilities for multi-layer multicast
streams with the assumption that blocked calls are lost. Users may join
and leave the multicast connections freely, thus creating dynamic mul-
ticast trees. The earlier published algorithms are applicable to small
networks or networks with few users. The present simulation algorithm
is based on the inverse convolution method, and is the only effective way
to handle large systems, known to the author.

1 Introduction

This paper presents an efficient algorithm for Monte-Carlo simulation of time
blocking probabilities for multi-layer multicast streams with the assumption that
blocked calls are lost. Consider a network with circuit switched traffic, or packet
switching with strict quality guarantees, such as the IntServ architecture in the
Internet. Decisions on whether to allow a new connection in the network are
made according to availability of resources.

In general, traffic is a mixture of point-to-point (unicast) and point-to-multi-
point (or multicast) traffic. There are well known algorithms for calculating
blocking probabilities for unicast traffic in absence of multicast traffic, see e.g. [1,
2]. Multicast, however, gives rise to a multitude of new problems, (see e.g. [3]),
one of which is blocking probability calculation. A model called “multicast loss
system” has been developed for calculating blocking probabilities in recent years.
This system comprises a tree-structured multicast network with dynamic mem-
bership. In this network, users at the leaf nodes can join or leave any of the
several multicast channels offered by one source, the root of the tree. The users
joining the channels form dynamic multicast connections that share the network
resources. Blocking occurs when there are not enough resources available in the
network to satisfy the resource requirements of a request. Blocked calls are lost.
The multicast loss system may be seen as a virtual network over the real one,
carrying the multicast traffic of the real network.

The time blocking probability is the probability that the system is in a state
where a call cannot be established due to unavailable resources, while the call
blocking probability is the probability that a user’s attempt to establish a call

E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 1020–1031, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Efficient Simulation of Blocking Probabilities 1021

fails due to unavailable resources. These probabilities are intimately related, and
it is possible to calculate the call blocking probability in a multicast loss system
knowing the time blocking probability.

Audio and video streams can be coded hierarchically [4]. In hierarchical, or
layered, coding, information is separated according to its importance, and then
coded and transmitted in separate streams. In the present setting a user may,
depending on her needs and abilities, subscribe to the most important sub-stream
only, in which case she is said to be on layer 1, or subscribe to any number r
of the most important sub-streams, in which case she is on layer r. This paper
studies the effective simulation of blocking probabilities for multicasted layered
streams. The assumption that blocked calls are lost implies that if a user does not
get the desired layer (or number of sub-streams) due to blocking, she will not get
any layer. That is, there will be no re-negotiation of lower quality transmission.

Chan and Geraniotis [5] studied the system of layered video multicasting.
They gave the definition of the state space, but resorted to approximations for
the actual calculations. After their work, research has concentrated on non-
layered multicast streams, see e.g. [6,7]. An efficient Monte-Carlo simulation
method for dynamic multicast networks with single layer multicast streams has
been developed by Lassila et al. [8]. This method was based on the inverse
convolution method Lassila and Virtamo published in [9]. Recently, there has
been progress in the case where the multicast streams are layered. Karvo et
al. [10] developed an algorithm for calculating blocking probabilities of two-layer
streams with Poisson arrivals and exponential holding times. They extended
their study in [11] to an arbitrary number of layers, and studied the validity of
the insensitivity property for different user models. The present paper provides
an efficient simulation algorithm extending the inverse convolution approach of
Lassila et al. [8] to this multi-layer case.

This paper is organized as follows. Section 2 presents the basic system model,
and the time blocking probability calculation with exponential computational
complexity. The problem of estimating time blocking probabilities is divided into
smaller sub-problems in section 3. Section 4 contains the main contribution of
this paper, showing how the inverse convolution method is applied to the layered
multicast case. A numerical example is given in section 5, and the results are
summarised in section 6.

