
Integrating and Rapid-Prototyping UML

Structural and Behavioural Diagrams
Using Rewriting Logic

Nasreddine Aoumeur and Gunter Saake

Institut für Technische und Betriebliche Informationssystem
Otto-von-Guericke-Universität Magdeburg

Postfach 4120, D–39016 Magdeburg
{aoumeur,saake}@iti.cs.uni-magdeburg.de

Abstract. Although the diversity of UML diagrams provides users with
different views of any complex software under development, in most cases
system designers face challenging problems to keeping such diagrams co-
herently related. In this paper we propose to contribute to the tremen-
dous efforts being undertaken towards rigorous and coherent views of
UML-based modelling techniques. In this sense, we propose to integrate
most of UML diagrams in a very smooth yet sound way. Moreover, by
equipping such integration with an intrinsically concurrent and opera-
tional semantics, namely rewriting logic, we also provide validation by
rapid-prototyping using Maude implementations.
More precisely, the diagrams we propose to smoothly integrate include:
object- and class-diagrams with their related object constraints (using
OCL), statecharts and life-cycle diagrams. The integration of such di-
agrams is based on very appealing Petri-net-like semi-graphical nota-
tions. As further advantages of the proposed integration we cite: (1)
an explicit distinction between local features and observed ones in (the
enriched) class-diagrams which offers a clean separation between intra-
and inter-class-diagram reasoning; and (2) a full exploitation of rewriting
logic reflection capabilities for expressing different object-life cycles in a
runtime way.

1 Introduction

Standardized by the Object Management Group (OMG) in 1997, the Unified
Modeling Language (UML) [BJR98, BJR97] methodology has been rapidly ac-
cepted and emerged as a suitable framework for modeling (and implementing)
complex software-intensive systems. By providing numerous forms of very ap-
pealing semi-graphical diagrams with associated texts (i.e. using the object con-
straint language OCL), UML has been largely experienced in different cate-
gories of software-intensive systems. However, as designers attempt to go be-
yond the syntactical constructions of such diagrams—including object-, class-,
sequence-, state-chart-, collaboration-, and component-diagrams with associated
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text descriptions—they face challenging problems in keeping such diagrams co-
herent and intrinsically related. Such coherence is a crucial requirements for
ensuring consistency and completeness (using different verification/validation
formal techniques) of the whole system before its implementation.

As a result of this unsatisfactory state of affair, several proposals have been
forwarded recently aiming at bringing more rigor and coherence to these often
redundant and incoherent views. Among these proposals we specifically cite the
development of an adequate integration, denoted by Casl-Ltl [RCA01, ACR00],
of the recently developed algebraic specification language Casl [Mos97] and a
suitable form of labelled transition systems [Ast99]. Using this integration the
authors show how almost all UML diagrams can find a rigorous formalization.
Other approaches concentrating on the formalization and integration of some
UML diagrams have been also put forward like the formalization using Object-
Z, Graph-theory, Petri nets, etc (see the proceedings deserved to this methodol-
ogy [FR99, EK00]).

The purpose of this paper fits within the direction of these research directions,
and introduces a more coupled integration of most UML diagrams having in mind
complex distributed information systems as a main application domain. That is,
following our experiences in this field [AS99c, Aou00, JSHS96, CRSS98], we are
concentrating more on object-, class- (with related text descriptions using OCL),
transition- and statecharts’ diagrams, that are in our view largely sufficient for
covering most of structural as well as behavioural aspects in complex information
systems. However, instead of describing (or after describing1) them separately
when conceiving a complex information system, we rather propose to soundly
integrate them in a smooth way keeping all their expressive advantages while
overcoming most of their shortcomings. More precisely, the shortcomings we
are tackling with—as triggers towards the proposed integration—include the
following:

– By independently conceiving object constraints—particularly pre-, post-con-
ditions and conditions to be associated with methods or operations in the
class-diagrams—, in our view this does not only violate the intrinsic de-
pendency of these constraints to associated operations and objects but also
increases the degree of incoherence between the two parts, which in fact
concern the same world entities. So, our contribution aims at intrinsically
incorporating these constraints in the corresponding class- and/or object-
diagrams.

