
Lecture Notes in Artificial Intelligence 1630
Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Matthew M. Huntbach Graem A. Ringwood

Agent-Oriented
Programming

From Prolog to Guarded Definite Clauses

1 3

Series Editors
Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Authors

Matthew M. Huntbach
Graem A. Ringwood
Department of Computer Science, Queen Mary and Westfield College
Mile End Road, London E1 4NS, UK
E-mail: {mmh/gar}@dcs.qmw.ac.uk

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Huntbach, Matthew M.:
Agent-oriented programming : from prolog to guarded definite
clauses / Matthew M. Huntbach ; Graem A. Ringwood. - Berlin ;
Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ;
Paris ; Singapore ; Tokyo : Springer, 1999

(Lecture notes in computer science ; Vol. 1630 : Lecture notes in
artificial intelligence)
ISBN 3-540-66683-4

CR Subject Classification (1998): I.2, D.1.6, D.1.3, D.3, C.2.4

ISBN 3-540-66683-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10703359 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

Preface

A book that furnishes no quotations is, me judice, no book – it is a
plaything.

TL Peacock: Crochet Castle

The paradigm presented in this book is proposed as an agent programming language.
The book charts the evolution of the language from Prolog to intelligent agents. To a
large extent, intelligent agents rose to prominence in the mid-1990s because of the
World Wide Web and an ill-structured network of multimedia information. Agent-
oriented programming was a natural progression from object-oriented programming
which C++ and more recently Java popularized. Another strand of influence came
from a revival of interest in robotics [Brooks, 1991a; 1991b].

The quintessence of an agent is an intelligent, willing slave. Speculation in the area of
artificial slaves is far more ancient than twentieth century science fiction. One
documented example is found in Aristotle’s Politics written in the fourth century BC.
Aristotle classifies the slave as “an animate article of property”. He suggests that
slaves or subordinates might not be necessary if “each instrument could do its own
work at command or by anticipation like the statues of Daedalus and the tripods of
Hephaestus”. Reference to the legendary robots devised by these mythological
technocrats, the former an artificer who made wings for Icarus and the latter a
blacksmith god, testify that the concept of robot, if not the name, was ancient even in
Aristotle’s time. Aristotle concluded that even if such machines existed, human
slaves would still be necessary to render the little personal services without which life
would be intolerable.

The name robot comes from the Czech words for serf and forced labor. Its usage
originates from Karel Capek’s 1920s play Rossum’s Universal Robots in which
Rossum, an Englishman, mass-produced automata. The play was based on a short
story by Capek’s brother. The robots in the play were not mechanical but grown
chemically. Capek dismissed “metal contraptions replacing human beings” as “a
grave offence against life”. One of the earliest film robots was the replica Maria in
Fritz Lang’s 1927 classic Metropolis. The academic turned science fiction writer
Isaac Asimov (1920–1992) introduced the term robotics when he needed a word to
describe the study of robots in Runaround [1942]. Asimov was one of the first
authors to depart from the Frankenstein plot of mad scientist creating a monster and
to consider the social implications of robots.

An example of an automaton from the dark ages is a vending machine for holy water
proposed by Hero of Alexandria around 11 AD. A modern reincarnation is Hoare’s
choc machine [Hoare, 1985] developed to motivate the computational model CSP
(Communicating Sequential Processes). The word automaton, often used to describe
computers or other complex machines, comes from the same Greek root as
automobile meaning self-mover. Modern science owes much to the Greek tradition.
Analysis of the forms of argument began with Empedocles and the importance of
observation stems from Hippocrates. The missing ingredients of Greek science
compared with the science of today were supplied by the Age of Reason. These were

VI Preface

the need for deliberately contrived observation - experiments; the need for inductive
argument to supplement deduction; and the use of mathematics to model observed
phenomena. The most important legacy of seventeenth century science is technology,
the application of science. Technology has expanded human capability, improved
control over the material world, and reduced the need for human labor. Willing slaves
are, perhaps, the ultimate goal of technology.

Industrial robots appeared in the late 1950s when two Americans, Devol and
Engelberger, formed the company Unimation. Take-up was slow and Unimation did
not make a profit for the first fourteen years. The situation changed in the mid-1980s
when the automobile industry, dissatisfied with trade union disruption of production,
turned to robot assembly. However, the industrial robot industry overextended as
governments curtailed trade union power and the market saturated. Many firms,
including Unimation, collapsed or were bought out by end product manufacturers.
Today, the big producer is Japan with 400 000 installed robots compared to the US
with over 70 000 and the UK with less than 10 000.

