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Abstract. Establishing point correspondences between images is a key
step for 3D-shape computation. Nevertheless, shape extraction and point
correspondence are treated, usually, as two different computational pro-
cesses. We propose a new method for solving the correspondence prob-
lem between points of a fully uncalibrated scaled-orthographic image
sequence. Among all possible point selections and permutations, our
method chooses the one that minimizes the fourth singular value of the
observation matrix in the factorization method. This way, correspon-
dences are set such that shape and motion computation are optimal.
Furthermore, we show this is an optimal criterion under bounded noise
conditions.

Also, our formulation takes feature selection and outlier rejection into
account, in a compact and integrated way. The resulting combinatorial
problem is cast as a concave minimization problem that can be efficiently
solved. Experiments show the practical validity of the assumptions and
the overall performance of the method.

1 Introduction

Extracting 3D-shape information from images is one of the most important ca-
pabilities of computer vision systems. In general, computing 3D coordinates from
2D images requires that projections of the same physical world point in two or
more images are put to correspondence.

Shape extraction and point correspondence are treated, usually, as two dif-
ferent computational processes. Quite often, the assumptions and models used
to match image points are unrelated to those used to estimate their 3D coordi-
nates. On one hand, shape estimation algorithms usually require known corre-
spondences [21], solving for the unknown shape and motion. On the other hand,
image feature matching algorithms often disregard the 3D estimation process,
requiring knowledge of camera parameters [I5] or use other specific assump-
tions [I8]. Furthermore, while matching algorithms tend to rely on local infor-
mation — e.g. brightness [I0/I8] — shape computation algorithms [23[20/21]
19] rely on rigidity as a global scene attribute. These methods recover the rigid
camera motion and object shape that best fit the data.
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We present a new method that links shape computation to image feature
matching by choosing the point correspondences that maximize a single global
criterion — rigidity. In other words, correspondences are set such that they
optimize one criterion for which we know how to compute the optimal solution
for shape and motion. Also, our formulation takes feature selection and outlier
rejection into account, in a compact and integrated way. This is made possible
by formulating the matching process as an integer programming problem where
a polynomial function — representing rigidity deviation — is minimized over the
whole set of possible point correspondences. Combinatorial explosion is avoided
by relaxing to continuous domain.

1.1 Previous Work

Rigidity has been used before in the correspondence framework [I20/T5//T8],
though used in conjunction with other assumptions about the scene or camera.
The work of [22] is an example of a successful use of global geometrical reasoning
to devise a pruning mechanism that is able to perform outlier rejection in sets
of previously matched features. Optimality is guaranteed in a statistical sense.

Other approaches use a minimal set of correspondences which help comput-
ing the correspondences for the complete set of features [19]. This is related
to using prior knowledge about camera geometry in order to impose epipolar
constraints [24] or multi-view motion constraints.

Finally the approach of [4] is an example where matching and 3D reconstruc-
tion are deeply related. Correspondences, shape and motion are simultaneously
optimized by an Expectation Maximization algorithm. Spurious features are not
explicitly taken into account.

2 Maximizing Rigidity: Problem Statement

Consider the images of a static scene shown in Figure aff. Segment p; feature-

Fig. 1. Two images from the Hotel sequence, with extracted corners.

! Data was provided by the Modeling by Video group in the Robotics Institute, CMU
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points on the first image and ps > p; on the second — the white dots — arrange
their image coordinates u, and v, in two matrices X and Y :

1,1 2.2
uj vy uy vy
X=1: |, Y= (1)
1,1 2 2
P1 vpl upz Upz

Some of these features are projections of the same 3D points. We wish to recover
their 3D coordinates assuming no prior knowledge except that the object is rigid
and the camera is scaled-orthographic. To do so a selection mechanism should
arrange some of the observed features in a matrix of centered measurements
W, as in [21]@. Matched features must lie in the same row of W. Note that no
local image assumptions are made, no calibration information is known and no
constraints in the disparity field are used.

