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Abstract. This paper presents a performance analysis of a fair sharing
mechanism for PC-based software routers, required when the I/O bus and not
the CPU is the bottleneck. The mechanism involves changes to the OS kernel
and assumes the existence of certain NIC functions, but does not require any
changes to the PC hardware architecture.

1 Introduction

We can define a software router as a computer that executes a program capable of
forwarding IP datagrams among network interface cards (NIC) attached to its I/O bus.
It is well known that software routers have performance limitations. However due to
the ease with which they can be programmed for supporting new functionality
software routers are still important at the edge of the Internet. After this, the question
of how to optimize software routers performance arises. In addition, if we want to
provide QoS guarantees for traffic going through the router, we must find a suitable
way of sharing resources. In other pieces of work the problem of fairly sharing router
resources is tackled in terms of protecting [1,4] or sharing [6] the use of the CPU
amongst different packets or data flows. However, the increase in CPU speed in
relation to that of the I/O bus makes it easy for this bus to constitute a bottleneck,
which is why we address this problem.

This paper presents our proposal for a resource sharing mechanism that allows QoS
levels to be guaranteed in software routers by jointly controlling I/O bus activity and
CPU operation. It is a software mechanism that does not require changes to the PC
hardware architecture and which introduces low overhead and avoids intrusion. It
requires that NICs dispose of several direct memory access (DMA) channels—one for
each traffic flow—working independently and having a set of descriptors that store
usage information—NIC’s buffer occupancy or the total number of arrivals to the
channel. Moreover, this paper presents a study of the properties of the mechanism,
when considered in isolation, and a system performance evaluation, when the
mechanism is incorporated into a software router. We will concentrate on software
routers built on desktop PCs running general purpose, open source operating
systems—FreeBSD, which implement networking functions within the kernel.
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2 A Mechanism for Implementing I/O Bus Sharing

The mechanism we propose for implementing I/O bus sharing, and that we call Bus
Utilization Guard (BUG), manipulates the vacancy space of the message buffer
reception input queue of each DMA channel, so the overall activity at the I/O bus
follows a schedule similar to one produced by a WFQ server. (For now on we referred
to the I/O bus simply as the bus, and to a MBUF queue simply as a queue.) For
minimizing intrusion, the mechanism is activated each T cycles and it is executed
either by the CPU or by a suitable coprocessor placed at the AGP connector. For
reducing overhead, the mechanism uses a two state behavior, monitoring and
enforcing.

Assume that the mechanism is in monitoring state at cycle k•T. Then, the
mechanism gathers Di,k—number of bytes transferred through the bus during period
((k-1)•T, k•T) by channel i. If sum(Di,k) < T/� BUS�� where �BUS is the cost per bit of bus
transfer, the mechanism remains at monitoring state and no further actions are taken.
On the contrary, the mechanism detects the start of a busy period and enters enforcing
state. When at this state, the mechanism polls each NIC to gather Ni,k—number of
bytes stored at the NIC associated with channel i—and computes the amount of bus
utilization granted to each channel, or ik, after the outputs of an emulated general
processor sharing (GPS) server [5] with batched arrivals, or Gi,k. The input for the
emulated GPS are the Ni,k at the start of the busy period. Afterwards, the inputs are the
amount of arrived traffic during the last period or A,ik=N i,k –Ni,k-1+Di,k. BUG is work-
conservative and thus

�i,k = Gi,k + (T/�BUS -(G1,k+…+GN,k) ) (1)

Observe that sum(�i,k) = T/�BUS, a situation that can lead to an unfair share.
Consequently, BUG is prepared with an unfairness-counterbalancing algorithm. This
algorithm computes an unfairness level per channel and if it detects at least one
deprived flow, then it reduces �i,k of every depriver flow by the corresponding
unfairness value. One problem with this approach is that if unfairness is detected then

��1k + … + �Nk) / �BUS = T (2)

