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Abstract. We address the problem of efficient similarity search based
on the minimum distance in large time series databases. Most of previous
work is focused on similarity matching and retrieval of time series based
on the Euclidean distance. However, as we demonstrate in this paper,
the Euclidean distance has limitations as a similarity measurement. It is
sensitive to the absolute offsets of time sequences, so two time sequences
that have similar shapes but with different vertical positions may be clas-
sified as dissimilar. The minimum distance is a more suitable similarity
measurement than the Euclidean distance in many applications, where
the shape of time series is a major consideration. To support minimum
distance queries, most of previous work has the preprocessing step of
vertical shifting that normalizes each time sequence by its mean before
indexing. In this paper, we propose a novel and fast indexing scheme,
called the segmented mean variation indexing(SMV-indexing). Our in-
dexing scheme can match time series of similar shapes without vertical
shifting and guarantees no false dismissals. Several experiments are per-
formed on real data(stock price movement) to measure the performance
of our indexing scheme. Experiments show that the SMV-indexing is
more efficient than the sequential scanning in performance.

1 Introduction

Time sequences are of growing importance in many database applications, such
as data mining and data warehousing[1,2]. A time sequence is a sequence of real
numbers and each number represents a value at a time point. Typical examples
include stock price movement, exchange rate, weather data, biomedical mea-
surement, etc. Similarity search in time series databases is essential, because it
helps predicting, hypothesis testing in data mining and knowledge discovery[l,2].
Many techniques have been proposed to support the fast retrieval of similar time
sequences based on the Euclidean distance[5,6,17]. However, the Euclidean dis-
tance as a similarity measurement has the following problem: it is sensitive to
the absolute offsets of time sequences, so two time sequences that have similar
shapes but with different vertical positions may be classified as dissimilar.
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Consider a query time sequence @ = (4,9,4,9,4) and two data time sequences
A= (7,5,6,7,6) and B = (14,19,14,19,14) in Figure 1. Note that shifting @
upward for 10 units generates B. Using the similarity definition of the Euclidean
distance, A is a more similar to @ than B. However, B is more similar to () in
shape. From this example, the Euclidean distance is not a good measurement of
similarity when we would like to retrieve the time sequences of similar shapes
irrespective of their vertical positions in time series databases.
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Fig. 1. Shortcoming of the Euclidean distance

In order to overcome the shortcoming of the Euclidean distance above men-
tioned, the minimum distance can be used for time sequence matching[18,19,22].
The minimum distance is the Euclidean distance between two time sequences, ne-
glecting their offsets, that is, the minimum Euclidean distance over various shift
factors. This can give a better estimation of similarity in shape between two time
sequences irrespective of their vertical positions. To support minimum distance
queries, most of previous work has to take the preprocessing step of vertical shift-
ing which normalizes each time sequence by its mean before indexing[7,23,27].
This has the effect of shifting the time sequence in the value-axis such that its
mean is zero, removing its offset. However, the vertical shifting has the addi-
tional overhead to get the mean of a time sequence and to subtract the mean
from each element of the time sequence.

Time sequences are usually long, so the similarity calculation can be time
consuming. As the size of time series databases increases, the sequential scan-
ning scales poorly. To reduce the number of similarity calculations, an efficient
indexing scheme is required. Indexing, however, on such multidimensional data
doesn’t seem to be easy because of dimensionality curse in making an index
structure using a spatial access method such as R-tree[3] or R*-tree[4].

In this paper, we propose a novel and fast indexing scheme for time series,
called the segmented mean variation indexing(SMV-indexing). This method is
motivated by autocorrelation of time sequence, that is, the variation between
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two adjacent elements of time sequence is invariant under vertical shifting. This
autocorrelation motivated the dimensionality reduction technique introduced in
this paper. Our indexing scheme can match time series of similar shapes without
vertical shifting and guarantees no false dismissals.

The remainder of this paper is organized as follows. Section 2 provides a
survey of related work. We will give similarity measurements used in sequence
matching in Section 3, and our proposed approach is described in Section 4.
We will present the overall process of minimum distance queries in Section 5.
Section 6 presents the experimental results. Finally, several concluding remarks
are given in Section 7.

2 Related Work

Various methods have been proposed for fast matching and retrieval of time
series. The main focus is to speed up the search process. The most popular
methods perform feature extraction as dimensionality reduction of time series
data, and then use a spatial access method such as R-tree to index the time
series data in the feature space.