Without noise, matrix W is, at most, rank 3, even with scale changes. We
propose to solve this problem by searching for the correspondences that best
generate a rank-three W matrix. This is only a necessary condition for rigidity, so
multiple solutions minimize this criterionf]. Within the optimization framework
used — Section f]— retrieving solutions of similar cost is trivial. The number of
solutions decreases dramatically with increasing number of frames, or decreasing
number of rejections. In any case, for orthographic cameras we can choose the
only solution leading to an orthonormal motion matrix — the rigid solution.

With noisy measurements, W is allways full-rank, so we must be able to
answer the following questions:

1. Is it possible to generalize the rank criterion in the presence of noise?
2. Is there any procedure to search for the best solution of this problem with
reasonable time complexity?

This paper tries to give a positive answer to these questions, by formulating
the correspondence problem as an optimization problem with polynomial cost
function.

3 Optimal Matching

For the sake of simplicity, we start with the two-image case. Our goal is to
determine a special permutation matrix P* € P5(p1, p2), such that X and P*Y
have corresponding features in the same rows. P is constrained to Pg(pl,pz),
the set of p1 X po columnwise partial permutation matrices (pp—matrices). A p,-
matrix is a permutation matrix with added columns of zeros. The optimal P*
is a zero-one variable that selects and sorts some rows of Y, putting them to
correspondence with the rows of X. Each entry P;; when set to 1 indicates
that features X;. (row ¢ of X) and Y. (row j of Y) are put to correspondence.
Figure Rlshows an example. Such a matrix guarantees robustness in the presence

2 Our W corresponds to their W T
3 Without noise, any object deforming according to a linear transformation in 3D
space generates rank-3 projections.



Maximizing Rigidity: Optimal Matching under Scaled-Orthography 235

=

Fig. 2. A partial permutation matrix representing a particular selection and permuta-
tion of rows of Y.

of outliers by allowing some features to be "unmatched”. It encodes one way of
grouping the measurements in a matrix of centered observations

Wp = W (P) = [CX|CPY], (2)

Matrix Cpp, xp,) = I — p%l[plxpl] normalizes the columns of the observation
matrices to zero mean. The correct p,-matrix P* generates W* which is the
measurement matrix of Tomasi-Kanade [21]. With noise-free measurements, non-
degenerate full 3D objects produce rank-3 observation matrices W* = W (P*)
whenever P* is the correct partial permutation. A single mismatched point will
generate two columns of Wp that are outside the original 3-dimensional column-
space — also called the shape-space. This makes Wp full-rank even in the ab-
sence of noise. In conclusion, the noise-free correspondence problem can be stated
as Problem [I]

Problem 1 P* = arg rr%)in rank (Wp)

st. Pe P;(pl,pg)

3.1 Approximate Rank

Consider now the case of noisy measurements. The observation matrix includes
two additive noise terms EX and EY

W'p = [C(X+EY) [CP(Y+EY)] (3)

The factorization method [21] provides an efficient way of finding the best rigid
interpretation of the observations. It deals with noise by disregarding all but
the largest 3 singular values of W’'p. The approximation error is measured by
Ay (W'p), the fourth singular value of W'p. If we use Ay (W'p) as the generaliza-
tion of the criterion of Problem[I], then we should search for the correspondence
that minimizes the approximation error made by the factorization method. When
noise is present, we formulate the correspondence problem as follows

Problem 2 P* = arg rri)in A (W'p)
st. Pe P;(phpz)
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In fact, for bounded noise, the solution to Problem [2 is again P*, which is
the solution to Problem [[] when no noise is present. This is precisely stated in
Proposition [l

Proposition 1 For every nondegenerate rigid object observed by a scaled or-
thographic camera it is possible to find a scalar € > 0 such that if ’E(” ‘ <

€ and ‘E(i j)‘ < eV i,j then the solution of Problem[3d is exactly P*, which is the
solution of Problem[d in the absence of noise.