2 Multicast Loss System

This section presents the system model and the notation for the multicast loss
system. This model is the same as in [11]. Consider a network consisting of J
links, indexed with j ∈ J = {1, . . . , J}, link j having a capacity of Cj resource
units. The network is organized as a tree. The set U denotes the set of user
populations, located at the leaves of the tree. The leaf links and the user popu-
lations connected to them are indexed with the same index u ∈ U = {1, . . . , U}.
The set of links on the route from user population u to the root node is denoted
by Ru. The user populations downstream link j, i.e. for which link j ∈ Ru, are

1022 J. Karvo

denoted by Uj . The size of the set Uj is denoted by Uj . Let Mj denote the set
of all links downstream link j (including link j), and Nj the set of neighbouring
links downstream link j (excluding link j). The links of the tree are indexed so
that for all j′ ∈ Nj , j′ < j. Thus, the root link is denoted by J . The multicast
network supports I channels, indexed with i ∈ I = {1, . . . , I}. The channels
originating from the root node represent different multicast transmissions, from
which the users may choose. There are L layers. Each layer l ∈ L = {1, . . . , L}
has a capacity requirement of d(l) capacity units. The capacity requirements are
unique and d(l) < d(l′) for all l < l′, i.e. layer L contains all hierarchically coded
sub-streams, layer 2 the two most important ones, and layer 1 only contains the
most important sub-stream.

2.1 State Space

The states of the channels in a link define the state of that link. Each channel
is in one of the states {0, 1, . . . , L}, depending on whether the channel is off, or
on layer 1, . . . , L. That is, the state of channel i on link j is Yj,i ∈ {0, . . . , L}.
The vector Yj = (Yj,i; i ∈ I) ∈ {0, . . . , L}I denotes the state of link j. The
tuple (u, i, l) of the user population u (leaf link), channel i and layer l defines a
multicast connection. The states Yu of all the leaf links define the network state
X,

X = (Yu;u ∈ U) = (Yu,i;u ∈ U , i ∈ I) ∈ Ω , (1)

where Ω = {0, . . . , L}U×I denotes the network state space. The network state
determines the state of any link j as follows:

Yj =

Yu, if j = u ∈ U ,
max
u′∈Uj

(Yu′), otherwise , (2)

where max(·) denotes the component-wise max-operation. The occupancy of any
link j is determined by the link state as

Sj = D(Yj) =
I∑

i=1

d(Yj,i) , (3)

where d(0) = 0, i.e. when channel is off, it does not need any link capacity. The
occupancy generated by all other channels but I is denoted by S′

j = D′(Yj) =∑I−1
i=1 d(Yj,i).
Finally, in a finite capacity network, the capacity constraints of the links

truncate the state space,

Ω̃ =
{
x ∈ Ω

∣∣∣D(yj) ≤ Cj ,∀j ∈ J
}
. (4)

Efficient Simulation of Blocking Probabilities 1023

2.2 Probability Distributions

Let us assume that the user populations of the leaf links are independent, and
that the leaf link distributions πu(y) = P{Yu = y}, u ∈ U , are known, and
represent stationary distributions of reversible Markov processes satisfying the
detailed balance equations. Several types of user population models of this kind
have been discussed in [7], and in [11].

The steady state probabilities π(x) of the network states in a system with
infinite link capacities can be calculated from

π(x) = P{X = x} =
∏
u∈U

πu(yu) , (5)

since the user populations are independent. The inverse convolution approach
also dictates that all channels shall be independent. Thus,

πu(yu) =
∏
i∈I

pu,i(yu,i) . (6)

As already noted in [11], probabilities π̃(x), x ∈ Ω̃, of states in a system with
finite link capacities are obtained by truncation

π̃(x) = P{X = x |X ∈ Ω̃} =
π(x)

P{X ∈ Ω̃} , (7)

where P{X ∈ Ω̃} =
∑

x∈Ω̃ π(x). This follows from the assumed detailed balance.
See Kelly [12] for discussion of truncation.

