
Supporting Dimension Updates

in an OLAP Server

Alejandro A. Vaisman1, Alberto O. Mendelzon2,
Walter Ruaro1, and Sergio G. Cymerman1

1 Universidad de Buenos Aires
{avaisman,wruaro,scymer}@dc.uba.ar

2 University of Toronto
mendel@db.toronto.edu

Abstract. Commercial OLAP systems usually treat OLAP dimensions
as static entities. In practice, dimension updates are often needed to
adapt the warehouse to changing requirements. In earlier work, we de-
fined a taxonomy for these dimension updates and a minimal set of op-
erators to perform them. In this paper we present TSOLAP, an OLAP
server supporting fully dynamic dimensions. TSOLAP conforms to the
OLE DB for OLAP norm, so it can be used by any client application
based on this norm, and can use as backend any conformant relational
server. We incorporate dimension update support to MDX, Microsoft’s
language for OLAP, and introduce TSShow, a visualization tool for di-
mensions and data cubes. Finally, we present the results of a real-life case
study in the application of TSOLAP to a medium-sized medical center.

1 Introduction

The term OLAP (On Line Analytical Processing) refers to data analysis over
large collections of historical data(data warehouses), supporting the decision-
making process, allowing the analysis of factual data (e.g. daily sales in the
different branches of a supermarket chain) according to dimensions of interest
(e.g. regions, products, stores, etc.). Several formal models for OLAP applica-
tions have been proposed [4,2,1]. Most of these are based on the original idea of
the “star schema” [8], in which data is stored in sets of dimension and fact tables.
The usual assumption here is that data in the fact tables reflect the dynamic
aspect of the data warehouse, whereas data in the dimension tables represent
basically static information. In practice, however, the evolution of the informa-
tion stored in the warehouse often requires updating some dimensions due to
changing user requirements or changes in the data sources.

In this paper we present an OLAP server supporting dimension updates
and view maintenance under these updates, built following the OLE DB for
OLAP [10] proposal. We extend MDX, Microsoft’s language for OLAP with a
set of statements supporting dimension update operators. We also introduce a
visualization tool for dimensions and data cubes. We present the results obtained
in a real-life case study, a medical center in Argentina. These results suggest that

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 67–82, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



68 Alejandro A. Vaisman et al.

execution times are compatible with real-life application requirements. Moreover,
we show that our view maintenance algorithm largely outperforms the Summary-
Delta algorithm for maintaining summary tables in a data warehouse [11].

The remainder of the paper is organized as follows: in Section 2 we review
the multidimensional model and dimension updates; in Section 3 we describe
our implementation in detail. Section 4 presents the case study and discusses
the results. We conclude in Section 5.

2 Multidimensional Model and Dimension Updates

In previous work, Hurtado et al. [6,7] introduced a multidimensional model that
includes a framework for dimension updates and a set of dimension update oper-
ators. Due to space limitations we will only give a quick overview of that model,
and refer the reader to these works for details.

A dimension schema is a directed acyclic graph G(L,�) where each node
represents a dimension level, and � is a relation between levels such that its
transitive and reflexive closure, �∗, is a partial order with a unique bottom
level linf , and a unique top level All.

An instance of a dimension is an assignment of a set of elements to each
dimension level. Moreover, between every pair of levels li and lj such that
li � lj there is a function ρ

lj
li
called rollup. A dimension instance must sat-

isfy the consistency condition, meaning that for every pair of paths from li to lj
in �, the composition of the rollup functions yields identical functions.
Example 1. Figure 1(a) shows dimension schema for a dimension Geography,,
where for L = {city, province, country, All}. Relation � contains the following
pairs: city � province, province � country, country � All. Figure 2(a) shows
an instance of the dimension.

Factual data is stored in fact tables. Given a set of dimensions D, a fact
table has a column for each dimension in D and one or more columns for a
distinguished type of dimension called Measure. A base fact table is a fact table
such that its attributes are the bottom levels of each one of the dimensions in D.
A multidimensional database is a set of dimensions and fact tables. A cube view
is a view computed by aggregating data over the measure of a base fact table.

