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Abstract : To supply the financial engineering community with adequate and timely software

support we advocate a reusability oriented approach to software development. The ap proach

focuses on frameworks and reusable building blocks. This paper presents a domain specific

framework for a calculation engine to be used in financial trading software. It is as such an

example of using frameworks outside their typical domain of graphical user interfaces.

1 Introduction

At UBILAB, the Information Technology Lab of Union Bank of Switzerland, the

ET++Swapsmanager project [Egg92] is an effort to find a satisfying way to provide

traders with sophisticated software support by employing a reusability-oriented ap-

proach based on object technology.

Financial engineering is concerned with the creation and valuation of financial instru-

ments. To help understand the following architecture, we must look at some of the ba-

sics that drive financial markets.

The primary financial markets are the places (not necessarily physical) where supply of

and demand for funds meet. For instance, if a corporation needs money to finance its

operating expenses or some other investment – such as buying a subsidiary – there are

roughly three sources of funds. The company could go to a bank and apply for a loan.

The second possibility is to issue stock (equity securities) and thereby have investors

participate in the investment’s returns (and risks). The third approach is to issue some

sort of bond (debt securities). In all of these cases the investors (suppliers of funds) ex-

pect a return to compensate for forgone opportunities. This return is usually in the form

of interest payments. From the company’s point of view it is the price it has to pay to

temporarily dispose of the funds.

Besides the mere price there are other factors such as when the interest payments are

due, how these are determined, the currency, the amount of security (collateralisation)
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provided, etc. With all these variable factors considerable effort, and therefore cost,

must be expended to match investors and borrowers and negotiate on the various char-

acteristics of a potential deal. Financial instruments  help reduce these costs by standar-

dising the conditions under which financial transactions are carried out. Investors and

borrowers can then choose the most attractive construction (instrument) available to

them; typically with the aid of some intermediary. This is also eased by the fact that

most financial instruments are highly fungible and traded anonymously.

Financial instruments have evolved from mere contracts for lending and borrowing to

specialised means for transforming various characteristics of funds as corporations have

learned how to use such instruments to manage all kinds of risks. Examples of the char-

acteristics are determination of interest amount, interest payment schedules, exposure to

market movements and currency conversion. It is therefore possible to customise a

transaction by pipe-lining several financial instruments. The result, also called a syn-

thetic instrument , is then sold as a package.

Each instrument and its associated practices of trade can be considered as defining one

financial market . However, for a market to work efficiently, some system for price in-

dication is needed. Active participants (especially traders) are the main source for this

information. In the markets with high turnover volumes the prices at which deals are

concluded are continuously published on electronic networks. We will refer to instru-

ments for which the current price level is publicly known as standard instruments .

The price of a standard instrument is almost exclusively determined by supply and de-

mand. But if a new instrument is engineered, how does one find its proper price? A

widely accepted approach is to use the prices quoted in high volume financial markets

for the derivation of a discount function. The higher the volume traded the more reliable

is the price indication.

A discount function is used to assign to any cash flow in the future an equivalent value

today. This is based on the observable fact that a Dollar received today is worth more

than a Dollar received some time in the future; this is also known as the time value of

money. Deriving a discount function effectively means expressing the time value of

money in a market independent form. The present value, and hence the price, of an in-

strument is found by discounting all its associated (future) cash flows.

Valuation not only makes sense in the context of a single instrument. In effect, small

and large collections of deals stemming from various instruments1 are managed and

evaluated on a portfolio basis. This is especially true for investment banks and broker

houses that actively trade in these instruments. Exposure to market movements (price

1 In object parlance: an instrument is a class of deals, a deal would be an instance of an instrument.
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risk) and performance is measured with respect to an entire portfolio rather than on in-

dividual deals.

The rest of the paper is organised as follows: In section 2 we give an introduction to the

swaps business and shed some light on the current situation concerning software sup-

port. In section 3 we go into the details of a calculation framework for financial instru-

ments. In section 4 we summarise our experiences of the development and usage of the

framework.