2.3 Blocking

In a finite capacity network, blocking occurs whenever a user tries to establish a
connection for channel i and layer r, and there is at least one link j ∈ Ru where
the channel is on state l < r and there is not enough spare capacity for setting
the channel on the requested layer. Without loss of generality, the channels are
ordered so that the blocking probability is calculated for channel with index
I. Consider link j. A request for layer r succeeds if there is enough capacity
already reserved for the layer in link j, or there is enough free capacity in the
link, i.e. max{d(r), d(yj,I)} ≤ Cj −D′(yj). The expression “link j blocks” means
that this condition does not hold for link j. The set Bu,r consists of the states
where at least one link blocks for connection (u, I, r), when layer r of channel I
is requested by user u, and is defined as

Bu,r =
{
x ∈ Ω̃

∣∣∣ ∃j ∈ Ru : d(r) > Cj − D′(yj)
}
. (8)

Then the time blocking probability for connection (u, I, r) is

Bu,r = P{X ∈ Bu,r |X ∈ Ω̃} =
P{X ∈ Bu,r}
P{X ∈ Ω̃} . (9)

1024 J. Karvo

Call blocking probabilities for users depend on the chosen user model, as dis-
cussed in [11]. Calculation of time blocking probabilities for layers is easy, but
very time consuming: the number of states in the state space is (L+ 1)UI . The
following section attacks this problem using the inverse convolution method.

3 Divide and Conquer

This section discusses efficient estimation of time blocking probabilities by ap-
plying the algorithm developed by Lassila and Virtamo [9]. As the form of the
stationary distribution π(x) is known, a natural choice for simulation is the
Monte Carlo method. The main problem in the simulation is to quickly get a
good estimate for P{X ∈ Bu,r}, i.e., the numerator in Eq. (9), especially in the
case when the blocking probability Bu,r is small. Note that Bu,r also depends
on P{X ∈ Ω̃} given by the denominator of Eq. (9). This probability is usually
close to unity and is easy to estimate using the standard Monte Carlo method.
Therefore, the rest of this paper concentrates on efficient methods for estimating
P{X ∈ Bu,r}.

First, section 3.1 divides the task of estimating P (Bu,r) into simpler sub-
problems. Then, each of the sub-problems is solved using importance sampling,
as is described in section 3.2.

3.1 Decomposition

In order to divide the task of estimating P (Bu,r) to simpler sub-problems, Bu,r

is partitioned into sets Ej
u,r. Ej

u,r is defined as the set of points in Bu,r where link
j blocks but none of the links closer to user u block,

Ej
u,r = Bu,r ∩

{
x ∈ Ω̃

∣∣∣ d(r) > Cj − D′(yj) ∧

d(r) ≤ Cj′ − D′(yj′),∀j′ ∈ Rj
u

}
,

(10)

where Rj
u denotes the set of links on the path from u to j, including link u

but not link j. The Ej
u,r form a partitioning of Bu,r, i.e. Bu,r =

⋃
j∈Ru

Ej
u,r, and

Ej
u,r ∩ Ej′

u,r = ∅, when j �= j′. From this it follows that

P{X ∈ Bu,r} =
∑

j∈Ru

P{X ∈ Ej
u,r} . (11)

The probability P{X ∈ Ej
u,r} can be thought of as the blocking probability

contribution due to link j. It should be noted, however, that blocking in the states
where several links block can be arbitrarily attributed to any of the blocking
links. I use the convention which attributes it to the blocking link closest to the
user.

Efficient Simulation of Blocking Probabilities 1025

3.2 Conditioning of P{X ∈ Ej
u,r}

Equation (11) decomposes estimation of P{X ∈ Bu,r} into independent sub-
problems of estimating the P{X ∈ Ej

u,r}. For these estimation tasks, I introduce
the superset Dj

u,r ⊃ Ej
u,r,

Dj
u,r =

{
x ∈ Ω

∣∣∣ d(r) > Cj − D′(yj) ≥ d(yj,I)
}
. (12)

This set corresponds to blocking states in a system where link j has a finite
capacity Cj but all other links have infinite capacity. Since all links have finite
capacity in real systems, and several links could block simultaneously, sets Dj

u,r

are not disjoint unlike their subsets Ej
u,r.