2.1 Dimension Updates and View Maintenance

We will now briefly review the set of operators that modify either the schema or
an instance of a given dimension. There are two kinds of update operators: struc-
tural operators, that modify the schema, and instance operators, that modify an
instance.

The structural operators are the following. Generalize adds a new level above
a given one. Relate links two independent levels in a dimension. Unrelate deletes
an edge between two levels. DelLevel deletes a level and its rollup functions. Spe-
cialize adds a new level to a dimension, below the bottom level linf . Although



Supporting Dimension Updates in an OLAP Server 69

provinceregion

country

All

     city     city

province

country

All All

country

region province

     city      city

     (c)     (b)     (a)      (d)

     town

provinceregion

country

All

Fig. 1. Dimension Geography, and a series of updates

Specialize can be defined in terms of some of the operators above [13] this would
lead to an inefficient implementation so we prefer to treat it as a separate opera-
tor. The instance operator AddInstance inserts a new element into a level, while
DelInstance, deletes an element from a level.

Example 2. Figure 1 shows a sequence of structural dimension updates to the
Geography dimension. Figure 1(b) depicts a generalization of level city to level
region. Figure 1(c) shows the dimension schema after relating levels region and
country (i.e. this defines that one region cannot belong to two different coun-
tries). Finally, Figure 1(d) shows a specialization of level city to a finer grain,
represented by the level town. Deleting town would yield the dimension of Fig-
ure 1(c). Figure 2(b) depicts the dimension instance after having deleted the city
San Juan City, and added Mendoza City, to the instance of Figure 2(a).

Many common updates to dimensions would result in long sequences of prim-
itive instance updates. Thus, the works cited above define complex instance up-
date operators, capturing such common sequences and encapsulating them in a
single operation [6,7].

When an update to a dimension occurs, any cube views that have been
materialized in the data warehouse must be updated accordingly. Previous works
[6,13] present algorithms that outperform traditional incremental maintenance
algorithms for materialized views with aggregates [11] by exploiting the special
structure of dimension updates. In Section 4 we compare the performance of
these algorithms for theDelInstance operation and the SUM aggregate function,
against a summary-delta algorithm developed by Mumick et al [11].



70 Alejandro A. Vaisman et al.

Ontario Mendoza

Toronto

Canada Argentina

all

San Juan

   (b)

San Rafael Mendoza City

Canada Argentina

all

CuyoEast Ontario San Juan Mendoza

Toronto San Juan   CitySan Rafael

   (a)

CuyoEast

Fig. 2. (a) Initial dimension (b) Dimension after adding and deleting instances

2.2 Mapping Dimensions to Relations

In previous work [7] Hurtado and some of the authors discussed different ways
in which dimensions can be represented in the relational model. The relational
representation of a dimension schema that we adopted in the implementation
discussed in Section 3 is a relation containing one attribute for each dimension
level; each dimension instance contains a tuple for each element to which no
other element in the dimension instance rolls up.

Formally, let us denote the relational representation of a dimension d as
a pair Rd = (Sd, Td), where Sd = (rname, A,F) is the schema of the relation;
rname is the name of the dimension, and also the name of the relational schema,
A is the set of attributes of the relational schema, and F is a set of functional
dependencies such that dom(F) ∪ ran(F) ⊆ A. Td is the set of tuples in the
relation representing d. A tuple Rd = (Sd, Td) represents the dimension, where:
(a) Sd = (rname, A,F) is the dimension schema, such that: rname is the name
of the dimension; A contains an attribute l for each level l ∈ L; F contains a
functional dependency la → lb for each pair of levels la, lb ∈ L such that la � lb;
(b) Td, is the set of tuples in the relation. Let us define the leaves of a level l ∈ L,
Leaves(l), as the set of elements in a dimension level not reached by any other
element below them in the dimension instance. For every level l, and for every
element e ∈ Leaves(l), there is a tuple t in Td such that t(li) = ρ∗li

l (e), if l �∗ li,
or t(li) = null otherwise, where ρ∗ is the transitive and reflexive closure of ρ.