Proof: In the absence of noise, the correct P* matrix generates W'*, and
rank (W) = 3 & Ay (W*) = 0. Assuming that Problem Bl has a single
nondegenerate solution in the absence of noise, then there is a nonzero dif-
ference between the best and second best values of its cost. That is to say

35>0 @ MW +5<\(W'p),V P #£P* (4)

Since A\y(W’p) is a continuous function of the entries of W’p then this is
also a continuous function of the entries of EX and EY. By definition of
continuity, 3 € > 0 such that if \EX )| < € and |E h| < €V ij then
Equation M still holds. This guarantees that under these noise constraints,
P* is still the optimal solution to Problem [2|.

Our proof for Proposition [ldoes not present a constructive way to compute €, so
we did an empirical evaluation about the practical validity of this noise bound.

We segmented a set of points on two images. For each number of wrong
matches, a set of randomly generated P matrices were used to compute Ay(W'p).
FigureBlshows its statistics. The global minimum is reached for the correct corre-
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Fig. 3. Minimum, maximum and average of A\4(W’p) as functions of the number of
mismatches.

spondence P*, even with noisy feature locations. This shows that the bound e is
realistic. It also validates A4(W'p) as a practical criterion. Finally note that the
average values of Ay(W’p) increase monotonously with number of mismatches.
This means that suboptimal solutions with objective values close to optimal will,
on average, have a small number of mismatches. This is most useful to devise a
stoping criterion for our search algorithm (section [4).
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3.2 Explicit Polynomial Cost Function

We show here that the 4** singular value of W (cost in Problem [Z) has an
equivalent explicit fourth-order polynomial cost function:

J(P) = w'q! ()

Here, w is a vector independent of q = vec(P), vec() is the vectorization op-
eratof] and ¥/ = qeq®q®q (symbol ® stands for Kronecker product).
Considering the bounded noise assumption once more, we can use the same sort
of reasoning used to prove Proposition [[land show that the original cost function
of Problem [2] can be changed to

J(P) = det (W’;W’P) (6)

In the absence of noise the result is immediate (they are both zero). The full
proof of this result can be found in Appendix 1 (also in [12]). Figure [4 shows
statistics of det(W’pW'p) computed for different matches of points that were
segmented from real images. Once again, the global minimum is reached for the

Distribution of det(W'W)

0 5 10 15
Nr of wrong matches

Fig. 4. Minimum, maximum and average of det(W’pW'p) as functions of the number
of mismatches.

correct correspondence P*, so we conclude that our new noise bound is also valid
in practice. Furthermore, the global minimum is even steeper — note that the
plot is shown in logarithmic scale.

Finally, keeping in mind that C is symmetrical and idempotent and that CX
is full rank, the determinant cost function of Equation[6] can be transformed into
the polynomial form of Equation [§ (see appendix 2):

J(P)=w'q¥
w = (Vec(A)TY[4]T) ® (VGC(E)[2]TIPI4)} I
E=Cc-CcxX(X'cx)"'X'C

4 Stacks the columns of a matrix as a single column vector
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(2]
A 101
2110

IT is a fixed (p1p2)* % (p1p2)* permutation such that vec (P1) = Hvec(P)[4].
The important fact is that J(P) has a simple biquadratic structure, depending
only on data matrices X and Y.

3.3 OQutline of the Complete Algorithm

The cost function of Equation Blis ready to be formated in a global optimiza-
tion framework, where the correct permutation is the solution to the following
problem:

Problem 3 P* = arg min J(X,PY) (7)
s.t.
P;; e {0,1} , Yi=1.p1,Vj=1.po 1
P e Py(p1,p2) < Py <1,¥j=1...p 2 (8)
?2:1Pi,j:17v’i:1'”p1 3

3.4 Reformulation with a Compact Convex Domain

Problem [3 is a brute force NP-hard integer minimization problem. In general,
there is no efficient way of (optimally) solving such type of problems. Nonetheless
there is a related class of optimization problems for which there are efficient,
optimal algorithms. Such a class can be defined as Problem

Problem 4 P* = arg Hi:i,l’l Je(X7PY)
st. P eDS(p1,p2)
where J, is a concave version of J — to be def. later, equation [I0— and

DSs(p1,p2) is the set of real p1 X pa columnwise doubly sub-stochastic matrices.
This set is the convex hull of ’Pg(pl, p2), constructed by dropping the zero-one
condition (1), and replacing it with

Problems [3] and [4] can be made equivalent — same global optimal — by
finding an adequate concave objective function J.. Also we must be sure that
the vertices of DSs(p1,p2) are the elements of Py (p1, p2). Figure [d summarizes
the whole process.