– UML diagrams promote just a community-based perception of the system,
whereas to cope with the ever-increasing complexity in real-life information
systems rather a component-based perception is overwhelmingly needed. In
this sense, an explicit distinction between local attributes / operations and
observed ones, would allow each (hierarchy) of class-diagram—capturing an
independent part of whole system— to be autonomously conceived as a

1 We should point out here that the present proposal should be regarded just as
complement artifacts helping the UML-based designers for more reliability rather
than as a new alternative.
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component. On the basis of observed features, such components may be
then interconnected by hiding all their internal features.

– Although the object-orientation with its message-passing concept promotes
true-concurrency and distribution, the UML (behavioural) diagrams offer
only a very restricted form of interleaving (see [WMB99] for recent attempts
to deal with concurrency in UML state-charts). That is, a true concurrent
semantics would very be helpful for capturing the distributed nature of com-
plex information systems.

– In the same spirit as for OCL descriptions against object and class-diagrams,
we also argue that the modelling of life-cycle- and sequence-diagrams inde-
pendently of class- and object-diagrams makes very hard the understanding
and the coherence of whole specification as well as any further refinement
steps towards efficient implementations.

In some detail, with the aim to overcome the above UML shortcomings the inte-
gration we are proposing may be sketched as follows. But before we should once
again clearly point out that our integration is to be regarded as an intermediate
phase between the UML modelling and implementation phases. The purpose of
this intermediate phase, that could be generated (semi-)automatically from the
original UML diagrams, is to bring more coherence, concurrency, more compo-
nentization and validation to the modelled system.

– First as we just mentioned, in any class-diagram we make an explicit dis-
tinction between local attributes / operations2 and observed ones. Of course
such distinction is intrinsically depending on the application at hand. Sec-
ond, besides the attribute identifiers and their sorts (and eventually initial
values), we propose to endow each attribute with a variable(s), which will
play the role of a current value when we proceed to its interpretation us-
ing rewrite logic. In the same way, we equip each message argument with a
corresponding variable.

– The second important step consists in constructing the dynamic of each
message or method-invocation. To this aim we propose to construct for each
local message a Petri-net-like ‘transition’, where the condition and post-
operation or the resulting change have to be adapted from the corresponding
OCL description when it exists; otherwise they have to be constructed from
the intuitive meaning of such a message. A general pattern of such a dynamics
is proposed. We will refer to such ‘enriched by dynamics’ class-diagrams as
enriched class-diagrams or simply as components.

– With respect to such a general pattern, we propose to interpret the opera-
tions dynamics in terms of rewrite logic. That is, each operation or message
dynamics is captured by a corresponding rewrite rule. By allowing objects
to be created and deleted, using these rules we show how a true concur-
rent reasoning is possible with a full exhibition of intra- and inter-object
concurrency using an adequate extension of Maude language that we have
proposed in [AS99a].

2 In order to emphasize the concurrent character of our integration, we will use later
messages instead of operations or method-invocations.
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– After associating with each class-diagram its corresponding local behaviour,
the next step is to deal with the interconnection of different independent
(i.e. related only through relationships) class-diagrams composing the sys-
tem. We follow the same reasoning as for the internal behaviour. That is,
for each message declared as observed in each class-diagram as well as for
each (dynamical) relationship, we construct the corresponding dynamics us-
ing the same Petri-like notation, but at this level only observed features of
interacting class-diagrams are to be selected. That is, from a methodological
point we are proposing a two-level based perception: first, each independent
component is constructed and rapid-prototyped and then the interaction is
dealt with by hiding all local features.

– Using the reflection capabilities of rewrite logic, we directly provide how
message rewrite rules are to be performed, where carefully chosen strategies
will correspond to life-cycle diagrams. To capture sequence diagrams, we have
to add to the list of attributes in each class-diagram a particular attribute
we called state and construct an appropriate strategy reflecting its change.