We assume that the functional dependencies are only applied over non-null
values, i.e., a null in a level la can be related to two different elements in lb even
if we have la → lb in F .
Example 3. The denormalized representation of the dimension depicted in Fig-
ure 2(a) is the following:



Supporting Dimension Updates in an OLAP Server 71

city province region country

Toronto Ontario Cuyo Canada
SanJuanCity SanJuan Cuyo Argentina
SanRafael Mendoza Cuyo Argentina

3 Implementation of Dimension Updates

In this section we present a relational implementation of the model introduced
in Section 2. We decided to build an implementation that could be accessed
by multiple clients and served by multiple back-ends using reasonably standard
interfaces. We chose for this purpose Microsoft’s OLEDB for OLAP set of in-
terfaces. To express dimension updates, we extended the MDX language, the
language proposed by Microsoft as a standard for multidimensional database
access [10]. The reason for this choice was the wide set of OLAP vendors sup-
porting OLEDB for OLAP, including companies such as Business Objects, SAS
Institute, Cognos, and Hyperion, among others. A commitment to this stan-
dard was subscribed in the Data Warehouse Alliance [9]. Further, the recently
released XML for Analysis protocol extends OLE DB for OLAP and OLE DB
for DM, allowing standard data access between a client and a provider over the
web. However, an implementation could also be built on alternative proposals
such as JOLAP [12], a Java-based OLAP API initiative led by ORACLE and
IBM.

Roughly speaking, OLE DB is a set of low level interfaces for access and
manipulation of different data types using the OLE Component Object Model
(COM). Thus, OLE DB is more powerful that the well-known ODBC because
it is not restricted to relational data. In an OLE DB architecture, a consumer
is any object consuming an OLE DB interface, while a provider is a software
component which offers OLE DB interfaces. OLE DB for OLAP is an OLE DB
extension allowing access and manipulation of multidimensional data like cubes,
dimensions, levels and measures, no matter how these data are physically stored.
For querying multidimensional data, OLE DB for OLAP employs multidimen-
sional expressions written in the MDX query language.

Data Cubes are created in MDX using the DDL(Data Definition Language)
statement CREATE CUBE. However, MDX does not provide update statements for
dimensions. Once dimensions and data cubes are created, they remain unchanged
“forever.” If a situation requiring a dimension update arises, the dimension must
be rebuilt from scratch, along with the data cube. We would like to be able to
update dimensions and data cubes as soon as it is required, without discarding
any current data. Moreover, MDX does not support multiple-path hierarchies
(i.e., hierarchies where there are at least two paths between some pair of levels).
Instead, we are forced to treat such hierarchies as as a set of single-path hier-
archies, which seems rather unnatural. We believe that from the analyst’s point



72 Alejandro A. Vaisman et al.

of view, it is important to address multiple hierarchies in a more natural way,
providing a higher level of abstraction.

In order to give a solution to these drawbacks, we developed an OLE DB
for OLAP data provider called TSOLAP that supports dimension updates and
performs incremental view maintenance under these updates, together with an
MDX extension denoted MDDLX.

3.1 TSOLAP Architecture

We considered four possible architectures for bringing dimension updates into
OLAP: (a) building an application implementing dimension updates over a rela-
tional database; (b) modifying an existing OLAP server; (c) developing a hybrid
architecture by storing the data cube in a commercial OLAP server, and a cat-
alog in a relational database; (d) implementing a ROLAP server.

We discarded alternative (a) because it meant dimension updates could only
be performed by the application program. Alternative (b) was not practical given
that we had no access to the internals of an OLAP server. Alternative (c) would
not allow maintenance of materialized cube views, as the data cube would be
stored in the OLAP server. We chose alternative (d), with the architecture shown
in Figure 3.

The ROLAP repository is built on top of a Relational Database. We ex-
tended OLE DB for OLAP with a Data Definition Language(MDDLX), and
introduced a layer between OLE DB for OLAP and the data source for im-
plementing dimension updates and view maintenance. The data sources can be
accessed either through OLE DB or via ODBC (using MSDASQL, an OLE DB
provider for ODBC). Configuring the ROLAP server for ODBC allows accessing
a wide set of databases. Figure 3 shows that an application could also connect
to an OLE DB for OLAP provider via ADO, a set of components and objects al-
lowing data access using a high level programming language. This would require
implementing the corresponding ADO interfaces.