That is, the unfairness-counterbalancing algorithm may artificially produce some
bus idle time. This problem also arises when packetzing bus utilization grants, as
shortly explained. Happily, a single mechanism, one that allows BUG to vary the
length of its activation period, solves both problems. The length T of BUG’s
activation period, in general, keeps no relationship with any packet bus-transmission
time—besides having to be at least larger than the largest. Consequently, when
packetizing utilization grants it may happened that mod��i,k , Li)? 0, where Li is the
mean packet length for channel i. Hence, some rounding off is required. We have
tested rounding off both down and up and both produce particular problems.
However, the former gave us a more stable mechanism. If nothing else is done, some
bus idle time is artificially produced and the overall share assigned to that flow would
be much less of what it should be. This problem can be solved if we let BUG reduced
its next activation period length by some dt time value, where dt is the time due to
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rounding off. Evidently, this increases BUG’s overhead. But as long as dt is a small
fraction of T, the increase will remain at acceptable levels.

BUG will switch from enforcing to monitoring state, resetting the emulated GPS,
any time that sum(Di,k) < T/�BUS.

3 BUG’s Dynamics

We devised a series of simulation experiments to assess the performance of a PCI bus
controlled by a BUG. For all experiments we compared the responses of three
simulated buses: a plain PCI, a WFQ bus and a BUG regulated PCI. We are
approximating the PCI operation by a Round Robin scheduler. Operational
parameters where computed after a 33 MHz, 32-bit bus. Besides, we set queue spaces
to infinity and set BUG’s nominal activation period to 0.1 ms. Traffic load for all
experiments was composed of three packet-flows soliciting each 1/3 of router
resources. Flows differentiate themselves by the size of their packets: small (172
bytes), medium (558 bytes) and large (1432 bytes). Different experiments used
different inter-arrival processes to show particular behavior.

In Fig.4.a we show responses to unbalanced constant bit rate traffic. Each line at
every chart denotes the running sum of output bytes over time. The traffic pattern is
as follows. At time zero, flow 1 and flow 2 start loading the system with a load level
equivalent to 50% of a PCI bus capacity each; that is, 528 Mbps. Two ms later (first
arrow; 20T = 2 ms) flow 3 starts loading the system also at 528 Mbps. Then, 2 ms
later (second arrow) flow 3 multiplies its bit rate by four. From the first chart we can
see that the ideal bus behavior allows a 50% bus share between flow 1 and 2 during
the first 2 ms. Then, after flow 3 gets active, it allows a 33% bus share irrespectively
of the load level of flow 3. From the second chart we can see that a plain PCI bus only
adequately follows the ideal behavior during the first 2 ms—first arrow. Then, the
round robin scheduling deprives flow 1 in favor of flow 3. Moreover, although flow 2
is lightly affected it also receives more than its solicited share. After time 4 ms—
second arrow—all gets worst. From the third we can see that the BUG equipped bus
behaves very much like the ideal bus does. Observe that when flow 3 gets on, the
reactive nature of BUG is reflected. For the first two activation periods, or so, flow 3
gets bus use-grants above its solicited share, depriving the other flows. But then, BUG
adjusts and before 1 ms has passed all flows start receiving their solicited share.
Before time 10 ms, flow 1 starts lagging a little behind flow 2. This is due to rounding
off mismatches. By algorithm definition, when this mismatch accumulates to a whole
packet BUG will allow flow 1 to catch up. We have practiced more experiments like
the above varying the order of the flows and the length and size of the load changes
and we have always found congruent results.

In Fig.4.b and Fig.4.c we analyze the dynamic behavior of BUG under highly
variant random load. For this pair of experiments each packet flow was run by an on-
off source. On-state period lengths were set to a constant value. Packet inter-arrival
processes were Poisson with mean bit rate equal to 3520 Mbps, or 300% of the PCI
bus capacity. Off-state period lengths were drawn after an exponential random
process with mean value set to 9 times the on-state period-length. Consequently, all
flows overall mean bit rates were equal to 30% of the PCI bus capacity or 352 Mbps.
Besides observing the system response to this kind of traffic, with these experiments
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we wanted to see if we could find any BUG pathology related to operating-mode
cycles, where the continuous but random path into and out of enforcing mode may
produce some wrong behavior. Consequently, we ran  several experiments with  diffe-
rent on-off cycle lengths. Here we present results for an on-state period-length 8 times
the BUG activation period T (Fig.4.b) and for one of 0.5T (Fig.4.c). In both these
figures, each chart left to right separately compares for each flow (flows 1, 2 and 3)
the resulting output processes for each of the considered buses. Each line denotes the
running sum of output bytes over time, and thus horizontal segments correspond to
off-state periods. For reference, each chart also draws, as a running sum over time, the
corresponding flow’s input process. From both figures we can see that despite the
traffic’s fluctuations BUG quite well follows the ideal WFQ policy, while the PCI

a)

b)

c)