The next step is to use conditional probabilities to estimate P{X ∈ Ej
u,r}, as

follows:

P{X ∈ Ej
u,r} = P{X ∈ Ej

u,r |X ∈ Dj
u,r}P{X ∈ Dj

u,r} . (13)

This relation is useful from the simulation point of view since it is easy to
compute P{X ∈ Dj

u,r} and to generate samples from the original distribution
under the conditionX ∈ Dj

u,r, as explained later. Monte Carlo simulation is then
used to estimate the conditional probability P{X ∈ Ej

u,r |X ∈ Dj
u,r} instead of

P{X ∈ Ej
u,r}, which is usually much more effective.

Let η̂j
u,r denote the estimator for ηj

u,r = P{X ∈ Ej
u,r},

η̂j
u,r =

vj

Nj

Nj∑
n=1

1X∗
n∈Ej

u,r
, (14)

where vj = P{X ∈ Dj
u,r} and X∗

n denotes samples drawn from the conditional
distribution P{X = x |X ∈ Dj

u,r}. Then, the estimator for P (Bj
u,r) is simply

P̂ (Bj
u,r) =

∑
j∈Ru

η̂j
u,r . (15)

Given the total number of samples N to be used for the estimator, the number
of samples Nj allocated to each sub-problem is a free parameter. This can be
exploited by assigning the number of samples to different η̂j

u,r according to their
estimated variance during the simulation. See e.g. [8].

4 Inverse Convolution

This section presents the inverse convolution method (IC) for sample generation.
I am now only considering the estimation of one ηj

u,r for fixed j ∈ Ru and traffic
class (u, I, r). The method is based on generating points from the conditional
distribution P{X = x |X ∈ Dj

u,r} by reversing the steps used to calculate the

1026 J. Karvo

uj
O

Fig. 1. Example of sample generation. A sample in the set Dj
u,r is generated for the

link j (thick dashed line). States of the links marked by the dashed ellipse are generated
by inverse convolution from the state of link j. States for links denoted by ticks are
generated by a simple draw. The state of the link denoted by the thick line is calculated
directly from the states of the other links.

occupancy distribution of the considered link. Note that the condition X ∈ Dj
u,r

is a condition expressed in terms of the occupancy, S′
j , of the considered link. The

idea in the inverse convolution method is to first generate a sample of Yj such
that the occupancy of the link is in the blocking region. Then, given the stateYj ,
the state of the network, i.e. states of the leaf links, is generated. The mapping
x �→ yj is surjective, having several possible network states x generating the link
state yj , and one of them is drawn according to their probabilities.

The main steps of the simulation can be summarized as follows (See Fig-
ure 1.):

1. Generate the states for leaf links u by
a) Generate a sample state Yj under the condition d(r) > Cj − D′(yj) ≥

d(yj,I) for link j.
b) Generate the leaf link states Yu, u ∈ Uj , with the condition that link j

state Yj = maxu∈Uj
(Yu) is given.

c) Generate the states Yu, u ∈ U − Uj for the rest of the leaf links as in
the normal Monte Carlo simulation.

2. The sample state of the network X∗
n ∈ Dj

u,r consists of the set of all sample
states of leaf links generated with step 1.

3. To collect the statistics for estimator η̂j
u,r, check if X∗

n ∈ Ej
u.

The above steps are repeated for generating Nj samples. Section 4.1 explains
the method of generating a sample for link j (step 1a). Section 4.2 explains the
method for generating the leaf link states from the link state (step 1b).

4.1 Generating a Sample for Dj
u,r

As already noted, I have partitioned the set of blocking states into disjoint sets
Ej

u,r. It is not easy to generate samples directly to these sets, however. Instead,

Efficient Simulation of Blocking Probabilities 1027

I generate samples to sets Dj
u,r which correspond to the states in which at least

link j blocks. After that it is possible to check if the sample belongs to the set
Ej

u,r to collect the sum in Eq. (14).