3.2 Adding Dimension Update Support to MDX

With the support of the architecture described in the previous subsections, we
developed a Multidimensional Data Definition Language which we called MD-
DLX, an extension to MDX supporting the model of Section 2. We provide
statements for the primitive structural and instance update operators, as well
as for the complex operators, remaining as faithful as possible to the formal
definition of these operators. We also provide a limited SELECT statement for
displaying the results, although this was not the focus of our work. The CREATE
CUBE clause creates a data cube. The following statement creates a data cube
Services for the case study we will present in Section 4.



Supporting Dimension Updates in an OLAP Server 73

Fig. 3. TSOLAP architecture

CREATE CUBE Services (

DIMENSION Doctor BOTTOM LEVEL doctorId TYPE CHAR(6),

DIMENSION Procedure BOTTOM LEVEL procedureId TYPE CHAR(6),

DIMENSION Patient BOTTOM LEVEL patientId TYPE CHAR(6),

TIME DIMENSION Time GRANULARITY DATETIME FROM 01/01/2000 00:00:00

TO 30/06/2000 23:00:00,

MEASURE qty TYPE NUMERIC(5,0) FUNCTION SUM,

MEASURE value TYPE NUMERIC(10,2) FUNCTION SUM)

FROM TABLE data clinic

WITH MATERIALIZE

Here, data clinic is the table from which data is downloaded, with schema
(Doctor, Procedure, Patient, Date, qty, value). Attributes corresponding to di-
mensions must have the same name as the dimension they represent. It is as-
sumed that data clinic has gone through the data extraction and cleaning pro-
cesses. This table may also include columns that will not be loaded into the
cube. The base fact table for the cube will be generated at cube creation time
as a materialized view with the least level of aggregation. A new dimension is
created for each DIMENSION statement, such that a value in the corresponding
column of data clinic becomes a value in the bottom level of the dimension. In
summary, after the CREATE CUBE Services is executed we will have four one-
level (plus the distinguished level All) dimensions, Doctor, Procedure, Patient
and Time. The TIME dimension is generated on-the-fly, taking into account the
time column in the table data clinic, which is mandatory. Then, the base fact
table will be populated with data facts in the interval defined in the the FROM



74 Alejandro A. Vaisman et al.

clause. Further, the WITH MATERIALIZE clause specifies that cube materialization
is required. Thus, the data cube will contain 2n views, where n is the number
of dimensions. Two measures were created, the quantity and the dollar value of
the service delivered. Any subsequent dimension update will also require view
maintenance. We only support full view materialization at this time. This means
that all possible aggregations are created either at cube creation time, or when a
dimension update occurs. Moreover, although the syntax allows normalized and
denormalized representations, only the latter is currently supported.

The CREATE CUBE statement creates dimensions with just two levels, one of
them being All. To put the dimension in its desired form, once it is created
it must be grown incrementally using the dimension update statement ALTER
DIMENSION (see Section 4). The complete syntax of MDDLX is described in the
full paper [14] .

3.3 Using TSOLAP

We claimed that any client tool supporting OLEDB for OLAP could be used
to display multidimensional data stored in TSOLAP. To show this, we execute
our statements using a preexisting client tool, an OLEDB for OLAP consumer
called DataSetViewer, provided by Microsoft as part of MDAC2.0 (Microsoft
Data Access Components). The DataSetViewer allows editing a MDDLX query
and displaying query results.

An important objective of our work is enhancing the user’s capabilities for
data analysis. Along these lines, we built a client tool called TSShow for visual-
izing the structure and instances of the dimensions of every cube in the system.
TSShow accesses the catalog tables to display the system’s metadata, like cubes,
hierarchies, levels and so on. Information about the dimension instances is re-
trieved from the dimension tables themselves. This tool becomes important in
an environment supporting schema and instance updates. Although most of the
commercial OLAP systems provide a visualization tool, TSShow not only dis-
plays the dimension’s structure and instances, but also the rollup functions which
hold between elements in the dimension’s levels. Figure 4 presents a TSShow
screen displaying the cubes and the dimensions in the system. We can see that
two cubes were created, Salescube and Services (see Section 4). The hierarchies
of the dimensions are also displayed.