With pre-Copernican mentality, people will only freely admit that humans possess
intelligence. (This, possibly, should be qualified to mean most humans on most
occasions.) Humans can see, hear, talk, learn, make decisions, and solve problems. It
seems reasonable that anyone attempting to reproduce a similar artificial capability
would first attempt emulating the human brain. The idea that Artificial Intelligence
(AI) should try to emulate the human nervous system (brain cells are nerve cells) was
almost taken for granted by the twentieth century pioneers of AI. Up until the late
1960s talk of electronic brains was common place.

From Rossum’s Universal Robots in Carel Kapek’s vision to HAL in the film 2001,
intelligent machines provide some of the most potent images of the late twentieth
century. The 1980s were, indeed, a good time for AI research. In the 1970s AI had
become something of a backwater in governmental funding, but all that changed
dramatically because of the Japanese Fifth Generation Initiative. At the beginning of
the 1980s, MITI, the Japanese equivalent of the Department for Trade and Industry,
announced that Japan was to concentrate on knowledge based systems as the cutting
edge of industrial development. This sent tremors of commercial fear through the
corridors of power of every country that had a computing industry. These
governments had seen national industries such as shipbuilding, automobile
manufacturing, and consumer electronics crumble under intensive Japanese
competition. In what retrospectively seems to be a halfhearted attempt to target
research funds to industrially relevant information technology, a few national and
multinational research programs were initiated. A major beneficiary of this funding
was AI. On short timescales, commercial products were supposed to spring forth fully
armed from basic research.

Great advances in computer hardware were made in this decade with computing
power increasing a thousandfold. A computer defeated the world backgammon
champion and a computer came in joint first in an international chess tournament,
beating a grandmaster along the way. This, however, did not augur the age of the
intelligent machine. Genuine progress in AI has been painfully slow and industrial
take-up has been mainly limited to a few well-publicized expert systems.

Preface VII

In the mid-1980s, it was envisaged that expert systems that contain thousands of rules
would be widely available by the end of the decade. This has not happened; industrial
expert systems are relatively small and narrowly focused on specific domains of
knowledge, such as medical diagnosis. As researchers tried to build more extensive
expert systems major problems were encountered.

There are two reasons why game playing is the only area in which AI has, as yet,
achieved its goal. Though complex, chess is a highly regular, codifiable problem
compared with, say, diagnosis. Further, the algorithms used by chess playing
programs are not usually based on expert systems. Rather than soliciting knowledge
from chess experts, successful game playing programs rely mainly on guided brute
force search of all possible moves using highly powerful conventional multiprocessor
machines. In reality, AI has made as much progress as other branches of software
engineering. To a large extent, its dramatic changes of fortune, boom and bust, are
due to fanatical proponents who promise too much. The timescale predictions of the
Japanese now look very fanciful indeed. AI has been oversold more than once.

A common reaction to the early efforts in AI was that successful replication of human
skills would diminish human bearers of such skills. A significant outcome of AI
research is how difficult the simplest skills we take for granted are to imitate. AI is a
long-term problem, a marathon, and not a sprint competition with the Japanese.
Expert systems are only an early staging post on the way to developing intelligent
machines.

AI pioneered many ideas that have made their way back into mainstream computer
science. These include timesharing, interactive interpreters, the linked list data type,
automatic storage management, some concepts of object-oriented programming,
integrated program development environments, and graphical user interfaces.
Whatever else it achieved, the Japanese Initiative provoked a chain of increased
governmental funding for Information Technology reaction around the world from
which many, including the authors, benefited.

According to Jennings et al. [1998], the fashion for agents “did not emerge from a
vacuum” (who would have imagined it would?) Computer scientists of different
specializations artificial intelligence, concurrent object-oriented programming
languages, distributed systems, and human-computer interaction converged on similar
concepts of agent. Jennings et al. [1998] state, “Object-oriented programmers fail to
see anything novel or new in the idea of agents,” yet they find significant differences
between agents and objects. This is because their comparison only considers
(essentially) sequential object-oriented programming languages such as Java. Had
they considered concurrent object-oriented programming languages they would have
found fewer differences.

Three languages have been promoted for agent development: Java, Telescript, and
Agent-TCL. None of these are concurrent object-oriented languages. Java, from
SUN Microsystems, is advocated for agent development because it is platform
independent and integrates well with the World Wide Web. Java does, however,
follow the tradition of interpreted, AI languages but is it not sympathetic to symbolic
programming. Telescript, from General Magic, was the first commercial platform

VIII Preface

designed for the development of mobile agents. The emphasis is on mobility rather
than AI applications. Agent-TCL [Gray et al., 1996] is an extension of TCL (Tool
Command Language) which allows mobile code. While string based, TCL does not
have a tradition of AI applications. Programs are not inductively defined, as is the
case with Lisp or Prolog.