2 Swaps

Of the kaleidoscopic palette of today’s financial instruments we will for the purpose of

this paper only consider one genre of financial instruments, so-called swaps.

2.1 The Swap Product

Swaps are a fairly recent development. The most common of these structures is the in-

terest rate swap  where two parties agree to exchange, or swap, two sets of interest

payments which are determined by two different interest rates [Kap90]. Hence there are

two sides, or legs, to a swap. Typically, one of the interest rates is fixed at a certain per-

centage of some principal amount and the other is floating, i.e., pegged to some chang-

ing market index. Fig. 1 shows a situation where borrowers B and D engage in an inter-

est rate swap. The rationale for doing this is that B can raise funds on floating rate terms

comparatively cheaper than D can. Although B supposedly prefers to engage in a fixed

rate liability it is still profitable to take on a floating rate debt and then swap it with D

who has opposite preferences.

CA

B D Borrowers

floating 
rate

floating rate

fixed rate

Lenders

fixed 
rate

Fig. 1: Flow of interest payments when two borrowers swap their obligations
through an interest rate swap

The other frequently met construction is the currency swap in which the flow of interest

payments is identical to the interest rate swap but with the difference that the two sets

of cash flows are denominated in different currencies.
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At conclusion of a swap, the two sides must have equal value under the then prevailing

market conditions. This possibly calls for a compensation payment by one of the coun-

terparties. The value of one swap side is determined by present valuing each cash flow

according to an appropriate discount function.

In trading situations it is not the present value of the two sides that is of most relevance

to the trader or the customer. It is either the interest rate of the fixed side or the spread

in excess to the floating side that are then referred to as the price of the swap (We will

use price and rate interchangeably).

As market conditions (interest rates, exchange rates) change, the two sides of a swap

perform differently and will eventually be misbalanced. Managing these misbalances on

a portfolio basis is of paramount importance to the swaps trader.

2.2 Current Situation

The correct valuation of financial instruments in a trading situation depends on the

availability of adequate software tools. Adequacy is needed with respect to both the

user interface and the calculation support.

Innovation driven by competition among suppliers of financial instruments requires that

software tools must constantly be extended to include calculation support for new fi-

nancial products.

However, current approaches to the development of software tools in financial engi-

neering are not satisfactory. Software tools are either built on top of a spreadsheet pro-

gram or as a separate application. Both approaches have a number of deficiencies.

While spreadsheets allow for fast development of new tools they are often too slow for

extensive calculations and almost impossible to maintain once the computational mod-

els become more complex. The user interface typically is very rudimentary and per-

forms poorly under trading conditions.

Development of standalone applications is very costly and time consuming. Therefore

developers often resort to “quick and dirty” implementation techniques in order to meet

time constraints dictated by the fast moving markets. These time constraints have also

led to minimalistic, menu driven, user interfaces.

A very crucial shortcoming of both approaches is that similar functionality is re-engi-

neered for every new tool.
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2.3 Towards better Solutions

Almost each instrument has its own trading practice and jargon. However, when look-

ing at the instruments and the valuation procedures on a more abstract level one can

find many commonalties and interrelationships among them. Most notably:

• Each deal consists of a set of actual or potential cash flows.

• A cash flow has an associated business day on which it is realised.

• The value of any instrument is sensitive to changes in interest rates. Therefore the

quantification and monitoring of the interest rate sensitivity is applicable to any in-

strument.

• Arbitrage between different markets tends towards consistent “time value of

money”-profiles across markets which allows the valuation of one instrument in

terms of the price structure of other instruments.

• Instruments can easily be expressed in terms of each other when adopting a LEGO®

(or building blocks) approach in trying to understand financial instruments [Smi87].

These observations led us to the conviction that the domain of financial instruments is

ideally suited for the employment of a framework approach.

However, a framework can not be designed from scratch on paper. Rather, experience

suggests that it must grow bottom-up and successively mature by applying it to differ-

ent problem (sub-)domains. Therefore, with the notion of a general framework for fi-

nancial engineering in mind we set out with our first development in the domain of

swaps trading.