An indexing scheme called F-index[5] is proposed to handle sequences of the
same length. The idea is to use Discrete Fourier Transform(DFT) to transform
time sequence data from time domain to frequency domain, drop all but the
first few frequencies, and then use the remaining ones to index the time sequence
using a spatial access method such as R-tree. The results of [5] are extended in [6]
and the ST-index is proposed for sequence matching of the different length. The
methods proposed in [5,0] use the Euclidean distance as a similarity measurement
without considering any transformation. As shown in Figure 1, it is better to
consider the minimum distance as a similarity measurement in some applications.

In [7], the authors show that the similarity retrieval will be invariant to sim-
ple shifting and scaling if sequences are normalized before indexing. In [14,15],
authors present an intuitive similarity measurement for time series data. They
argue that the similarity model with scaling and shifting is better than the Eu-
clidean distance. However, they do not present any indexing method. In [3],
authors give a method to retrieve similar sequences in the presence of noise,
scaling and transformation in time series databases. In [20], the authors propose
a definition of similarity based on scaling and shifting transformations. In [9]
authors present a hierarchical algorithm called HierarchyScan. The idea of this
method is to perform correlation between the stored sequences and the tem-
plate in the transformed domain hierarchically. In [18,19], authors propose the
definition of similarity between sequences based on the slope of segments.

In [12], authors use vantage point trees for indexing and matching sequences
of different lengths based on a modified version of the edit distance, considering
two sequences similar if a majority of elements match. This technique is extended
to matching of multidimensional data sequences such as sequences of images[13].

In [10], Singular Value Decomposition(SVD) is used for dimensionality reduc-
tion technique. SVD is a global transformation which maps the entire dataset



380 Sangjun Lee et al.

into a much smaller one. SVD can be used to support ad hoc queries on large
dataset of time sequences. The problem of SVD is the performance deterioration
by update of an index structure. SVD has to examine the entire dataset again
to update an index structure.

In [11], authors propose a set of linear transformations such as moving aver-
age, time warping, and reversing. These transformations can be used as the basis
of similarity queries for time series data. The results of [1 1] are extended in [21]
and authors propose the method for processing queries that express similarity in
terms of multiple transformations instead of a single one. In [16,24], authors use
time warping as distance function and present algorithms for retrieving similar
time sequences under this function. However, a time warping distance does not
satisfy triangular inequality and can cause false dismissals.

In [22], authors propose to use Discrete Wavelet Transform(DWT) for di-
mensionality reduction and compare this method to DFT. They argue that Haar
wavelet transform performs better than DFT. However, the performance of DFT
can be improved using the symmetry of Fourier Transforms and DWT has the
limitation that it can only be defined for time sequences with a length of the
power of two.

In [25], authors propose the Landmark Model for similarity-based pattern
queries in time series databases. The Landmark Model integrates similarity mea-
surement, data representation, and smoothing techniques in a single framework.
The model is based on the fact that people recognize patterns by identifying
important points.

In [23,27] the authors introduce new dimensionality reduction technique of
time sequence by using segmented mean features. In this method, the time se-
quence is divided into non-overlapping segments. The feature of segment is rep-
resented by segment’s mean value. Then, the time sequence is indexed in the
feature space by a spatial access method. The same concept of independent re-
search is proposed in [26]. They show that the segmented mean features can
be used in arbitrary L, norm. However, the segmented mean features cannot
support minimum distance queries, vertical shifting is required in preprocessing
raw data to support minimum distance queries.

3 Similarity Measurements for Sequence Matching

In this section, we will give two similarity measurements used in sequence match-
ing. The first definition is based on the Euclidean distance between two time
sequences.

Definition 1 (Euclidean Distance). Given a threshold €, two time sequences
A ={ai,az2,...,a,} and B = {by,ba, ..., by} of equal length n are said to be
similar if

LEuclidean A B Z ‘az 1 1/2 <e
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A shortcoming of Definition 1 is demonstrated in Figure 1. Two time se-
quences B and @) are the same in shape, because B can be obtained by shifting @
upward 10 units. However, they can be classified as dissimilar by Definition 1.
From this example, the Euclidean distance is not a suitable measurement of
similarity when the shape is a major consideration.