This monograph describes a concurrent, object-oriented, agent programming
language that is derived from the AI tradition. A working knowledge of Prolog is
necessary to fully appreciate the arguments. The monograph is divided into two parts.
The first part, Chaps. 1–5, describes the evolution of the paradigm of Guarded
Definite Clauses (GDC). If the paradigm is serious, and more than a fashion, then it is
necessary to to describe its applications. This is done in the second part of the
monograph, Chaps. 6–10. To set the paradigm in context, Chap. 1 provides an
irreverent survey of the issues of AI. Chap. 2 completes the background to the
paradigm with a retrospective rationale for the Japanese Fifth Generation Initiative.
Chap. 3 describes how the paradigm evolved from Prolog with the environment
change of multiprocessor machines. Included in this chapter is a chronology of the
significant developments of GDC. Chap. 4 explores the manifestations of the vital
ingredient of the paradigm - event driven synchronization. Chap. 5 compares and
contrasts the language evolved with actor languages. The main difference is that
GDC is an actor language with the addition of inductively defined messages.

The second part of the book begins with Chap. 6, which illustrates the advantages of
GDC in parallel and distributed search. Chap. 7 describes the specialization to
distributed constraint solving. Chap. 8 generalizes the chapters on search to meta-
interpretation. An affinity for meta-interpretation has long been a distinguishing
feature of AI languages. Chap. 9 describes how the overhead of meta-interpretation
can be assuaged with partial evaluation. Chap. 10 concludes with the application of
GDC to robotics and multi-agent systems.

While GDC as such is not implemented, it differs only marginally from KL1C, a
language developed by the Japanese Fifth Generation Computer Systems Initiative.
The Institute for New Generation Computer Technology (ICOT) promoted the Fifth
Generation Computer Systems project under the commitment of the Japanese
Ministry of International Trade and Industry (MITI). Since April 1993, ICOT has
been promoting the follow-on project, ICOT Free Software (IFS), to disseminate the
research:

According to the aims of the Project, ICOT has made this software,
the copyright of which does not belong to the government but to
ICOT itself, available to the public in order to contribute to the
world, and, moreover, has removed all restrictions on its usage that
may have impeded further research and development in order that
large numbers of researchers can use it freely to begin a new era of
computer science.

AITEC, the Japanese Research Institute for Advanced Information Technology, took
over the duties of ICOT in 1995. The sources of KL1 and a number of applications
can be obtained via the AITEC home page: http://www.icot.or.jp/AITEC. KL1C runs

Preface IX

under Linux and all the GDC programs in this monograph will run with little or no
modification.

Despite their best efforts, the reader will find that the authors’ cynicism shows
through since they, like Bernard Shaw, believe that all progress in scientific endeavor
depends on unreasonable behavior. In Shaw’s view the common perception of
science as a rational activity, in which one confronts evidence of fact with an open
mind, is a post-rationalization. Facts assume significance only within a pre-existing
intellectual structure that may be based as much on intuition and prejudice as on
reason. Humility and reticence are seldom much in evidence and the scientific heroes
often turn out to be intellectual bullies with egos like carbuncles.

The authors are very grateful to Jean Marie Willers and Peter Landin for the onerous
task of proof reading earlier drafts of this monograph. Thanks are also due to our
editors at Springer-Verlag, Ingrid Beyer, Alfred Hofmann, and Andrew Ross. Each
author would like to say that any serious omissions or misconceptions that remain are
entirely the fault of the other author.

January 1999 Matthew M Huntbach

Graem A Ringwood

Contents

Chapter 1: The Art in Artificial Intelligence . 1

1.1 Realism . 1
1.2 Purism . 3
1.3 Rococo . 4
1.4 Classicism . 7
1.5 Romanticism . 10
1.6 Symbolism . 14
1.7 Neo-Classicism . 17
1.8 Impressionism . 20
1.9 Post-Impressionism . 22
1.10 Precisionism . 25
1.11 New Realism . 28
1.12 Baroque . 29
1.13 Pre-Raphaelite Brotherhood . 32
1.14 Renaissance . 33
1.15 Hindsight . 34

Chapter 2: Fifth Generation Architecture . 37

2.1 Architecture and Design . 38
2.2 Design as Evolution . 40
2.3 Design as Co-evolution . 43
2.4 Design as Theorem . 44
2.5 Design as Premise . 48
2.6 Design as Paradigm . 50
2.7 Impressionist Design . 54
2.8 Classical Design . 59
2.9 Logic Machines . 61
2.10 Hindsight . 64

Chapter 3: Metamorphosis . 69

3.1 Apparent Scope for Parallelism . 70
3.2 Or-Parallelism . 72
3.3 The Prolog Phenomenon . 73
3.4 Concurrency and Operating Systems . 77
3.5 Concurrency and Distributed Systems . 78
3.6 Symbiosis Between Programming Language

and System Engineering . 80
3.7 Event Driven Synchronization . 81
3.8 Earlier Manifestations of Guarded Commands 83
3.9 Condition Synchronization in AI . 84
3.10 Guarded Definite Clauses . 87
3.11 Simulation of Parallelism by Interleaving . 90
3.12 Indeterminacy . 92

