
E. Gregori et al. (Eds.): NETWORKING 2002, LNCS 2345, pp. 1117-1122, 2002.
© Springer-Verlag Berlin Heidelberg 2002

High Router Flexibility and Performance by
Combining Dedicated Lookup Hardware (IFT1), off the

Shelf Switches and Linux

Christian Duret1, Francis Rischette1, Joël Lattmann1, Valéry Laspreses1,
Pim Van Heuven2, Steven Van den Berghe2, and Piet Demeester2

1 France Telecom R&D, Issy les Moulineaux, France
{christian.duret, francis.rischette, joel.lattmann,

valery.laspreses}@francetelecom.com
2 IMEC, Ghent, Belgium

{pim.vanheuven, svdberg, demeester}@intec.rug.ac.be

Abstract. In this paper we propose a new router architecture that combines
both flexibility and performance. This router architecture aims at combining the
best of two worlds: the commercial routers, which have a proven track for
stability and performance but lack the flexibility of routers with open source
operation system. The latter is particularly flexible because the source code is
accessible for analysis and modification purposes as opposed to the traditional
commercial routers, whose software can be altered by their manufacturers only.

1 Motivation and State-of-the-Art

The exponential growth of Internet traffic has yielded a dramatic development effort
of the IP routers technology. Moreover, the deployment of value-added IP service
offerings (ranging from a QoS-based access to the Internet to real-time services, like
IP videoconferencing) has lead to an important development of specific capabilities
(traffic conditioning, marking, scheduling and metering) that are supported by some -
if not all - the routers of the Internet. The consequence of the activation of such
enhanced capabilities is twofold: a demand for an increase of the routers' switching
performances together with the availability of multi-functional and multi-service
routers.

Other important concerns deal with IP security, multicast, and Virtual Private
Networks services. Therefore, the IP routers that are exploited in a multi-service
environment need to be flexible enough in order to address current and future
requirements.

For the past decade, Linux has received considerable interest not only from the
research community, but also from the industry. An extensive description of Linux
features and related bibliography can be found in [1]. Recently, an implementation for
DiffServ over MPLS [2] has been released by some of the authors of this paper.

1 IP Fast Translator

1118 C. Duret et al.

The main issue raised by the use of Linux-based routers deals with their switching
and forwarding performances:
� They are bounded by the CPU and are difficult to predict since both the data and

the control planes run on the same CPU;
� Another problem is the interrupt overhead. Note that alternatives exist which are

based on polling [3].
� Even more important is that most of these routers are built around commodity PC,

and therefore inherit of their shared bus limitations;
Commercial routers provide more than acceptable switching performances. Their
main drawback is their lack of flexibility. Thus, whenever an IETF standard is not
implemented yet, and/or some functionality is missing, it becomes necessary either to
rely on the roadmap of a given manufacturer for the introduction of new features, or
to add adaptation boxes, where it is feasible.

The commercial routers whose architecture is based upon a high performance CPU
and interface cards linked together by a shared bus, are not sufficient anymore to keep
pace of the constant increase of Internet traffic, hence overwhelming the Moore’s law.
A new class of components, dedicated to high speed network layer processing has
emerged for about a year: the network processor. Unfortunately, network processors
are clearly designed in an opposite way as the Linux paradigm.

2 The IFT-Based Experimental Router

Several years ago, FTR&D has developed a research program on high speed
networking techniques to be initially deployed within an ATM context, so as to
address the above-mentioned issues. One way to address the switching performances
issue consists in system optimization. Looking at a conventional router, one can see
that less than 5% of the system software runs in the data path, but is responsible for
more than 95% of the execution time. Only a small part of the related functions has to
be "wired" to reach the performance level that is needed today, this level being around
1.5 x 106 packets/second per Gigabit/s bit rate at the interface level. Among these
functions, classification ("The process by which a data packet is examined and policy
decision are made which affect down-stream processing" [4]) is a critical one, and it
clearly requires as much flexibility as does a purely software-based implementation to
handle forwarding decisions, filtering such as Access Control Lists (ACL), an
increasing set of encapsulations headers, forthcoming protocols (IPv6)...