Convolution method for calculating P{X ∈ Dj
u,r}. First, the link occu-

pancy Sj is easily calculated recursively as follows. Let Sj,i denote link occupancy
due to the first i channels,

Sj,i =
∑
i′≤i

d(Yj,i′) . (16)

Then Sj = Sj,I and S′
j = Sj,I−1. The Yj,i are mutually independent, and Sj,i =

Sj,i−1 + d(Yj,i), where Sj,i−1 and Yj,i are independent.
Channel I must be dealt with differently than the other channels, since the

system can be in a blocking state only if Cj − Sj,I−1 < d(r), but the channel I
can be in any state l < r. Knowing this, the set Dj

u,r can be partitioned into r
point-wise disjoint subsets:

Dj,l
u,r =

{
x ∈ Ω

∣∣∣ yj,I = l ∧

d(r) > Cj − D′(yj) ≥ d(l)
}
, l ∈ {0, . . . , r − 1} .

(17)

If a state x belongs to the set Dj,l
u,r, the state is a blocking state for link j, and

the channel I is on layer l. Thus, the free capacity Cj −D′(yj) of the link must
be at most d(r)−1, for the state to be a blocking state. The other channels may,
however, consume at most Cj −d(l) capacity units for the state to be within the
allowed states. Now, let vj(l) denote the probability P{X ∈ Dj,l

u,r}:

vj(l) = pj,I(l)
Cj−d(l)∑

i=Cj−d(r)+1

qj,I−1(i) , (18)

where qj,i(x) = P{Sj,i = x}. The probability mass vj of the set Dj
u,r, can be

calculated as

vj = P{X ∈ Dj
u,r} =

r−1∑
l=0

vj(l) . (19)

The link occupancy distribution qj,I−1(·) can be calculated recursively by
convolution:

qj,i(x) =
x∑

y=0

qj,i−1(x − d(y))pj,i(y) , (20)

where the recursion starts with qj,0(x) = 1x=0. Here, pj,i(y) = P{Yj,i = y}, and
is calculated easily, as shown in section 4.2.

1028 J. Karvo

Inverse convolution. For interpretation of the convolution step, note that the
event {Sj,i = x} is the union of the events {Yj,i = y, Sj,i−1 = x − d(y)}, y ∈
{0, . . . , L}. The corresponding probability is qj,i−1(x − d(y))pj,i(y). Conversely,
the conditional probability of the event {Yj,i = y, Sj,i−1 = x − d(y)} given that
Sj,i = x is,

P{Yj,i = y, Sj,i−1 = x − d(y) |Sj,i = x} =
pj,i(y)qj,i−1(x − d(y))

qj,i(x)
. (21)

Generating a sample state in Dj
u,r starts by drawing a value l for Yj,I using

the distribution

P{Yj,I = l |X ∈ Dj
u,r} =

P{Yj,I = l, X ∈ Dj
u,r}

P{X ∈ Dj
u,r}

=
vj(l)
vj

, (22)

where l ∈ {0, . . . , r − 1}.
Then, a value for S′

j = Sj,I−1 is drawn with the condition that Yj,I = l that
is, using the distribution

p(x|l) = P{Sj,I−1 = x |Yj,I = l, X ∈ Dj
u,r} =

P{Yj,I = l, Sj,I−1 = x}
P{Yj,I = l, X ∈ Dj

u,r}
, (23)

since {Yj,I = l ∧ Sj,I−1 = x} ⇒ {X ∈ Dj
u,r}, restricting x to x ∈ {Cj − d(r) +

1, . . . , Cj − d(l)}, and

p(x|l) = pj,I(l)qj,I−1(x)
vj(l)

=
qj,I−1(x)∑Cj−d(l)

y=Cj−d(r)+1 qj,I−1(y)
. (24)

Then, given the value of Sj,I−1, the state Yj,i of each channel (i = I−1, . . . , 1)
is drawn in turn using probabilities in Eq. (21). Concurrently with the state Yj,i,
the value of Sj,i−1 becomes determined. This is then used as the conditioning
value in the next step to draw the value of Yj,i−1 (and of Sj,i−2), etc. Note that
for reasonable sizes of links, it is advantageous to store the probabilities for fast
generation of samples.

The next subsection presents a method for drawing leaf link states Yu, given
the state Yj of link j.