The rest of this paper is organized as follows. Using a very simplified ex-
ample, in the next section we present an overview of different UML diagrams
we will be focusing on. In the third section, we concentrate on the syntacti-
cal integration of OCL descriptions into class-diagrams. In the four section we
propose an adequate interpretation of this integration in terms of the extended
Maude language. The last section recapitulates the achieved work and discusses
some future improvements. Unfortunately, due to space limitation we could not
presents the semantical part, that is the rewrite theory, of the Maude exten-
sion and the meta-level for capturing state-chart diagrams semantics; however,
the extended version of this paper adressing these two issues is appearing as a
technical report [AS02].

2 UML Diagrams through a Simplified Example

In this section we present a simplified illustration of different UML diagrams we
are concerning with, namely class-, object-, and associated OCL descriptions.
From a methodological point of view, the construction of such diagrams has to
be seen as a first phase towards the modelling / validation of any system. In
this simplified banking system we assume having two ‘independent’ (i.e. related
only through relationships) class-diagrams, namely the account and the account
owners diagrams. Before giving the detail of each diagram, the left-hand side
of Figure 1 sketches the ‘generic’ form of class diagrams—where classes are
composed as usual of a set of attributes and operations and may be related to
each other through inheritance, role and associations.

Using this general form, the right-hand side of Figure 1 depicts the class-
diagram of an account class hierarchy. In this hierarchy we have as a super-
class current accounts. Attributes of this class are the balance, the account
owner’s identity and a constant, denoted by Limit, as a minimal value of the
balance. As methods of this class we consider : the opening and deletion of any
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Class−Name

Attribute2 : Type1 (= Value by Default)
Attribure1 : Type1 (=Value by Default)

. . . .

operation k : (Arguments List n ) : Type−result n

operation 1 : (Arguments List 1 ) : Type−result1 

Attributen  : Typen   (=Value by Default)

inheritanceaggregation

0−1

1− N

association

role

.   .   .    .

* open

+ close

deposit(Amount : money)

withdraw(Amount:money)

Chg_Limit(new : money)

Current Account

No : nat

Balance : money

Owner : |Customer|

Limit : money

Transfer(account, account, money)

SavAccount

comp_Interest

InterestRate : real

Fig. 1. The Generic form of UML class diagrams with the accounts example

account, the deposit of a given amount, the withdraw of a given amount, and
the transfer of funds from an account to another. As a subclass we consider the
class Sav-Account which is characterized by the interest percent. The interest
percent of the balance is added up (at the end of each year for instance) to the
current balance through the method comp interest.

As a sketch of the OCL description part which will be the interest of our
focus, we present in what follows the corresponding description to be associated,
for instance, with the transfer method. This description is depicted in Table 1,
where besides the signature of the method and its informal meaning, relevant
is the condition Pre to be true to perform such a transfer, namely the account
source balance has to the greater than the intended amount to be transfered.
Relevant is also, the result of any operation, denoted by Post.

3 Integration of OCL Descriptions into Class-Diagrams

As we pointed out above, modelling separately OCL descriptions, and specif-
ically different details about methods, does not only prevent a full respect of
the object-oriented philosophy—that is, an intrinsic description of structural
and behavioural aspects— but also prohibits any form of validation by rapid-
prototyping. Indeed, it is very desirable that such a validation is performed at
the specification level without requiring further refinements or implementations.
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Table 1. A simplified illustration of OCL description using the transfer method

keywords corresponding instantiation

Operation Account :: transfer (src:Account, dest:Account, amount : Money)

Description The system takes amount from the source,
if there is, and places it on the destination

Pre: src.balance ≥ amount

Post: src.balance− = amount ∧ dest.balance+ = amount

However, we should be aware that although several OO existing modelling frame-
works do achieve such intrinsic integration, only a few of them offer an appealing
and high-comprehension level provided by UML diagrams. In other words, our
objective is to maintain all the strengths of UML diagrams and just enrich-
ing them in such a way that OCL descriptions concerning operations could be
smoothly merged in the class-diagrams. In the following we present step by step
this enrichment of class-diagrams with related OCL descriptions.