The main idea is to transform the integer optimization problem into a global
continuous problem, having exactly the same solution as the original, which
minimum can be found efficiently. The full process is outlined as follows:
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Fig. 5. Efficient solution of the combinatorial problem.

1. Extract interest points and build X, Y — Equa-

tion M

2. Use X, Y to build the cost J(P) — Equation

3. Build a concave equivalent J.(P) — Equation
[T

4. Write S¢(p1,p2) in canonical form — see section
B.6l

5. Build Problem [ and solve it using a concave min-
imization algorithm — Section [

3.5 Equivalence of Problems [3] and

Theorem [I states the fundamental reason for the equivalence. [7] contains its
proof.

Theorem 1 A strictly concave function J : C — IR attains its global minimum
over a compact convex set C C IR™ at an extreme point of C.

The constraining set of a minimization problem with concave objective function
can be changed to its convex-hull, provided that all the points in the original set
are extreme points of the new compact set.

The problem now is how to find a concave function J. : DSs(p1,p2) — IR
having the same values as J at every point of Pp(p1, p2). Furthermore, we must
be sure that the convex-hull of P5(p1, p2) is DSs(p1, p2), and that all p -matrices
are vertices of DSq(p1,p2), even in the presence of the rank-fixing constraint.

Consider Problem [, where J(q) is a class C? scalar function. Each entry
of its Hessian is a continuous function H;;(q). J can be changed to its concave
version J. by

Je(q) = J(q) + >0 €qf — iy €igi (10)

Note that the constraints of Problem Blinclude ¢; € {0,1}, Vi. This means that
Je(q) = J(q), Vq. On the other hand P,(p1,p2) is bounded by a hypercube
B={qeR":0<g¢ <1, Vi}. All H;;(q) are continuous functions so they are
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bounded for q € B — Weierstrass’ theorem. This means that we can always
choose a set of finite values ¢,., defined by

8%J(q) . 9%J
Ba.0q. | — Ming Gz (11)

€ < 7% (man ZZ:I,S#T
which impose a negative stricly dominant diagonal to the Hessian of J., that
is to say, [Hy| > 377, . [Hij| , Vi. A strictly diagonally dominant matrix
having only negative elements on its diagonal is strictly negative definite [6], so
these values of €, will guaranty that J.(q) is concave for q € B and, therefore,
also for q € DSs(p1, p2).

Finally, note that problem dlis constrained to the set of doubly sub-stochastic
matrices, defined by conditions B2, B3 and @ This set has the structure of a
compact convex set in IRP* *P?. Its extreme points are the elements of Py (p1,p2)
— see [12] for greater details. This fact together with Theorem [ proves that
the continuous Problem Hlis equivalent to the original discrete Problem Bl since
we’re assuming that J. was conveniently made concave.

3.6 Constraints in Canonical Form

Most concave and linear programming algorithms assume that the problems have
their constraints in canonical form. We now show how to put the constraints that
define DS (p1,p2) in canonical form, that is, how to state Problem H as

Problem 5 P* = argmin  J(X,Y,q)
s.t. Aq<b,q>0
where Ay, «n) and by, 1) define the intersection of m left half-planes in IR".
The natural layout for our variables is a matrix P, so we use q = vec(P),

where vec() stacks the columns of its operand into a column vector. Condition [Rl2
is equivalent to P.1p,,x1) < 1, x1]- Applying the vec operator [11] to both

sides of this inequality we obtain (1?1ng] ® I[p1]> q < 1, %1}, where ® is the

Kronecker product, so set
AL =1],,, @11 5 bi=1p, (12)

By the same token we express condition B]3 as

1T ) P < 1) AT ) P > 1y (13)
A2 = I[pz} X 1[T1><p1] ; b2 = 1[p2><1] (14)

The intersection of conditions[8 2 and 8.3 results on the constraints of Problem
with
A by
A= A2 N b = bg (15)
_A, by
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3.7 Image Sequences

With F' frames, the observation matrix is
W = [CXy | - | CPp1XF]},, wop (16)

The original Problem [l must be extended to the F' — 1 variables P to Pp_;.
The obvious consequence is an increase of the dimensionality and number of con-
straints. Furthermore putting the cost function in explicit polynomial form is not
trivial. However, det (WTW) is still a good criterion, as Figure[6] demonstrates.