Fig. 1. Simulation results from BUG dynamics contrasting study under (a) unbalanced CBR
traffic and (b,c) random and highly variable traffic. BUG’s behavior is contrasted to the
behavior of the ideal WFQ policy and the behavior of a PCI bus (approximated by a round-
robin policy). Note that each chart at (a) contrasts the output processes of the three traffic flows
described in the main text for a particular scheduling policy. While at (b,c) each chart contrasts
the output processes produced by the three scheduling polices for one traffic flow.
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like Round Robin policy again favors the largest-packet flow and affects the most to
the smallest-packet flow. Of particular interest is what Fig.4.c show to us about BUG
behavior. It seams that BUG is not macroscopically sensitive to a traffic pattern that
repeatedly takes it in and out of enforcing mode.

4 System Performance Study

Here we study the performance of a PC based software router whose PCI bus in
regulated by BUG. Operational parameters for the queuing network model were
determined using software profiling, as described in [2]. The target system had a 600
MHz Pentium III CPU, a 100 MHz system bus, 10 ns EDO RAM chips and a 33
MHz, 32-bit PCI I/O bus. Software wise, the system was power by FreeBSD 4.1.1.
Measurements were not taken for the bus service times. Instead, we used the
description of the system operation [2]. We assume that data phases are of 1 cycle and
that frame transfer is never pre-empted. We have considered Poisson traffic as input
traffic, and which has a three-flow configuration as for the previous section.

We have performed the simulation with systems configured with two different
CPUs. CPU1 works at 1 GHz and CPU2 works at 3 GHz. The system’s I/O bus works
at 33 MHz and has a 32-bit data path. Note that for the considered traffic, the CPU is
the bottleneck for the system with CPU1 while the I/O bus is bottleneck for system
with CPU2.

In Fig.5.a we show results for the basic software router. The left chart shows
aggregated throughputs for offered loads in the range of [0, 1400 Mbps]. The other
two charts show the share obtained for each traffic flow, firstly for CPU1 and then for
CPU2. It can be seen that the system with CPU1 has a linear increase of the
aggregated throughput for offered loads below 225 Mbps. At this point the CPU
utilization is 100% while the bus utilization is around 50% and the systems enters into
a saturation state. If we further increase the offered load the throughput decreases
until a live lock condition appears, at an offered load of 810 Mbps. During the
saturation state most losses occur in the IP input buffer. The system with CPU2 gets
its bus saturated before its CPU at an offered load of 500 Mbps. The system behavior
for increasing offered loads depends on which priorities are used by the bus arbiter.
Summarily, the basic system cannot provide a fair share of the resources when it is in
saturation. Fig.5.b shows results for the system with a WFQ scheduling for the CPU
and the BUG mechanism for controlling bus usage. We see that the obtained results
correspond to almost an ideal behavior, as under saturation throughput does not
decrease with increasing offered loads and the system achieves a fair share of both
router resources: CPU and bus.

5 Conclusions

Under quite normal operation conditions for today’s PC hardware and tele-
communication links, the plain PCI bus arbitration mechanism impedes a software
router to fulfill QoS guarantees. The mechanism that we proposed and called BUG,
for bus usage control, is effective in controlling the bus share between different flows.
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When we use this mechanism in combination with the known techniques for CPU
usage control, we obtain a nearly ideal behavior of the share of the software router
resources for a broad range of workloads.
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Fig. 2. Performance results for (a) base BSD router (b) a router with WFQ for the CPU and
BUG for the I/O bus. The charts at the left contrast the router throughput when it uses a CPU of
1GHz and a CPU of 2GHz. The charts at the middle and at the right show the throughput share
obtained by each of the three flows described in the main text. The charts at the middle are for a
router using a 1GHz CPU, while the charts at the right are for a router using the 2GHz CPU.
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