3.1 Enrichment of Class-Diagrams by Variables and Scopes

The first step towards integrating behavioural aspects in UML class-diagrams
consists in the following. In order to allow controlling the change of attribute
values as well as the invoked objects and values of message parameters, we
propose to endow each attribute (resp. operation parameter) with at least one
variable which has to be of the same sort. Besides argument variables, we also
make explicit the objects (identities) invoked in a given message. On the other
hand, as we mentioned we want rather a component-oriented perception. To this
aim, we associate with each attribute (resp. operation) a scope which may be
local or observed—shortly l or o. Finally, in order to distinguish between invoked
objects in a given operation (as in the transfer operation for instance), we also
propose to include in the attribute box a list of (current) identifier variables
preceeded by the (key)word Identity.

These enrichment are depicted in Figure 2, where with respect to the generic
general form of class-diagrams we already introduced in Figure 1 we have added
variables and scopes with each attribute and operations. In this enriched general
form we have also separated (by using two boxes) between messages considered
as local and those considered as observed ones.

Example 1. By restricting the account class-diagram to just the current accounts
class, in the left-hand side of Figure 3 we have enriched this class by different
variables for attributes as well as for message arguments. Also, we have distin-
guished between local and observed attributes and messages. However, the user
may always change the scope of such attributes and messages at a need; for in-
stance we have decided that the transfer operation be an observed one just for
illustration purpose as will be subsequently made clear. In the right hand side,
we have introduced a new ‘enriched’ class-diagram, namely the account owners’
(or customer) class.
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0-1

. . . .

Local operations 

External Operations

. . . .

.   .   .    .

Class_Name

Attribute n  : Type n

Identity : sort : List_vars 
Attribure1 : Type1  : List_vars  : :  o 

Attribute2 : Type 2 : List_vars  ::   l

: List_vars  ::  o

op 1 : (Object_identities, List_args:List_vars 1) ::  l 

op k : (Object_identities, List_arg:List_vars k)  ::  l

op  e1 : (List_args, List_vars, Object_sorts)  ::  o

op  ep : (List_arg, List_vars, Object_sorts)   ::  o

1- N

association role

agreggation inheritance

Fig. 2. The generic UML class-diagrams enriched by variables and scopes

3.2 Introducing New Notations for Behavioural Aspects

After enriching class-diagrams with the notions of variables and scopes, the
next step consists in intrinsically incorporating in these diagrams the dynamics
of each operation instead of (or after) describing them separately using OCL
descriptions. In the endeavor to achieve this crucial step, we propose to add new
semi-graphical notations we borrow from Petri-nets ones [Rei85]. More precisely,
with respect to our objective of enhancing scalability and component-orientation,
first, we present how class-diagrams’ behaviour is conceptualized, and then we
deal with the behaviour gouverning the interaction between ‘independent’ class-
diagrams composing the whole system.

Internal behaviour within class-diagrams. As described in Figure 4, the incorpo-
ration of the dynamics associated with each local message—all observed messages
are ignored at this level—consists in constructing a Petri-net like transition, with
the following characteristics.

– The transition form we associate with each operation is represented as a
rounded box. Within each rounded box we associate a condition (i.e. a
boolean expression), we denote by Mes cond, which has to be built on the
invoked attributes and message argument variables using different compar-
ison operators (e.g =, >, <, �=,≤,≥) and / or boolean operators (e.g and,
or).

– The (input) arrows or arcs going from the class to each rounded box are
labelled by two information. On the one hand, the first inscription de-
noted by Invoked Mes is to be always a local message of the form opi(Id1,
.., var1,..,vark); where opi is any operation or message declared as lo-
cal one in the corresponding class-diagram, and the parameters Id1, ..,