Definition 2 (Minimum Distance). Given a threshold €, two time sequences
A ={ai,az2,...,a,} and B = {by,ba, ..., by} of equal length n are said to be
similar in shape if

Lmznzmum A, B Z|a’l —b; — )1/2 <e

where m = E (a; —
i=1

From Definition 2, two time sequences are said to be similar in shape if the
minimum distance is less or equal to a threshold e. This definition is a more
flexible similarity measurement when we would like to retrieve time sequences
of similar shapes from databases irrespective of their vertical positions.

4 Proposed Approach

The problem we focus on is the design of fast retrieval of similar time sequences
in databases based on the minimum distance. To the best of our knowledge,
this is the first work that examines indexing methods for minimum distance
queries without vertical shifting for time series of an arbitrary length. We will
now introduce the SMV-indexing and show that it guarantees no false dismissals.

4.1 Dimensionality Reduction

Our goal is to extract features that capture the information on the shape of a
time sequence, and that will lead to the feature distance definition satisfying the
lower bound condition of the minimum distance. Suppose that we have a set of
time sequences of length n. The idea of our proposed feature extraction method
consists of two steps. First, we divide each time sequence into m segments of
equal length [. Note that the start point and end point of adjacent segments are
the same, because the variation will be missed if the time sequence is divided
disconnectedly. In case the length of time series is not m(l — 1) + 1, then we add
the final element’s values at the end of sequence. This has no effect on query
results. Next, we extract a simple feature from each segment. We propose to use
the mean variation as the feature of each segment. F'A; denotes the feature of
the j — th segment of the time sequence A. We define the feature vector of the
time sequence A as follows.
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Definition 3 (Segmented Mean Variation Feature). Given a sequence

A = {ai1,a9,...,a,} and the number of segments m > 0, define the feature
—

vector F'A of the time sequence A by

—

FA=(FA,FA,,... FA,)
1—1 2(1-1

= % (O laiv —ail, Y
i=1 i=l

m(l—1)

)
|aiy1 —ail,. .., > |aiy1 — ail)

i=(m—1)I4+(2—m)

Figure 2 illustrates the dimensionality reduction technique used in this paper.
A time sequence of length 11 is projected into two dimensions. The time sequence
is divided into two segments and the mean variation of each segment is obtained.

Sequence A=(5,4,5,6,8,7,7,6,7,6,5)

—

FA = (MeanVariation(5,4,5,6,8,7), MeanV ariation(7,7,6,7,6,5))
= (1.2,0.8)

Fig. 2. Dimensionality Reduction Technique used in this paper

The algorithm to extract the feature vector is obviously simple. The mean
variation of a segment is invariant under vertical shifting, so the segmented
mean variation features can be indexed to support minimum distance queries.
The proposed matching scheme is motivated by the following observation.

Observation 1 (Autocorrelation of Time Sequence) The segmented
mean variation is invariant under vertical shifting.

Verifying its correctness is obvious. The following equality shows its correct-
ness.
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n—1
1
MeanVariation(A) = ) Z |aiv1 — a;l
i=1
1 n—1
= [(ait1 — ma) = (ai — ma)
CEnp>

4.2 Lower Bounding of the Minimum Distance

In order to guarantee no false dismissals, we must show that the distance between
feature vectors is the lower bound of the minimum distance between original
sequences. Lower bounding the minimum distance with the feature distance is a
condition that guarantees no false dismissals for similarity search in time series
databases. It is not hard to show that the feature distance is the lower bound of
the minimum distance.

LQEuclidean(ﬁ) < L;nznzmum(A)

In practice, however, the segmented mean variation feature vector F—A> is
a poor approximation of the time sequence A, since it is essentially a down-
sampling of time sequence. Much of the information will be lost, consequently,
too many false alarms will occur. It is necessary to find a way to compensate
the loss of information so that we could reduce the number of false alarms. More
specifically, we find a factor a > 1 such that,

- L;ﬂuclidean(ﬁ) < Lgnznzmum(A)

Since F(-) = |- |* is a convex function on R, we can use the property of
convex functions to find a. There is a well-known mathematical result on convex
functions. We can use the following theorem from [20,25]

Theorem 1. Suppose that x1,22,...,z, € R, and A1, Ao, ..., A\, € R such that
Xi >0 and (31, Ni) = 1. If F() is a convex function on R, then

F()\l.’)’}l + Aoy + ...+ )\nxn) < )\1F(£L'1) + )\QF({)SQ) + ...+ )\nF(LL'n)

where R is the set of real numbers.