Fig. 2 shows a pilot application that was the result of a series of prototypes imple-

mented in collaboration with trading specialists. The purpose of this endeavour was to

acquire initial domain know-how and experiment with various user interfaces.

The upper right window shows a domain specific desktop on which domain items are

depicted as icons. Relationships among the items may be edited through drag-and-drop

type manipulations on the icons. The bottom left window shows an editor in which data

can be modified directly via its graphical depiction by directly dragging a part of the

curve.
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Fig. 2: Screen sample of Swaps Manager I

The following section describes the framework as it is being used in the context of a

swaps trading software.
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3 The Architecture of the Calculation Engine Framework

Fig. 3 shows the structure of the framework and the most important objects. We will

show the key abstractions in more detail, and then we will describe two scenarios which

demonstrate their use.

SwapLeg

Rate 1

DFManager

rates

strategies

Rate n…

CalcStrategy 1 … CalcStrategy n

  

  

Basic Building Block

Instrument Block

Instrument

cfgenerator

paymentdates

currency

yieldcurve

pricer

calendar

Discount Function Block  

CashFlowGenerator

Pricer

DateInterval

Currency

Calendar

inherits
references

Fig. 3: The calculation engine objects

3.1 The Key Abstractions

As mentioned in section 1 standard instruments and the conventions to guide their

trading define financial markets. The most important guidelines deal with the pricing of

an instrument. The main problem here is achieving comparability of cash flows occur-

ring at different dates. This is solved through the definition of a discount function

which allows to calculate the present value of any cash flow due in the future [Mir91].

This leads to two key abstractions, the instrument and the discount function.
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3.1.1 Instrument

An instrument represents any traded facility for generating cash flows in today’s finan-

cial markets.

Instrument
• generate cash flows
• calculate the present value
• calculate the price
• construct the payment dates
• construct generator

- CFGenerator
- Pricer
- DFManager
- Calendar
- DateInterval

Fig. 4: CRC-Card [Beck89] for an instrument

Every instrument has the ability to generate the cash flows from a description and a

valid market environment by a discount function manager. It has a connection to ob-

jects encapsulating relevant market information (e.g., Currency , Calendar and

DFManager).

Because we can’t describe the algorithm for cash flow generation at an abstract level,

we introduce objects which encapsulate this algorithm. This is a well known design pat-

tern, called strategy  pattern  [Gam92], which we use in several situations.

CFGenerator
• generate cash flows - Instrument

- DFManager
- Currency
- Calendar
- Accrualbasis
- DateInterval

Fig. 5: CRC-Card for a generator

The CRC-Card of Fig. 5 shows only one responsibility. This narrow set of tasks is typi-

cal for a strategy object. A specific implementation of a generator knows more about its

instrument and is able to combine its parameters to achieve the results wanted, i.e., a

list of cash flows.  A similar technique is used for pricing an instrument. Fig. 6 shows

the CRC-Card for a pricer .



Frameworks in the Financial Engineering Domain/ECOOP 93 9

Pricer
• calculate the price
• calculate the present value

- Instrument
- DFManager
- Currency
- Calendar
- Accrualbasis

Fig. 6: CRC-Card for a pricer

Since Instrument  is an abstract class, it can’t decide which strategies are useful for a

given implementation. It delegates their allocation to its subclasses by means of factory

methods. A factory method is a method that is called by a base class to create a subclass

dependent object. These are called DoMakeGenerator  and DoMakePricer.

DoMakePricer

DoMakeGenerator
 FixedLegCFGenerator 

 FixedLegPricer 

Instrument

cfgenerator

pricer

SwapSide

Fig. 7: Factory methods to generate customised strategies

An Instrument’s interface is defined at the level of the abstract class, which allows

to treat a collection of instruments. This collection generates cash flows as if it were a

single instrument. Therefore a portfolio of instruments can itself be modeled as an in-

strument. Fig. 8 shows the class hierarchy for instruments.