4 A Case Study: A Medical Data Warehouse

In Section 3 we presented our implementation of the multidimensional model
introduced in Section 2, called TSOLAP. In this section, we apply TSOLAP to
a real life case study, a medical center in Argentina. We introduce the problem
and describe how the cube and dimensions were built. After this, we discuss
different ways in which TSOLAP could be applied to the case study, establish
the goals of our experiments, and the hardware we used for the tests. Finally,
we present our experimental results.



Supporting Dimension Updates in an OLAP Server 75

Fig. 4. Cube and dimension information with TSShow

4.1 The Problem

We tested the model and its implementation on a real case, a medical center in
Buenos Aires, using six months of data about medical procedures performed on
patients. Each patient receives different services, including radiographies, electro-
cardiograms, and so on. These services are called “Procedures,” and are grouped
into a classification hierarchy. For instance, a procedure like “Special Radiogra-
phy” belongs to the subgroup “Radiography” and is further classified into the
group denoted “Radiology”. Medications given to a patient and disposable sup-
plies are also considered “Procedures.” The data were extracted from several
tables in the operational database. Taking into account the available data, we
designed the data warehouse as follows (see Figures 5 and 6).

A dimension Procedure, with bottom level procedureId, and levels procedure-
Type, subgroup and group, gives information about the different procedures avail-
able to patients. Patient, with bottom level patientId, represents information
about the person under treatment. As data about the age and gender of the pa-
tient are available, we also defined the dimension levels yearOfBirth and gender.
Moreover, we found it interesting to analyze data according to age intervals,
represented by a dimension level called yearRange. Patients are also grouped
according to institutional affiliation. This information could be useful e.g. to
categorize patients delivered by various health insurance institutions. Moreover,
these institutions are grouped into types such as private companies, unions, and
so on. Dimension Doctor gives information about the available doctors (identi-



76 Alejandro A. Vaisman et al.

speciality

All

(a)

doctorId  procedureId

(b)

All

 procType  group

subgroup

All

 patientId

 yearOfBirth

 yearRange

 gender

institution

instType

(c)

Fig. 5. Case study: Dimensions doctor and time

fied by doctorId) and their specialities (a level above doctorId). Finally, there is
a Time dimension, as explained in Section addingdimup.

When the design was completed, we were ready to create the data cube
using MDDLX statements. The CREATE CUBE statement in Section 3.2 creates
the cube from a table data clinic, with data from the first six months of the year
2000 (631,000 records). Each record in this table contains information about a
procedure conducted on a certain patient by a given doctor on a given date.

It is now possible to update these dimensions using MDDLX statements,
in order to obtain the dimensions depicted in Figures 5 and 6. For example,
the following statement generalizes level patientId to level gender, which is of
type CHAR(1) (‘M’ or ‘F’ ), using the rollup function specified by the table
data3gidintengender. This table has two columns, one named patientId and
the other named gender, with patientId being the key, so each tuple stores the
gender of a patient. The complete sequence of statements used to set up the
dimensions can be found in the full paper [14].

ALTER DIMENSION Services.Patient

GENERALIZE LEVEL patientId

TO LEVEL gender TYPE CHAR(1)

USING ROLLUP FUNCTION data3gidintengender

4.2 What Can We Do with Dimension Updates?

We argue that building dimensions using our approach is, most of the time, more
efficient and flexible than building a dimension from scratch every time an update
occurs. Moreover, it is possible to add or remove elements from dimensions, or
change classification levels in order to query hypothetical database states. Some