XII Contents

3.13 The Premature Binding Problem Revisited . 93
3.14 Decision Tree Compilation . 96
3.15 A Brief History of Guarded Definite Clauses . 97

Chapter 4: Event Driven Condition Synchronization 103

4.1 Streams for Free . 104
4.2 A Picture is Worth a Thousand Words . 106
4.3 Dataflow Computation . 108
4.4 Dataflow Design . 110
4.5 Dataflow Programming . 112
4.6 Message Passing . 115
4.7 Eager and Lazy Produces . 118
4.8 The Client-Server Paradigm . 122
4.9 Self-Balancing Merge . 124
4.10 Synchronization . 125
4.11 Readers and Writers . 127
4.12 The Dining Philosophers . 128
4.13 The Brock–Ackerman Anomaly . 132
4.14 Conditional Semantics . 133
4.15 Open Worlds and Abduction . 135
4.16 Implementation Issues . 137

Chapter 5: Actors and Agents . 139

5.1 The Actor Model . 140
5.2 Haggling Protocols . 144
5.3 Consensus Protocols . 146
5.4 Market Forces . 148
5.5 Poker Faced . 148
5.6 Virtual Neural Networks . 149
5.7 Biological and Artificial Networks . 150
5.8 Self-Replicating Neural Networks . 152
5.9 Neuron Specialization . 152
5.10 The Teacher Teaches and the Pupil Learns . 157
5.11 Neural Simulation . 160
5.12 Simulated Life . 162
5.13 Life Yet in GDC . 163
5.14 Cheek by Jowl . 164
5.15 Distributed Implementation . 165
5.16 Agent Micro-Architectures . 167
5.17 Metalevel Agent Architectures . 168
5.18 Actor Reconstruction of GDC . 170
5.19 Inheritance Versus Delegation . 172

Contents XIII

Chapter 6: Concurrent Search . 175

6.1 A Naive Prolog Solution to the 8-Puzzle . 175
6.2 Speculative Parallelism . 180
6.3 Non-speculative, Non-parallel Linear Search . 182
6.4 A Practical Prolog Solution to the 8-Puzzle . 183
6.5 A Generic Search Program . 186
6.6 Layered Streams . 188
6.7 Eliminating Redundant Search . 190
6.8 A Direct GDC Solution Using Priorities 193
6.9 Search Anomalies . 195
6.10 Branch-and-Bound Search . 198
6.11 Game Tree Search . 203
6.12 Minimax and Alpha-Beta Search . 205
6.13 Parallel Game Tree Search . 207
6.14 Parallel Search and Cooperative Distributed Solving 211

Chapter 7: Distributed Constraint Solving . 213

7.1 All-Pairs Shortest Path Problem . 216
7.2 The Graph Coloring Problem . 220
7.3 Minimal Spanning Trees . 233
7.4 Conclusion . 244

Chapter 8: Meta-interpretation . 247

8.1 Metalanguage as Language Definition
and Metacircular Interpreters . 248

8.2 Introspection . 250
8.3 Amalgamating Language and Metalanguage

in Logic Programming . 251
8.4 Control Metalanguages . 254
8.5 A Classification of Metalevel Systems . 256
8.6 Some GDC Monolingual Interpreters . 259
8.7 GDC Bilingual Interpreters . 265
8.8 An Interpreter for Linda Extensions to GDC . 269
8.9 Parallelization via Concurrent Meta-interpretation 274
8.10 Conclusion . 277

Chapter 9: Partial Evaluation . 279

9.1 Partial Evaluation . 280
9.2 Futamura Projections . 283
9.3 Supercompilation . 289
9.4 Partial Deduction . 295
9.5 Partial Evaluation and Reactive Systems . 297
9.6 An Algorithm for Partial Evaluation of GDC Programs 300
9.7 Actor Fusion . 305
9.8 Actor Fusion Examples . 308

XIV Contents

9.9 Partial Evaluation of an Interpreter . 310

Chapter 10: Agents and Robots . 319

10.1 Reactive Agents: Robots and Softbots . 319
10.2 A Simple Robot Program . 321
10.3 Reaction and Intelligence . 327
10.4 Objects, Actors and Agents . 329
10.5 Objects in GDC . 332
10.6 Agents in GDC . 336
10.7 Top-Down and Bottom-Up Multi-agent Systems 339
10.8 GDC as a Coordination Language . 341
10.9 Networks and Mobile Agents . 345
10.10 Conclusion 348

References and Bibliography . 353

	Agent-Oriented Programming

	Preface

	Table of Contents