Integrating and Rapid-Prototyping UML Structural 303

    ::  l

The Customer ComponentThe Accont Component

Account

+ close

Identity : I, I2, I3  :: o

Limit : money : L, L1, L2  :: l

* open  ::   l

chg_Limit(new : money)  :: l

Balance : money : B,  B1, B2  :: o

withdraw(I, Amount:money (W)) :: l

Owner : |Customer| : C1, C2 :: o

deposit(I, Amount : money (D)) :: l

Customer

Name : N1  ::  l

Identity :  C,  C1, C2  :: o

Job : J, J1  ::  l

+ close  :: l
* create  :: l

transfer(I1, I2, C1, C2, Amount (T)) :: o

chg_address(new_adr:N, Oid)  :: l

Address : A, A1  ::  o

Fig. 3. The accounts and customers class-diagrams with variables and scopes

var1,..,vark have to reflect the object identifiers and other invoked pa-
rameters. The second inscription we denote by Invoked attributes has to
be of the form:

Id1.atr1:Var1 ,. . ., Idk.atrk:Vark

Intuitively each pair Idi.atri:Vari corresponds to an invoked attribute be-
longing to an object Idi with Vari to be understood as a current value.
The selected pairs should correspond to objects (identifiers) invoked in the
corresponding message. In other words, they have to be involved either for
changing these current values or participating in the condition. This will play
an important role towards exhibiting intra-object concurrency as we show
later.

– Finally, the inscription associated with the output arrow, we denoted by
Result change, has to be of the form.

Id1.atr1:Exp1 ,. . ., Idk.atrk:Expk.

Each expression Expi has to reflect the intended change of the corresponding
value of the invoked attributes.

Example 2. Following this general form in integrating message dynamics into
class-diagrams, Figure 5 illustrates the incorporation of different behaviour as-
sociated with local operations in both Account and Account Owners classes.
For instance, to reflect the withdraw behaviour, first, we have to select an ac-
count and a corresponding amount: this fact is illustrated by the inscription
withdraw(I,M), with I as account identifier and M the associated amount to
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Invoked_attri-k

Mes_cond1Mes_condk .  .  .

invoked_attri-1

Invoked_Mes1

Invoked_Mesk

Result_changek

Result_change1

0-1

Local operations 

.   .   .    .

Class_Name

Attribute n  : Type n

Identity : sort : List_vars 
Attribure1 : Type1  : List_vars  : :  o 

Attribute2 : Type 2 : List_vars  ::   l

: List_vars  ::  o

1- N

association role

inheritanceagreggation

. . . .

op k : (Object_identities, List_arg:List_vars k)  ::  l

. . . .

op 1 : (Object_identities, List_args:List_vars 1) ::  l 

Fig. 4. The general form of enriching class-diagram by operations dynamic

be withdrawn. The second inscription, labelling the corresponding input arc of
this method, namely I.balance:B, I.limit:L, involves the attributes of the
invoked object (i.e. I) which are needed to express the corresponding state’s
change and conditions. As a condition of this method we require that the cur-
rent value of the balance should by greater that M and the difference B-M be
greater than L. Finally the resulting state’s change has to be I.balance:B-M,
I.limit:L which corresponds to the output arc inscription.
On the light of this explanation, all other operation dynamics are constructed
following the same reasoning. It is worth-noting that all observed messages are
simply omitted at this level.

Interaction between independent class-diagrams. As we pointed out in the intro-
duction, we are proposing a two-level based methodology for integrating different
UML diagrams. That is, after enriching each independent class-diagram with the
appropriate behaviour as a first level, the next step is to deal with the interaction
between different class-diagrams composing the whole system. To this purpose,
we introduce very similar constructions with the following specificities. First as
depicted in Figure 6, at this level in each class-diagram we have to deal only
with those attributes and operations chosen to be observed. That is, the al-
ready constructed internal behaviour as well as all local attributes and messages
have to be hidden at this inter-class diagrams’ interaction level. Second, besides
observed messages also relationships relating different class-diagrams may have
corresponding behaviours. Third, technically the construction of such behaviour
is exactly as for local messages except that now more than one class-digram is
needed.