SwapSide Future 

Portfolio 

CompositeInstrument FRA 

SwapTransaction 

Instrument 

Fig. 8: The class hierarchy for instruments
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3.1.2 Discount function

The discount function for a given market mix is implemented by a DFManager .

DFManager
• incorporate pricing information.
• imply prices at dates where no price is

quoted by the market.
• calculates the discount function

- Rate
- CalcStrategy
- DFCalculator
- InstrumentType

Fig. 9: The CRC-Card for the DFManager

We calculate a discount factor for a given standard instrument by the method of zero-

coupon pricing. For different kinds of standard instruments we use different formulas.

R
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Money
Market

Future
Market

Swap
Market

1.0

0.0

D
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co
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t
F
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r

Fig. 10: Discount Function constructed from different kinds of rates

The DFManager  forwards the calculation of discount factors (out of different kinds of

rates as shown in Fig. 10) to specialised objects. Again we apply the same design pat-

tern to this problem as for the generators and pricers and called them calculation strate-

gies. They encapsulate the algorithm which is needed to compute the value of the dis-

count function over a range of homogenous rates. These strategies are selected at calcu-

lation time by the type of the rate we calculate the discount factor for. A calculation

strategy may depend on the discount factors at previous points to calculate a correct

value. For every type of rate there must exist a calculation strategy.

Fig. 11 shows the structure of a DFManager object. The rates  attribute consists of

rate objects with each representing a standard instrument.
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Rate 1

DFManager

rates

strategies

Rate n…

CalcStrategy 1 … CalcStrategy n
Yield at i
DF at i
Rate at i
…

Fig. 11: The structure of a DFManager object

Currently, we support three kinds of standard instruments (Fig. 12).

aStrategy

DiscountFactor

DerivativeSensitivity

MoneyMarketStrategy FutureStrategy SwapMarketStrategy 

CalcStrategy 

Fig. 12: The interface of the class CalcStrategy and it’s sublcasses

Based on the above factorisations, the structure of the calculation context may be set-up

at will. The DFManager  inspects its structure when it has to calculate something for

the first time and installs the needed strategies (through factory methods).

Consider a trader doing business in Swiss Franc Interest Rate Swaps. In these markets

there exist several kinds of instruments which influence trading decisions. To achieve a

better overview of the current market situation, several DFManagers  can be in use at

the same time. They differ in the mix of included prices. In this way we support the

trader in integrating simultaneously accessible market information and arriving at a

more accurate decision.

3.2 Scenarios

To illustrate the use of the classes, we present two scenarios which show the interaction

among the actual objects involved.

3.2.1 Discount Factor Calculation

In the first scenario a pricer object starts a request for a discount factor at a date

where a rate is defined, to calculate the present value of a cash flow (cf. Fig. 3).
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This is processed in the following way:

double DFManager::DiscountFactor(Date theDate)
{

Rate *theRate= rateslist->GetRate(theDate);
CalcStrategy *cs= this->GetStrategy(theRate);
return cs->DF(theDate);

}

What is the advantage of doing it this way? A DFManager  relies only on the interface

of the collaborator objects. It just uses the responsibilities defined in their abstract base

class and manages them. We achieved a strong separation between structure informa-

tion (Rate), selector knowledge (DFManager) and procedural knowledge

(Strategy). To identify such a collaboration scheme we again use a design pattern,

the manager pattern.

To support a new kind of rate, we implement the corresponding formula in a strategy

subclass and define the new rate. So we end up implementing one new subclass with

essentially one formula and possibly a caching algorithm.

3.2.2 Cash Flow Generation

The second scenario shows how cash flow generation works in an instrument. We de-

scribe a fixed swap leg which is fairly easy to understand without further knowledge in

financial engineering.

A fixed swap leg is defined by several parameters, the most important being principal ,

fixed rate, and accrual basis:

• Principal denotes an amount of money which is the base for cash flow generation.

• Fixed rate is the interest rate used on the principal to calculate the amount paid in

regular intervals.