4.2 Generating Leaf Link States from a Link State

Having drawn a value for state Yj of link j, it is possible to draw values of
the state vectors Yu, u ∈ U , of the leaf links. For u ∈ Uj , states Yu are gen-
erated under the condition Yj = maxu∈Uj (Yu) using a similar inverse convo-
lution procedure as above. Due to the assumed independence of channels, this
condition can be broken down into separate conditions, i.e. for each i there is
a separate problem of generating the values Yu,i, u ∈ U , under the condition
Yj,i = maxu∈Uj (Yu,i) with a given Yj,i. The above conditions affect leaf links

Efficient Simulation of Blocking Probabilities 1029

u ∈ Uj . For other links u ∈ U − Uj , the states Yu are independently generated
from the distribution πu(·).

First, let us consider a convolutional approach for generating a link state for
channel i and link j if the states for each link u ∈ Uj are already known. In
this section, I use an index uj ∈ {1, . . . , Uj} = Uj for the subset of leaf links.
Let Zuj ,i = x denote the event that the channel i is on state x on link j when
u′ = 1, . . . , uj leaf links have been counted for, i.e. Zuj ,i = maxu′≤uj (Yu′,i).
Note that Yj,i = ZUj ,i. Probabilities ξuj ,i(s) = P{Zuj ,i = s} can be calculated
recursively as follows:

ξuj ,i(s) = puj ,i(s)
s−1∑
s′=0

ξuj−1,i(s′) + ξuj−1,i(s)
s∑

s′=0

puj ,i(s′) . (25)

The recursion starts with ξ0,i(s) = 1s=0. The probabilities pj,i(s) used in the
previous section are then simply pj,i(s) = ξUj ,i(s) where all users have been
taken into account. If Zuj−1,i = s, then necessarily Zuj ,i ≥ s (due to the nature
of max-operation).

Conversely, to generate the state for each leaf link, given the value of Yj,i, I
first generate Zuj−1,i from the distribution:

P{Zuj−1,i = x |Zuj ,i = s} =

ξuj−1,i(x)
∑x

s′=0 puj ,i(s′)
ξuj ,i(s)

, when x = s ,

ξuj−1,i(x)puj ,i(s)
ξuj ,i(s)

, otherwise .
(26)

Note that the event Zuj−1,i < Zuj ,i implies directly that Yuj ,i = Zuj ,i. If this is
not the case, the value of Yuj ,i is drawn from the distribution

P{Yuj ,i = y |Zuj−1,i = Zuj ,i = s} =
puj ,i(y)∑s

y′=0 puj ,i(y′)
. (27)

This procedure is repeated for each channel. The state vectors of each leaf
link u ∈ Uj result from this procedure. The rest of the leaf link states must be
generated as in the normal Monte Carlo simulation using distribution πu(·).

5 Numerical Results

This section gives some numerical examples to illustrate the efficiency of the
presented method in Monte Carlo simulation of the blocking probabilities. I
consider the same network used in [7]. The network is the one shown in Figure 1.
There is a root node, four channels, I = 4, and three layers, L = 3, with d(l) = l
for all channels. The capacity of the root link is CJ = 6, for the others, Cj = 5.
Each leaf link has an infinite user population offering traffic to each channel.
The probability pu,i(l) that a channel is on layer l is pu,i(l) = αlb (for all users),
where α1 = 0.3, α2 = 0.2 and α3 = 0.1. I simulated blocking for channel I and

1030 J. Karvo

Table 1. The relative deviation of the estimates P̂ (Bu,r) for the example network

user u (the longer path) with three values for b: 0.01, 0.05, and 0.1 to compare
the simulation methods in light, moderate, and high load conditions.

I also estimated the relative deviation of the estimator for 104 samples and
105 samples, given by (V[P̂ (Bu,r)])1/2/P̂ (Bu,r). For classic Monte Carlo (MC),
these were the total numbers of samples used, while for Inverse Convolution
method (MC-IC), one third of samples was used for each estimate η̂j

u,r. For
Inverse Convolution with optimal Sample Allocation (MC-ICSA) [8], the total
number of samples was allocated optimally for each estimate.

The results are shown in Table 1. The table shows that the variance reduc-
tions obtained with the inverse convolution method are remarkable. For example,
for light load (b = 0.01), the ratio between the deviations of the standard MC
and the inverse convolution method (MC-ICSA) is up to 131 for 10 000 samples
and 138 for 100 000 samples, corresponding to a decrease by a factor of 17 000
to 19 000 in the required sample sizes. In high load situations, the overhead in
sample generation might not be justified, as the traditional Monte Carlo method
gives rather good estimates, too.