Example 3. In Figure 7 we have constructed the corresponding behaviour of the
transfer message. In this construction we require for instance that for performing
any money transfer between two accounts their corresponding owners should
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Chg_Limit(I,L1)
    ::  l

The Owner Component
The Accont Component

Identity : I, I2, I3  :: o

Balance : money : B,  B1, B2  :: o

Owner : |Customer| : C1, C2 :: o

Limit : money : L, L1, L2  :: l

+ close

* open  ::   l

withdraw(I, Amount:money (W)) :: l

deposit(I, Amount : money (D)) :: l

chg_Limit(new : money (L))  :: l

Account

Account−owner

Address : A, A1  ::  o

+ close  :: l

chg_adresse(new_adr:N, Oid)  :: l

* create  :: l

Job : J, J1  ::  l

Identity :  C,  C1, C2  :: o

Name : N1  ::  l

Fig. 5. The Account and Owner class-diagrams extended by messages behaviour

have the same address (the same city). With such a constraint we should now
also involve the owner class-diagram.

4 Interpretation of the Proposed Integration
in the Extended Maude

First as we pointed out in the introduction, due to space limitation we assume the
reader fimiliar we the Maude language and the extension for intra-object con-
currency and componentization we proposed in [AS99a]. This section is devoted
to the theoretical underpinning of the proposed syntactical modelling artifacts.
Our objective is to propose a semantical framework that allows fulfilling all the
mentioned features, namely : (1) an indivisible integration of structural and be-
havioural aspects of objects within classes ; (2) a full exhibition of intra- and
inter-object concurrency; (3) a satisfactory interpretation of all structuring ab-
stractions within the enriched class-diagrams; (4) a clean separation between the
internal description and reasoning within any class-diagram and the description
and reasoning about the interaction between such class-diagrams. By reasoning
we mainly understand the rapid-prototyping using the deduction rules of such
an adequate semantical framework.

The semantical framework we are proposing is based on rewrite logic [Mes92],
which has been proved very appropriate for dealing with concurrent OO systems
in the recent years [Mes98]. Another advantage that makes this logic very prac-
tical is the current implementation of the Maude language [CDE+99], those
programs are just theories in this logic.
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Fig. 6. The Interaction between independent class-diagrams
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 Identity :  C,  C1, C2  :: o

address : A, A1  ::  o

Account−owner

Account

owner : |Customer| : C1, C2 :: o

balance : money : B,  B1, B2  :: o

Identity : I, I2, I3  :: o

transfer(I1, I2, Amount:money (T )) :: o

Fig. 7. The interaction between the account and the customer class-diagrams

More precisely, in the next subsection we will focus more on the way of
translating the proposed integration to the extension of Maude we proposed
in [AS99a, AS99b], which allows fulfilling all the mentioned (four) objectives.

4.1 Translating Extended Class-Diagrams into Maude

This subsection is devoted to the translation of our proposed variant of class-
diagrams into the Maude language. To this aim, following the two-level sug-
gested methodology, first, we have to deal with the translation of each inde-
pendent class-diagram separately. Then, we should complete this translation by
coping with the interaction between such independent class-diagrams composing
the whole system.

Translating class-diagrams. By examining the general form of class-diagrams
we proposed in Figure 4 and the Maude description it follows that such a
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translation is very straightforward. More precisely, the steps to be performed
are the following.

1. The translation of structural aspects of any class-diagram is directly cap-
tured as a Maude module, where attributes are to be declared with their
corresponding sorts and operations are conceived as messages. Besides that,
in order to distinguish local attributes / messages and observed ones, in-
stead of the OO Maude modules’ keywords class and Msgs we will rather
use class-loc and class-obs as well as Msg-loc and Msg-obs.

2. The translation of the behaviour we associated with each operation can also
be intuitively expressed as a rewrite rule. More precisely, we have to perform
the two follwoing two steps:
– first, we have to reorganize input (resp. ouput) inscriptions from the

form
Id1.atri1 : val1, . . . , Idk.atrik : valk

(resp. Id1.atri1 : exp1, . . . , Idl.atril:expl) to the Maude form
one, namely:

〈Id1|atri1 : val1〉, . . . , 〈Idk|atrik : valk〉
(resp. 〈Id1|atri1 : exp1〉, . . . , 〈Idl|atril : expl〉);

– each Petri-net like transition is then to be expressed as a rewrite rule of
the form:

Invoked Mesi Invoked Attrii ⇒ Result changei if
Condition

Example 4. With respect to these straightforward ideas, the corresponding
structural Maude part of the account class, for instance, takes the following
form:

omod Account is
protecting Money .

class-loc Account | Limit : Money .

class-obs Account | Balance : Money, Owner : OId .

msg-loc Chg Limit : OId Money → Msg .

msg-loc Deposit : OId Money → Msg .

msg-loc Withdraw : OId Money → Msg .

vars I, I2, I3 : OId .

vars C, C1, C2 : OId .