W)

Distribution of det(W’

Nr of wrong matches

Fig. 6. Minimum, maximum and average of det(W’'pW'p) as functions of the number
of forced mismatches, in a 3 image example.

A slight modification in the formalism [I2] makes possible to impose rejection
mechanism in all images. In other words, it is possible to choose the best p; < p;
matches among all possible.

4 Minimizing Linearly Constrained Concave Functions

To minimize nonlinear concave cost functions constrained to convex sets we
cannot rely on local methods, because many local minima may occur. Instead
we apply global optimization algorithms that exploit both the concavity of the
cost function and the convexity of the constraining set.

Concave programming is the best studied class of problems in global op-
timization [7JT7], so our formulation has the advantage that several efficient
and practical algorithms are available for its resolution. Among existing optimal
methods, cutting-plane and cone-covering [14] provide the most efficient algo-
rithms, but these are usually hard to implement. Enumerative techniques [16]
are the most popular, mainly because their implementation is straightforward.
We implemented the method of [3]. As iterations run, the current best solution
follows an ever improving sequence of extreme points of the constraining poly-
tope. On each iteration, global optimality is tested and a pair of upper and lower
bounds are updated. Also, we use a threshold on the difference between bounds
as stoping criterion. Since cost grows fast with the number of mismatches —
Section — this suboptimal strategy returns close to optimal solutions —
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optimal most of the times — and dramatically reduces the number of iterations.
Worst case complexity is non-polynomial but, like the simplex algorithm, it typ-
ically visits only a fraction of the extreme points. Our implementation takes
advantage of the sparse structure of the constraints, and deals with redundancy
and degeneracy using the techniques of [9].

Recently, special attention has been paid to sub-optimal concave minimiza-
tion algorithms. [8] describes implementations of Frank and Wolfe [5] and
Keller [§] algorithms and claims good performances in large-scale sparse prob-
lems. Simulated Annealing [2] is also having growing popularity.

5 Results

5.1 Experiment 1

Figure [ shows two images of the Hotel sequence, with large disparity. No prior
knowledge was used neither local image assumptions. Points were manually se-

Fig. 7. Two images from the Hotel sequence, with manually segmented points.

lected in both images. In the second image, the number of points is double. The
wireframe is shown just for a better perception of the object’s shape. It is shown
in the plot but was never used in the matching process.

The method was applied exactly as described before, using rigidity as the only
criterion. Figure [§ shows the reconstruction of the matched points. The solution
was found using an implementation of the optimal method of [3]. As expected,

all matches are correct, corresponding to the global minimum of det (W’ w).

5.2 Experiment 2

In this experiment we show how this optimal method can be used to match large
points sets in a fully automatic way. At a first stage a corner detector selected
a small number of points in each of 8 images from the Hotel sequence. Motion
between each pair of images was then computed using the same procedure of
experiment 1. An edge detector was then used to extract larger sets of points
in each image. With known motion, the epipolar constraint could be used to
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Fig. 8. Views of a reconstruction of the Hotel.

eliminate most of the matching candidates, so another global criterion — that
of [13] — could be optimized with feasible computation. At the end a total
of 1000 points were put into correspondence in all 8 images. Less than 10 were
wrong matches, and all these were rejected by thresholding the distance between
the observations and the rank-3 column space of W. The set of remaining points
was reconstructed using the factorization method. Figure [d shows some views of
the generated reconstruction.

Fig. 9. Some views of an automatically generated 3D could of 900 points.