Proof. The proof is shown in [28]. O

1

o

Using the result of Theorem 1 by taking A\, =
corollary.

we have the following
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Corollary 1 For any time sequence A = (a1, as, ..., a,), the following holds.
(n —1) - |MeanVariation(A)|*
n—1
<Y lairn — aif®
i=1
n—1 n
<2- (O i —mal + ) lai — mal?)
i=1 =2

n
<22 ~Z|ai —mgl?
i=1
n

where mg = Z(al)/n

i=1

or, equivalently, for each segment S;, 1 < j < m, we have

(I —1) - |MeanVariation(S;)|?

Ji-1)

< ) an—af

i=(G—1)i+(2-7)

j(1—1) J-1)+1
<2:( Y a-mdP+ D e —mal)
i=(j—1)I+(2—7) i=(G—1)I+(3—4)
where mg = Z(al)/n
i=1

Now, we present our main theorem as follows.

Theorem 2. For any time sequence A = (a1,as,...,ay), the following holds.

\/m . quclidean(ﬁ) <2. (Z ‘ai _ ma|2)1/2
i=1

where mg = Z(al)/n

i=1

Proof. Based on the definitions of Lo and ﬁ,
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P

(I —1). LEuetidean(p A)2 — (] — 1) . Z |MeanVariation(S;)|*

j=1
By Corollary 1, we can get the following inequality.

(il-1)- Z |MeanV ariation(S;)|?

j=1

-1 l

<2 {Z |ai —mal® + Z |ai —mal*}
i=1 1=2
2(1-1) 2(1-1)+1

+2'{Z‘ai_ma|2+ Z ‘ai_ma|2}
i=l

i=l+1
T
J-1) J=D+1

+2-{ Z |ai_ma‘2+ Z ‘ai_ma|2}

i=(j—1)I+(2—7) i=(G—1I+(3—4)

n
<222 a; — mal?
i=1

where mg, = Z(al)/n

i=1

By taking square root of both sides, we prove the theorem. [J

Owing to Theorem 2, we can efficiently handle minimum distance queries
with the segmented mean variation features. We know that L§*nmum (A B) < e
represents [ uctidean (F—Xl7 F.B>) < 2-¢/+/1 — 1 by Theorem 2. Consequently, min-
imum distance queries can be correctly converted to simple Euclidean distance
queries in the feature space without false dismissals. We can reduce the search

space by a factor of 2/v/1 — 1.

5 Query Processing

In this section, we will first present the sequential scanning which is the simplest
searching algorithm for time sequence matching. Then, we will present the overall
process of the SMV-indexing scheme.
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5.1 Sequential Scanning

The sequential scanning searches entire databases. It computes the minimum
distance between query time sequence and all data time sequences in databases.
If the minimum distance is within a given error bound, the data time sequence
is classified as similar to the query time sequence. Otherwise, it is classified
as dissimilar to the query time sequence and rejected. The sequential scanning
processes above procedure to all data time sequences in databases. The sequen-
tial scanning guarantees that no qualified data time sequence is falsely rejected.
However, the sequential scanning is slow because it has to access all data time
sequences in databases. As the size of time series databases increases, the se-
quential scanning scales poorly. The implementation of the sequential scanning
is described in Algorithm 1.

Algorithm 1: Sequential Scanning

begin
Input: query time sequence @, error bound ¢
Output: data time sequences within error bound e

Result «+ NULL;
for all D; € databases do
if ComputeMinimumDistance(Q, D;)< e then
| Result «— D; |J Result;
else
| Reject D;;
end
end
return Result;

end

5.2 Segmented Mean Variation Indexing (SMV-Indexing)

We present the overall process of our time series indexing scheme. Before a query
is performed, we shall do some preprocessing to extract feature vectors from time
sequences, and then to build an index. After the index is built, the similarity
search can be performed to select candidate sequences from databases.

Pre-processing

eStep 1. Feature Extraction : Each time sequence is divided into m
segments. Then, the feature vector is extracted from the time sequence
using the dimensionality reduction technique mentioned in Section 4.1
for all time sequences in databases.

oStep 2. Index Construction : We build a multidimensional index
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structure such as R-tree using the feature vectors extracted from time
sequences.