Vars B, B1, B2, L, L1, L2 : Money .

vars W, D : Money .

On the other hand, following these very simple translating ideas, the correspond-
ing rewrite rules of the messages in the account class-diagram, for instance, are
as follows. In these rules we have considered the corresponding message names
as rule labels.

Chg Limit : Chg Limit(I,L1) 〈I |Limit : L〉 ⇒ 〈I |Limit : L1〉
Deposit : Deposit(I,D) 〈I |Balance : B〉 ⇒ 〈I |Balance : B + D〉 if (D > 0)
Withdraw : Withdraw(I,W ) 〈I |Balance : B, Limit : L〉 ⇒ 〈I |Balance : B −

W, Limit : L〉 if (B − W > L) ∧ (B > W )
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Translating inter-class interactions. The translation into extended Maude of
the inter-class interactions is like the translation of intra-class structure and
behaviour except that here we deal only with observed features in each class.
Besides that, in order to separate the invoked messages and objects in each class,
we adopt the notation

(Class name1, configuration1) ⊗ . . . ⊗ (Class namek,
configurationk)

Following that, the general form of rewrite rules to associate with the inter-
action pattern depicted in Figure 6 takes the following configuration:

(Class name1, Invok Mes cl1 Invok attri cl1) ⊗ . . . ⊗ (Class namek,
Invok Mes clk Invok attri clk) ⇒ (Class name1, Result cl1) ⊗ . . .

⊗ (Class namek, Result clk) if Mes Condk

Example 5. Using the above general of rewrite rule, the rule corresponding to
the observed message transfer in Figure 7 takes the form:

Transfer: (Account, transfer(I1, I2, T )〈I1|balance : B1, Owner : C1〉〈I2|balance :
B2, Owner : C2〉) ⊗ (Accout − owner, 〈C1|address : A〉〈C2|address : A〉) ⇒
(Account, 〈I1|balance : B1 − T, Owner : C1〉〈I2|balance : B2T , Owner : C2〉) ⊗
(Accout − owner, 〈C1|address : A〉〈C2|address : A〉) if (B1 > T )

5 Conclusions

In this paper, we have proposed a sound and intuitive integration of all rele-
vant UML-diagrams for dealing complex distributed information systems. More
specifically in our integration we have concentrated on object- and class-diagrams
and OCL descriptions in particular pre- and post-conditions. Beside being syn-
tactically and semantically well-founded, the proposed integration enhances con-
currency with a full exhibition of intra- as well as inter-object concurrency, com-
ponentization as we explicitly separate between internal and object features in
any enriched class-diagram, and rapid-prototyping of this coherent view of dif-
ferent system diagrams using rewriting techniques.

Methodologically, this proposed sound integration has to be regarded more as
an intermediate phase between the UML modelling and implementation phases.
That is, after specifying any complex information systems using UML diagrams,
a semi-automatic translation or integration of these diagrams following the ex-
plained steps allows achieving at least the three above mentioned objectives.
We argue that fulfilling such goals promotes more reliability, reusability and
eliminate different errors and misunderstanding at an early stage.

As a future perspectives, first we are conscious that this proposal is just a first
stone in bringing more coherence and reliability to the UML methodology, and it
has to be improved, extended and be supported by appropriate software tools. In
this sense, firstly we are currently working on more complex non-trivial studies to
assess and enhance the practicability of this proposal. Such case studies have also
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to be validated using the current implementation of the Maude language. As a
very promising extension we are working on dealing with dynamic evolution of
such integration using the rewriting logic meta-level. This will offer in particular
to change in a runtime way the scope, the internal behaviour as well as the
interaction between different components.
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