6 Conclusion

The described method solves the correspondence problem between points of a
fully uncalibrated scaled-orthographic image sequence. Correspondences are set
so that the shape and motion computation is optimal, by minimizing the fourth
singular value of the observation matrix. We have shown that this is an optimal
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criterion under bounded noise assumption. The method is also applicable to other
problems where the rigidity assumption can be used, like 3D-to-3D matching,
image-to-model matching and multibody factorization.

The most important limitation is the dimensionality of the resulting opti-
mization problems. One practical way of handling this issue is the inclusion of
additional a priori constraints — see [13] — with minor changes to the under-
lying problem formulation. Ongoing work is being conducted on experimenting
different optimal and suboptimal algorithms, and testing their efficiency. Also,
we are currently formulating and testing different ways of building explicit poly-
nomial cost functions for multi-image matching problems.
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Appendix 1: Optimality of Rigidity Cost Functions

If Problem [Mlis not degenerate, then both Ay (W'p) and det (W’;W’p) are, in

some sense, optimal criteria. This is stated in the following proposition:

Proposition 2 If there is one single non-degenerate solution to Problem[d], it is
possible to find a scalar € > 0 such that if ’Eéj)‘ < eand ‘Ez j)‘ <eVi,j then

the solution to Problem[d is exactly the same P* if J(Wp) = det (W’;W’p).

Furthermore, this is the solution to Problem [ without noise.

Proof: Without noise, a unique P* is also solution to Problem [Qlwith J() = A4()
or J() = det() because

rank (W*) =3 & A (W*) =0 & det(WTW*)=0 (17

Non-degeneracy means that there is a nonzero difference between the best
and second best cost values if J() = Ay() or J() = det(). This is to say that

46, >0 /\4(W*) +0; < )\4(Wp) , VP 75 P* (18)
36 >0 :det (W*TW*) 46, <det (WpWp),V P#£P*  (19)

A4(W'p) and det (W’ ;W' p) are continuous functions of the entries of W’'p

so they are also continuous functions of the entries of EX and EY. By def-
inition of continuity, 3 € > 0 such that if |E*(>f])| < € and |Ez§])\ <eVi,j
then equations (I8)) and ([9) still hold for W'. This guarantees that, under
these noise constraints, P* is still the optimal solution to Problem [ with

any of the two cost function.
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Appendix 2: Writing the Determinant as a Polynomial
Function

We will show here how to express the determinant cost function ([6) as a bi-
quadratic polynomial cost function

Jyig(P) = (a"B1q) (a"Baq) — (q' Bsq)” (20)

where B; are matrices independent of q = vec(P).
Start by using the fact that for any two matrices My, and Ny, if
Liix (m+n) = [M | N] and N is full-rank — see [6/TT] — then

det (LL) = det (M"M) det {M" [T,y - N(N'N)'NT| M} (21)

With L = W'p = [CX' | CPY’] and since C is symmetrical and idempotent,
then
det (w';w’p) = det (X’TCX’) det (Y’TPTHLPY') (22)

—1
with IT+ = C — CX’ (X’TCX’) X'TC. Since the first determinant in equa-

tion is positive and independent of P, we can simplify the cost function,
stating

arg min det (W’;W’p) = arg min det (Y’TPTHLPY’) (23)
Now define Y’ = [u'y | v'3], where u’s and v’y are respectively the row and
column coordinates of points on the second image. This leads to
T T
o (W) = e
For any two matrices Lijy ) and My, xn
vec(LM) = (M" ®1I,,)) vec(L) (25)

The observations u’s and v’y are vectors so, using equation (28), we obtain
uy PTIT PV 5 = vec(Pu's) | IT vec(Pv'5)
=q' (uy®Iy,) T (v';r ® I[m]) q (26)
There are similar expressions for the other combinations of u’ and v/, so
arg Irgndet (W’;W'p) = argrr%:i,n [(qTqu) (a"B2q) — (qTng)ﬂ (27)
with q = vec(P) and
Bi = (> @1, I+ (W @1p,) (28)
By = (v @1, I (V3 91, (29)

By = (> © Lpy) T (V3 ©1,,)) (30)
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