• Accrual basis is the definition of the amount of days per year for which interest ac-

crues.

These definitions are specific to one instrument, a fixed swap leg. To process the in-

formation correctly, a generator knows about the parameters supplied by its instrument.

So a fixed leg generator accesses the information of a fixed swap leg by the specific

swap leg interface.

Information that is common to more than one class is used through the interface of the

abstract base class. The aim is to always use the most abstract interface possible.

In the scenario the swap leg collaborates with its generator to produce the cash flows.

The generator obtains the necessary parameters from its instrument, in this case the

fixed swap leg. The following shows a generic algorithm which implements the formu-

la found in many swaps handbooks.
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void FixedLegCFGenerator::GetCashFlows(List &theCFList)
{

Interval *cashdate= swapleg->GetInterval();
AccrualBasis *acb= swapleg->GetAccrualBasis();
Date at,prev;
double amount;

//--- generate interest payments
while (cashdate->Next(at)) {

cashdate->Previous(prev);
double accrual= acb->Alpha(prev, at);
amount= Principal(prev) * Rate(prev) * accrual;
theCFList.Add(new CashFlow(at, amount, …));

}
}

In the above code sample we use several parameter objects whose purpose we list

briefly:

• Interval  describes the structure of the payments over time.

• AccrualBasis is an object encapsulating the convention on how to calculate in-

terest accrual periods.

To iterate over the payment periods, the generator uses Interval . This object gener-

ates in the loop all the dates necessary for the calculation. In each iteration one cash

flow object is generated to store the information. The generator adds these to the list

and returns the list to the instrument.

Evaluation

This example shows us not only the de-coupling of what  and how, but also the co-op-

eration of smaller abstractions. The Interval  is defined by one object and used by

another. The objects are solely connected by the interval object and its respective proto-

col. This is used in the swaps leg, for example, where one object knows how to specify

the temporal structure, and the other needs to know the actual dates for the calculation.

The AccrualBasis calculates accrual factors with the accrual basis given by the

swap leg.

To transfer cash flows as parameters we introduce a class CashFlow which stores all

relevant data for later use.

Thus we achieved effective de-coupling by introducing fine grained abstractions that

only define responsibilities. There are many different specific implementations which

are all used homogeneously.

4 Experience

Our experience from developing the ET++SwapsManager and from earlier projects is

that building, or better growing, a framework is hard work. It takes recurrent, conscious

efforts to review a working design and improve it.
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Typically, in developing a software system, functionality is added and tested incremen-

tally. As a consequence the functionality of the system grows without much concern for

the overall design. But, to really advance the design it has to be reworked periodically.

Thus it is possible that, while preserving the monotonically increased functionality, the

system decreases significantly in size, due to consolidation efforts.

Development of a framework starts with the implementation of a specific solution in a

particular domain. Then the solution is successively reworked to cover a family of ap-

plications. For this process of generalising a design we found a few rules of thumb

which were helpful in our project:

• Try to consolidate similar functionality found in different parts of the system and

implement it through a common abstraction.

• Split up a large abstraction into several smaller abstractions such that a team of col-

laborating objects results. Each of these smaller abstractions then implements only a

small set of responsibilities. A good example of this is separating pricing and cash

flow generation from the instrument abstraction as described in section 3.1.1.

• Objectify abstractions that differ; implementing each variation of an abstraction as

an object increases the flexibility of a design.

• Use composition instead of inheritance where possible. This reduces the number of

classes in a system. Additionally, it relieves the (re-)user of the framework from

having to deal with the inner workings of participating classes.

Especially the last rule seems crucial in the development of a highly flexible frame-

work. The novice often tries to find class hierarchies in the problem domain and struc-

tures the needed responsibilities and code accordingly. The call for multiple inheritance

is then merely a consequence when one is confronted with implementing an abstraction

that is really a combination of already available sets of responsibilities. Structuring

functionality along inheritance hierarchies, however, leads to static configurations.

Frameworks draw their superiority from well designed collaborations among teams of

objects.
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