Generally speaking, the incoming frame is characterized by a set of fields within a
succession of headers, whose respective contents could possibly be analyzed against a
set of patterns. Each individual analysis is defined by the position of the field within
the frame, the set of patterns against which to compare the content of the field, an
action to be performed in the case of a match (either a link that leads to another field
to be analyzed, or a final result that indicates where to send the packet, or a default
treatment). Figure 1 below is an example of such behavior for basic IP forwarding.
The implemented lookup process is basically a "multibit Trie" allowing for either
exact range or longest match. An extensive survey of lookup algorithms can be found
in [5]. The complexities reported for this lookup scheme are:

High Router Flexibility and Performance 1119

Worst case lookup time O(W)
� Worst case update time O(W/K + 2K)
� Worst case memory size O(2kNW/K)
Where N is the number of entries, W the length of the address and K the size of the
bit slice (or "stride" according to [5]).

Fig. 1. Successive header fields to be processed for basic IPv4 forwarding.
The shaded areas within the incoming frame are the header fields that are analyzed through the
IFT. The sequence of the analyzed fields and related counters update is fully defined by the
pattern store memory that implements a finite state machine, whose transitions are triggered by
the incoming packet (upper part of the figure). A match may also trigger external processes to
keep track of layer succession, check the header, update counters, update checksum, Time To
Live (TTL) and Differentiated Service Code Point (DSCP). The IFT analysis result is mapped
onto a VCI (Virtual Channel Identifier) value that implicitly designates the output port. These
processes depicted in the lower part of the figure are protocol-dependent.

The worst case lookup time is 120ns for IPv4 addresses in the present hardware
implementation, to be compared to 2.99us reported in [5] for a software
implementation executed on a 200 MHz Pentium-Pro based computer under Linux.

By nature, there is neither layer nor any field restriction in the analysis: upper
layers may be processed through linked tables. The worst-case lookup time is 345ns
for a basic TCP-UDP/IP 5-tuple, to be added to regular forwarding process time. This
classification is performed by implementing a "set-pruning trie" data structure
according to the proposed taxonomy in a recent survey of algorithms for packet
classification [6]. The properties of this structure are:
� Worst case lookup time O(dW)
� Worst case memory size O(dN)
Where d is the "dimension" of the classifier, that is to say the number of header fields
of W bit length on which a number N of classification rules apply. The large amount

1120 C. Duret et al.

of memory is due to the fact that some fields may need as much as dN tables to ensure
that every matching rule for a given field will be traversed depending upon the result
of the analysis of the previous field. No backtracking nor linear search are needed
allowing to analyze each relevant field only once on the fly.

Backtracking, as implemented in "Grid-of-tries" [7], reduces the storage
complexity to O(NdW) at the expense of O(Wd-1) for worst-case lookup time
complexity.

Incoming packets are analyzed at line rate by reading the IFT control memory. A
software driver running on the IFT host is in charge of writing it. This driver offers a
set of updating functions: insertion and removal of patterns. It constantly provides the
global consistency of the control memory, without the need of recurrent tables
reorganization. The IFT driver runs on a logical copy of the IFT memory and
performs incremental updates, thus the memory bandwidth required for update
operations is several orders of magnitude lower than the bandwidth required by
incoming packet processing.

Fig. 2. Examples of packet processing.IFT-only functionality: The IFT runs a copy of the
kernel Forwarding Information Base (FIB). A datagram whose destination address has been
recognized is forwarded directly by the IFT to the switch fabric where it is forwarded to the
output interface that leads to the next hop associated to the contents of the destination address
field of the datagram.Linux control path functionality: a datagram destined to the router is
forwarded to the router Linux host. The Linux kernel then processes this datagram. For
example, if it is an Internet Control Message Protocol (ICMP), Echo Request message, then the
kernel sends an Echo Reply message back to the originating host through the switch
fabric.Linux control and IFT configuration functionality: a datagram destined to the router is
forwarded towards the router Linux host. The Linux kernel sends this datagram up to the
application layer. For example an Open Shortest Path First (OSPF), Link State Advertisement
(LSA) packet is sent to the routing daemon. The daemon will update the kernel FIB if needed.
The corresponding message is then copied in the IFT control memory.

The communication within the IFT-based experimental router is performed
through an ATM switch fabric that directs IFT-processed packets towards external
(most of packets) or internal interfaces for being handled by the Linux host and the
control plane processes. Thus, aside the IFT driver, the role of the Linux host is
threefold:

High Router Flexibility and Performance 1121

� In the data plane, processing of the datagrams that were sent to the Linux kernel by
the IFT module (such as time exceeded ones or those containing options or directly
addressed to the router);

� Running the control plane functionality;
� Configuring the IFT forwarding table through a user relay application.
The control path functionality is comparable to a regular Linux-based router. Figure 2
gives the three possible scenarios that can occur when a packet enters the
experimental router. Routing protocol packets are an important example because these
packets can update the routing table inside the Linux component. These changes have
to be reflected in the IFT forwarding table too. This leads to the third role of the
Linux components: the configuration tasks that consist of mapping the Traffic
Classifier configuration commands and routing updates using netlink sockets [8] onto
IFT header pattern entries. This has the advantage that software-based routing
daemons can be re-used on the experimental platform without the need for any
modifications.