6 Summary

I presented an algorithm for efficient simulation of time blocking probabilities
for multi-layer multicast streams with the assumption that blocked calls are lost.

Efficient Simulation of Blocking Probabilities 1031

Calculating blocking probabilities for this system directly from the steady state
probabilities is easy in principle, but excessively time-consuming.

The simulation algorithm presented is based on the inverse convolution al-
gorithm. The results in the shown example network support convincingly its
efficiency, yielding a decrease in sample size of up to a factor of 19 000 over the
traditional Monte Carlo method.

Acknowledgement. This study was funded by the Academy of Finland, and
also supported by Nokia Foundation. I thank Pasi Lassila, Jorma Virtamo and
Samuli Aalto for their helpful advise.

References

1. Fortet R. and Grandjean C., “Congestion in a loss system when some calls want
several devices simultaneously,” Electrical Communication, vol. 39, no. 4, pp. 513–
526, 1964.

2. Ross K. W., Multiservice Loss Models for Broadband Telecommunication Networks,
Springer Verlag, London, 1995.

3. Diot C., Dabbous W., and Crowcroft J., “Multipoint communication: A survey
of protocols, functions, and mechanisms,” IEEE Journal on Selected Areas in
Communications, vol. 15, no. 3, pp. 277–290, Apr. 1997.

4. Karlsson G. and Vetterli M., “Packet video and its integration into the network
architecture,” IEEE Journal on Selected Areas in Communications, vol. 7, no. 5,
pp. 739–751, June 1989.

5. Chan W. C. and Geraniotis E., “Tradeoff between blocking and dropping in multi-
casting networks,” in ICC ’96 Conference Record, June 1996, vol. 2, pp. 1030–1034.

6. Karvo J., Virtamo J., Aalto S., and Martikainen O., “Blocking of dynamic mul-
ticast connections,” Telecommunication Systems, vol. 16, no. 3,4, pp. 467–481,
2001.

7. Nyberg E., Virtamo J., and Aalto S., “An exact algorithm for calculating blocking
probabilities in multicast networks,” in Networking 2000, Pujolle G., Perros H.,
Fdida S., Körner U., and Stavrakakis I., Eds., Paris, May 2000, pp. 275–286.

8. Lassila P., Karvo J., and Virtamo J., “Efficient importance sampling for Monte
Carlo simulation of multicast networks,” in Proc. INFOCOM’01, Anchorage,
Alaska, Apr. 2001, pp. 432–439.

9. Lassila P. E. and Virtamo J. T., “Nearly optimal importance sampling for Monte
Carlo simulation of loss systems,” ACM Transactions on Modeling and Computer
Simulation (TOMACS), vol. 10, no. 4, pp. 326–347, Oct. 2000.

10. Karvo J., Aalto S., and Virtamo J., “Blocking probabilities of two-layer statistically
indistinguishable multicast streams,” in Proc. International Teletraffic Congress
ITC-17, de Souza J. M., Fonseca N. L. S., and de Souza e Silva E. A., Eds., Salvador
da Bahia, Brazil, Sept. 2001, pp. 769–779.

11. Karvo J., Aalto S., and Virtamo J., “Blocking probabilities of multi-layer multicast
streams,” in 2002 Workshop on High Performance Switching and Routing (HPSR
2002) (To appear), Kobe, Japan, May 2002.

12. Kelly F. P., Reversibility and Stochastic Networks, John Wiley & Sons, 1979.

	Introduction
	Multicast Loss System
	State Space
	Probability Distributions
	Blocking

	Divide and Conquer
	Decomposition
	Conditioning of ${@mathrm P}{{@mathbf {X}}in {@mathcal {E}}^j_{u,r}}$

	Inverse Convolution
	Generating a Sample for ${@mathcal {D}}^j_{u,r}$
	Generating Leaf Link States from a Link State

	Numerical Results
	Summary