Supporting Dimension Updates in an OLAP Server 77

Fig. 6. Case study: Dimensions procedure and patient

examples of these kinds of situations are: (a) in a clinic like the one described
in this study, dimension instances are updated all the time. For example, new
doctors are hired or leave frequently and new patients are serviced every day. On
the other hand, instance updates to the Procedure dimension are less frequent;
(b) modifying the “yearRange” field in the Patient dimension allows finding
out which age range is getting more services. This can be done by deleting
the yearRange level, and then generalizing it again using a different (prepared
off-line) rollup function. In a state-of-the-art OLAP system, this would require
rebuilding the data cube once for each range test; (c) generalizing the doctorId
level in dimensionDoctor to level doctorAgeRange is useful to analyze the number
of patients served depending on the doctors’ age; (d) the model allows inserting,
in an on-line fashion, new patients, institutions, institution types, and so on; (e)
simulation data could be inserted on-line in order to query different hypothetical
database states. Hypothetical situations could be easily modeled by replacing
the actual rollup functions with the ones we wish to test. For instance, we could
delete the level yearOfBirth and generalize level patientId again, with data such
that seventy percent of the patients are more than sixty years old.

4.3 Objectives and Description of the Experiments

From the discussion in Subsection 4.2 it follows that TSOLAP is a very use-
ful tool for data analysis. However, we must show that our approach can reach
a performance that can cope with the requirements of everyday applications.
Thus, getting a set of data large enough to allow representative results was a
requirement. We used six months of data, involving almost 631,000 records; we
partitioned this set into the six subsets shown in the table of Figure 7 in order to
run the tests over each one of them, to test the performance of the system as the
size of the data cube changed. Note that the six subsets contain the same number



78 Alejandro A. Vaisman et al.

Case # From To # of tuples in FT # Patients # Doctors # Procedures

1 1/1/2000 1/31/2000 90825 6790 367 3750
2 1/1/2000 2/29/2000 178698 6790 367 3750
3 1/1/2000 3/31/2000 270127 6790 367 3750
4 1/1/2000 4/30/2000 374674 6790 367 3750
5 1/1/2000 5/31/2000 501628 6790 367 3750
6 1/1/2000 6/30/2000 630844 6790 367 3750

Fig. 7. Data sets

of patients, doctors and procedures, because we tested the operators using all the
elements in the domains of the rollup functions. In the example above (general-
ization from patientId to gender using the rollup table data3gidintengender),
although the table holds the gender of all the patients, only doctors who actually
delivered services before January 31st will be generalized.

In order to test the performance of dimension updates, we executed a set
of MDDLX commands over the data cube described in Section 4.1. Our intu-
ition was that performance could be strongly influenced by the order in which
operations are performed. Thus, we decided to perform the dimension updates
in two different sequences: in the first one, we updated the dimensions in the
following order: Patient, Doctor, Time and Procedure; in the second sequence,
we first performed all the updates over the Time dimension, then the ones over
Doctor, Procedure and Patient, in that order. Thus, for instance, when perform-
ing a generalization over Procedure, more materialized views must be updated
in the first sequence than in the second one. Both sequences can be found in the
full paper.

Our second goal was testing the influence of view maintenance overhead on
dimension update performance. To meet this goal, we created the same cube
described above, but with the NO MATERIALIZE option, and executed the first
sequence of updates. Of course, there is no reason for executing both sequences,
because no view must be updated in this case.

The third goal was studying query performance when no view materialization
is done. To this effect we ran the query “ list the total number of procedures by
doctor, subgroup and institution type” under full materialization, and computing
the aggregation on-the-fly. This query involves taking the join of three dimensions
of the cube.

Finally, we were interested in comparing the performance of the maintenance
algorithm introduced in previous work [6], against a non-optimized algorithm like
the standard Summary-Delta method [11]. We performed the tests for a DELETE
INSTANCE update. We used only three months of data(270,000 tuples in the base
fact table), since we expected a non-optimized algorithm on the fully materi-
alized data cube to be too inefficient to run over the full data set. We created
two data cubes, one with aggregate function SUM, and one with MAX. The latter
allows no optimization because base data must always be accessed (recall that



Supporting Dimension Updates in an OLAP Server 79

MAX is not self-maintainable with respect to deletions [3]). Thus, view mainte-
nance techniques cannot avoid the joins. We then applied the following updates:
generalize level datetime to date, generalize procedureId to procedureType, and
generalize procedureId to subgroup, in this order. The tests were carried out by
deleting an element in level procedureId over each data cube.