3 Future Work

The present router design is based upon an ATM switch. Ongoing developments
include the support of Fast and Gigabit Ethernet interfaces. The architecture described
in this paper applies to a design based upon an Ethernet switch as well. In this case,
the IFT analysis result, instead of being mapped to an ATM connection, is mapped
onto a Medium Access Control (MAC) frame, whose Destination Address field is
either a host, a gateway or the Linux host itself. Additionally, most of Gigabit
Ethernet switches provide priority queuing mechanisms through the implementation
of the IEEE 802.1p standard that may be useful for implementing Diffserv-based
routing and QoS mechanisms.

The IFT developments have been considered for the implementation of a
Multimedia Switch Router [9]. Security applications are also considered [10].
Another application of this kind of platform could be admission control facilities that
would be based upon "on the fly" identification of elastic and streaming flows [11].

4 Conclusion

In this paper we explained that current marked trends push for both flexible and high
performance routers. Current router options are either high performance (commercial
routers) or flexible (open source-based PC routers).

As a solution to this problem, we propose a router architecture that consists of the
combination of fast dedicated look-up hardware, off-the-shelf switches, and the Linux
OS. The combination of these components provides:
� A performance level that can easily be compared to the switching performances of

commercial routers;
� Scalability through the use of off-the-shelf switching fabric (currently ATM, Fast

and Gigabit Ethernet later on);

1122 C. Duret et al.

� The flexibility at the control path equal to that of an open source PC router;
� The extensive developer support that have been engaged on Linux-based routers;
� A clear separation between forwarding and control planes.

Acknowledgements. This work was partly undertaken in the Information Society
Technologies (IST) TEQUILA project, partially funded by the Commission of the
European Union. Part of the work is also sponsored by the Flemish Government
through two IWT scholarships. The authors would also like to thank the rest of the
Tequila colleagues who have contributed to the ideas presented in this paper and
Jacques Le Moal, Jean Louis Simon (France Telecom R&D) for their contribution to
the IFT project.

References

[1] D. Griffin editor “D2.1: Selection of Simulators, Network Elements and Development
Environment and Specification of Enhancements" http://www.ist-tequila.org

[2] Pim Van Heuven, Steven Van den Berghe, Tom Aernoudt, Piet Demeester, "RSVP-TE
daemon for DiffServ over MPLS under Linux", http://dsmpls.atlantis.rug.ac.be

[3] Benjie Chen et. al.," The Click Modular Router Project",
http://www.pdos.lcs.mit.edu/click/

[4] "Programming & Reprogramming: Keeping the speed without Losing your Mind" in
Network Processor Summit - Networld+Interop 2000

[5] Miguel A. Ruiz-Sanchez, Ernst W. Biersack, Walid Dabbous "Survey and Taxonomy of
IP Address Lookup Algorithms" in IEEE Network March/April 2001

[6] Pankaj Gupta, Nick McKeown "Algorithms for Packet Classification" in IEEE Network
March/April 2001

[7] V. Srinivasan et al., "Fast and Scalable Layer four Switching" in Proc. ACM Sigcomm,
Sept. 1998

[8] G. Dhandapani, A. Sundaresan “Netlink Sockets – Overview”
http://qos.ittc.ukans.edu/netlink/html/

[9] Michel Accarion, Christophe Boscher, Christian Duret, Joël Lattmann "Extensive Packet
Header Lookup at Gb/s Speed for an Application to IP/ATM multimedia switch router" In
World Telecommunication Congress - International Switching Symposium, Birmingham
May 2000

[10] Olivier Paul, Maryline Laurent, Sylvain Gombault, "A Full Bandwidth ATM Firewall" in
Proc. of the 6th European Symposium on Research in Computer Security, Toulouse,
France, October2000

[11] N. Benjameur, S. Ben Fredj, S. Ouslati-Boulahia, J. Roberts, "Integrated Admission
Control for Streaming and Elastic Traffic" in M. Smirnov, J. Crowcroft, J. Roberts, F.
Boavida (Eds), "Quality of Future Internet Services", Springer, LNCS 2156, 2001.

	Motivation and State-of-the-Art
	The IFT-Based Experimental Router
	Future Work
	Conclusion
	References