Index Searching After an index structure has been built, we can perform the
similarity search against a given query time sequence. The searching algorithm
consists of two main parts. The first is for candidate selection and the other is
postprocessing to remove false alarms. Some non-qualifying time sequences may
be included in the results of candidate selection because the feature distance
is the lower bound of the minimum distance. The actual minimum distance be-
tween query time sequence and candidate sequences are computed and only those
within the error bound are reported as the query results. The implementation
of the SMV-indexing is described in Algorithm 2.

Algorithm 2: SMV-indexing

begin
Input: query time sequence @, error bound ¢
Output: data time sequences within error bound e

Result «+— NULL;
Candidate « NULL;

// project the query time sequence () into the index space,
—
FQ « FeatureExtraction(Q);

// candidate selection using a Spatial Access Method,
—
Candidate « IndexSearching(FQ7SAM7\/2TL1 );

// postprocessing to remove false alarms,
for all C; € Candidate do
if ComputeMinimumDistance(Q, C;)< € then
| Result « C; |J Result;
else
| Reject Cj;
end
end
return Result;

end

6 Performance Evaluation

We implemented both the SMV-indexing and the sequential scanning in C++
on a Linux machine (Redhat 7.1, Kernel version 2.4.2) with dual Pentium III
500MHz CPUs, 512MB of memory and 40GB HDD. The size of disk page is set
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to 4KB. For a spatial access method, we used the Katayama’s R*-tree source
codes’.

The real time sequences were obtained from Seoul Stock Market, Korea?. The
stock database consisted of 2000 stocks and for each stock its daily closing prices
for 128 days. We have run 25 random queries over real dataset to find similar
time sequences based on the minimum distance. The query time sequences were
randomly selected from the stock database.

First, we compared the SMV-indexing with the sequential scanning in terms
of the number of actual computations required by varying error bound. We
evaluated the search space ratio to test the filtering power of removing irrelevant
time sequences in the process of index searching. The search space ratio is defined
as follows.

. the number of candidate sequences
search space ratio =

the number of time sequences in databases

Figure 3 shows the experimental result. Figure 3 shows that there is a sig-
nificant gain in reducing search space by the SMV-indexing.
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Fig. 3. Search Space Ratio: SMV-indexing vs. Sequential Scanning

Good filtering effect dose not always result in good performance since the
spatial access method can be affected by the dimensionality of feature vectors.
To verify the performance of the SMV-indexing, we compared the SMV-indexing
with the sequential scanning with respect to the average execution time. Figure 4
shows the experimental result. The result shows that the SMV-indexing is more
efficient than the sequential scanning in performance. However, as shown in

! The Katayama’s R*-tree source codes can be retrieved from
http://research.nii.ac.jp/~katayama/homepage/research/English.html
2 This data can be retrieved from http://www.kse.or.kr/kor/stat/stat_data.htm
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Figure 4, the average execution time increases as the given error bound increases,
eventually, the performance of the SMV-indexing becomes worse than that of
the sequential scanning. This is because the number of retrieved time sequences
for a larger error bound increases more rapidly than the number of relevant
time sequences. Consequently, the postprocessing time to remove false alarms
increases with a larger error bound.
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Fig. 4. Execution time: SMV-indexing vs. Sequential Scanning

7 Conclusion

We focused on fast similarity search in large time series databases, when the
similarity measurement is the minimum distance. The Euclidean distance is the
most popular similarity measurement for sequence matching. However, the Eu-
clidean distance has the potential drawback that it cannot support the shape
queries based on the minimum distance. To support minimum distance queries,
most of previous work has to take the preprocessing step of vertical shifting
that normalizes each time sequence by its mean before indexing. In this paper,
we have proposed a novel time series indexing scheme that supports minimum
distance queries without vertical shifting. Our indexing scheme is motivated by
autocorrelation of time sequence, that is, the mean variation of time sequence is
invariant under vertical shifting.

The major contributions of this work are: 1) introducing the similarity match-
ing scheme that allows indexing of time series based on the minimum distance
without vertical shifting, 2) introducing lower bound of the minimum distance
to filter out dissimilar time sequences without false dismissals.

Our approach can be extended to the matching time series of similar shapes in
arbitrary L, norm. We are currently working in this direction for fast retrieving
and matching time series of similar shapes in arbitrary L, norm.
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