Hardware. The tests were run on a PC with an Intel Pentium III 600Mhz
processor, with 128 Mb of RAM memory and a 9Gb SCSI Hard Disk. The
Database Management System was SQL Server 7.0 database running on top of
a Windows NT 4 (Service Pack 5) Operating System, We also ran our tests
on an ORACLE 8.04 DBMS, but do not report these results because further
experimentation seems neeeded.

4.4 Experimental Results

In this section we describe the results of our experiments, following the order in
which we stated our objectives in Subsection 4.3.

The creation times for fully materialized data cubes ranges from 60 to 470
seconds, while not materialized data cubes are created in less than 4 seconds for
the full set of data (600.000 tuples). Figures 8 and 9 depict generalization time,
comparing generalizations of fully materialized data cubes at different aggrega-
tion levels, for the two sequences described above. Notice that, even when the
generalization from level yearOfBirth to level yearRange is performed after the
generalization from patientId to level institution (sequence 2), the former takes
less time to perform, because it affects levels located higher in the dimension’s
hierarchy. The charts show that the behavior of the operators and view updates
is close to linear with respect to the number of tuples in the base fact table.
Also notice that in Figure 8 the curve corresponding to the generalization over
Patient is below the two other ones, while in Figure 9 it is above them, reflecting
the influence of the number of updated views. The interested reader can find a
more comprehensive description of the results in the full paper.

Updates to instances of dimensions are applied once all the views have been
materialized(the same occurs in the case of DelLevel). Thus, the sequence of
operations in these cases is irrelevant. Figure 10 shows the performance of the
DelInstance operator.

Our second goal was measuring the time consumed by the operators them-
selves. Thus, as we explained in Section 4.3, we executed the updates over the
cube created with the NO MATERIALIZE option. The results we obtained had
shown that GENERALIZE statements were executed in less than fifteen seconds,
for the full data set(i.e. 6300.000 tuples).

The results presented above show that execution times are compatible with
application requirements. However, the tests over the non-materialized cube
demonstrate that almost all the processing time is consumed by the view main-
tenance operations, suggesting that a partially materialized strategy (i.e. an ap-
proach like the one proposed by Harinarayan et al [5]) would be the best option
when an evolving scenario like the one proposed here is implemented. As this



80 Alejandro A. Vaisman et al.

100               200              300               400               500              600      

#tuples*1000

Time(sec)

300

600

 900

1200
procedureId to procedureType

 year of birth to yearRange

patientId to institution

Fig. 8. Performance results for generalize(sequence 1)

alternative is dependent on query performance, our third experiment focused on
studying how an MDDLX query could perform when no view is materialized.
We executed the query “ total number of procedures by doctor, subgroup and
institution type” over both cubes under test. For the complete set of data, and
no view materialization, the execution time takes two minutes, which seems to
be an acceptable result. Of course, queries perform faster under the full materi-
alization strategy, because performing a query under this strategy implies just
a sequential scan of the desired view.

Figure 11 gives a summary of the disk space consumed by the database for
the six different sets of data, comparing data and index spaces(the data cube
contained 630 materialized views after all updates were performed). Notice that
the relation between data and index spaces decreases as the data space increases.

Finally, we compared our maintenance algorithm against a non-optimized
algorithm for the DelInstance operator with different numbers of materialized
views. Avoiding unnecessary joins dramatically improves performance, reducing
update times by a factor between five and eight.

5 Discussion and Summary

We have presented TSOLAP, an implementation of the multidimensional model
introduced in previous works by Hurtado and some of the authors [6], and an
extension to MDX supporting dimension updates. We also introduced TSShow,
a visualization tool for dimensions and data cubes.

We used TSOLAP in a real-life case study. The results showed that our model
can be useful not only for database administrators who could avoid rebuilding
the multidimensional database each time a dimension is updated, but also for
analysts who could benefit from the chance of easily posing hypothetical queries
to the system.



Supporting Dimension Updates in an OLAP Server 81

100               200              300               400               500              600      

#tuples*1000

Time(sec)

300

600

 900

1200
patientId to institution

 year of birth to yearRange

procedureId to procedureType

Fig. 9. Performance results for generalize(sequence 2)

100               200              300               400               500              600      

#tuples*1000

Time(sec)

300

600

 900

1200

  

doctorId

procedureId
(126 views)

(236 views)

Fig. 10. Performance results for DelInstance

Case # Data space(Mb) Index space(Mb) rate

1 324 634 1.98
2 568 1025 1.80
3 825 1423 1.72
4 1108 1854 1.67
5 1423 2333 1.63
6 1734 2816 1.62

Fig. 11. Data and index disk space



82 Alejandro A. Vaisman et al.

The DELETE INSTANCE statement is the most expensive, especially when the
aggregate functions of the data cube are MAX or MIN (aggregate functions which
are not self-maintainable). However, most of the execution time was consumed
by view maintenance operations, because of our full materialization strategy.

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research
Council of Canada and the Institute for Robotics and Intelligent Systems.

References

1. L. Cabibbo and R. Torlone. A logical approach to multidimensional databases. In
EDBT’98: 6th International Conference on Extending Database Technology, pages
253–269, Valencia, Spain, 1998. 67

2. A. Golfarelli, D. Maio, and S. Rizzi. Conceptual design of data warehouses from
E/R schemes. In Proceedings of the Hawaii International Conference on System
Sciences, Kona, Hawai, 1998. 67

3. A. Gupta and I. H. Mumick. Materialized Views: Techniques, Implementations
and Applications. MIT Press, 1999. 79

4. M. Gyssens and L. Lakshmanan. A foundation for multi-dimensional databases. In
Proceedings of the 22nd VLDB Conference, pages 106–115, Bombay, India, 1996.
67

5. V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes effi-
ciently. In Proceedings of the ACM-SIGMOD Conference, pages 205 – 216, Mon-
treal, Canada, 1996. 79

6. C. Hurtado, A. O. Mendelzon, and A. Vaisman. Maintaining data cubes under
dimension updates. Proceedings of IEEE/ICDE’99, 1999. 68, 69, 78, 80

7. C. Hurtado, A. O. Mendelzon, and A. Vaisman. Updating OLAP dimensions.
Proceedings of ACM DOLAP’99, 1999. 68, 69, 70

8. R. Kimball. The Data Warehouse Toolkit. J.Wiley and Sons, Inc, 1996. 67
9. Microsoft Corporation. Data Warehouse Alliance (DWA2000) (Internet Document

http://www.microsoft.com/BUSINESS/bi/dwa/dwa.asp), 2000. 71
10. Microsoft Corporation. OLEDB for OLAP Specification (Internet Document

http://www.microsoft.com/data/oledb/olap), 2000. 67, 71
11. I. Mumick, D. Quass, and B. Mumick. Maintenance of data cubes and summary

tables in a warehouse. In Proceedings of the ACM - SIGMOD Conference, Tucson,
Arizona, 1997. 68, 69, 78

12. Sun Microsystems. JOLAP: Java OLAP Interface (Internet Document http://
jcp.org/jsr/detail/069.jsp), 2001. 71

13. A. Vaisman. Updates, view maintenance and time management in multidimen-
sional databases. Phd Thesis, http://www.cs.toronto.edu/ avaisman/publications,
2001. 69

14. A. Vaisman, A. O. Mendelzon, W. Ruaro, and S. Cymerman. Supporting
dimension updates in a ROLAP server(full paper). In Internet Document
http://www.cs.toronto.edu/ avaisman/publications, 2002. 74, 76


	Supporting Dimension Updates  in an OLAP Server
	Introduction
	Multidimensional Model and Dimension Updates
	Dimension Updates and View Maintenance
	Mapping Dimensions to Relations

	Implementation of Dimension Updates
	TSOLAP Architecture
	Adding Dimension Update Support to MDX
	Using TSOLAP

	A Case Study: A Medical Data Warehouse
	The Problem
	What Can We Do with Dimension Updates?
	Objectives and Description of the Experiments
	Experimental Results

	Discussion and Summary


