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Abstract. Lambertian photometric stereo with uncalibrated light di-
rections and intensities determines the surface normals only up to an
invertible linear transformation. We show that if object reflectance is
a sum of Lambertian and specular terms, the ambiguity reduces into a
2dof group of transformations (compositions of isotropic scaling, rotation
around the viewing vector, and change in coordinate frame handedness).

Such ambiguity reduction is implied by the consistent viewpoint con-
straint which requires that all lights reflected around corresponding spec-
ular normals must give the same vector (the viewing direction). To em-
ploy the constraint, identification of specularities in images correspond-
ing to four different point lights in general configuration suffices. When
the consistent viewpoint constraint is combined with integrability con-
straint, binary convex/concave ambiguity composed with isotropic scal-
ing results. The approach is verified experimentally.

We observe that an analogical result applies to the case of uncalibrated
geometric stereo with four affine cameras in a general configuration ob-
serving specularities from a single distant point light source.

1 Introduction

Photometric stereo [13] is a method that recovers local surface geometry and
reflectance properties from images of an object that are taken by a fixed camera
under varying distant illumination. The principle of photometric stereo is in in-
verting a parametric model of surface reflectance. A usual version of photometric
stereo uses a single distant point light source at a time to illuminate an object,
and assumes Lambertian surface reflectance which implies that brightness value
Ii,j of i-th pixel in the image capturing the object appearance under j-th point
light source is (see Fig. 1)

Ii,j = Ejρi cos θi,j = (ρini)�(Ejlj) , (1)

where Ej is the intensity of the light source, lj is the light source direction, ni

is the normal vector of a surface patch that projects into the i-th pixel, θi,j
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is the angle between ni and lj (the angle of incidence), and ρi is a reflectance
parameter of a small surface patch. This parameter is called albedo and describes
what portion of incident light is re-emitted back into space in the form of diffuse
reflection.

It is well understood that the reflectance model described by equation (1)
is bilinear. To see that, it is convenient to denote ρini and Ejlj by bi and sj ,
respectively; then, the above equation takes very simple, compact form

I = [b1,b2, . . . ,bN ]� [s1, s2, . . . , sM ] = B�S , (2)

where I is the matrix which has Ii,j from (1) as its elements, matrix B collects
the bi’s and matrix S analogically collects the sj ’s. For the sake of brevity, we
call B the normals and S the lights.

In the original version of photometric stereo [13], the light source directions
lj and intensities Ej are calibrated, thus the lights S are known. To evaluate
normals and albedos, it suffices to right-multiply the matrix I in (2) by the
inverse (or pseudo-inverse if the number of lights is greater than 3) of S; by
that the normals B are acquired. Normals ni’s are then bi’s scaled to unity, and
albedos ρi’s are the lengths of bi’s.

If, however, the light sources S are not known, then (2) represents a bilinear
calibration-estimation problem [8] whose ambiguity can be phrased as follows:

Uncalibrated photometric stereo ambiguity. Let there be images of
an object of Lambertian reflectance observed from a fixed viewpoint, but
illuminated sequentially from different unknown directions by a distant
point light source. Then it is possible to factorize the input data matrix
I from (2) into pseudonormals B and pseudolights S [6] that give the
true normals B and the true lights S up to an unknown linear invertible
transformation A ∈ GL(3): B = AB, S = A−�S.

This ambiguity exists because it holds that I = B
�
S = B�A�A−�S =

B�S. The uncalibrated photometric stereo ambiguity can be reduced and/or
removed only if additional information about lights or normals is available. This
information may have different form. First possibility is to estimate normal vec-
tors and albedos in several points by an independent method and use them to
disambiguate the photometric stereo (note that due to the symmetry of (2), the
value of this information is the same as if light directions and intensities are
known). Another possibility is to assume that at least six light sources are of
equal (or known relative) intensity, or that albedo is uniform (or known up to a
global scaler) for at least six normals at a curved surface. Such possibilities were
employed and/or discussed in [6,14,1], and it was shown that such knowledge
reduces the ambiguity from the GL(3) group into the group of scaled orthogonal
transformations A = λO (O ∈ O(3), λ �= 0). Yet another important possibil-
ity is given by the integrability constraint that requires the normals recovered
by photometric stereo to correspond to a continuous surface [1,4]. As shown by
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Belhumeur et al. [1], in this case the original ambiguity is reduced into ambigu-
ity represented by the group of four-parametric (or three-parametric, if overall
scaling is not counted) generalized bas-relief transformations. And, integrability
constraint together with the knowledge of six albedos (or six light intensities
as described above) reduces the original ambiguity into binary convex/concave
ambiguity composed with isotropic scaling.

In our recent work on uncalibrated photometric stereo [3] we showed that
inherent symmetries of reflectance models that are separable with respect to the
viewing and illumination directions can be exploited to construct two new geo-
metrical constraints. The constraints are represented by projections of normals
onto planes perpendicular to the viewing and illumination directions, respec-
tively. We constructed the constraints using polarization measurement under
the assumption of separable reflectance model for smooth dielectrics and showed
that the two constraints alone combined together reduce the ambiguity to con-
vex/concave ambiguity composed with isotropic scaling.

In this paper we show that if object reflectance is a sum of Lambertian
reflectance and a mirror-like reflectance, then the original ambiguity represented
by a group GL(3) reduces into a two-parametric group of transformations. These
transformations are compositions of isotropic scaling (1dof), rotation around the
viewing vector (1dof), and change in the global coordinate frame handedness
(binary ambiguity). This ambiguity reduction is implied by a condition that
all lights reflected around corresponding specular normals must give the same
vector (the viewing direction). We call this condition the consistent viewpoint
constraint. We show that specularities in as few as four images corresponding to
four different distant point lights in general configuration are sufficient to utilize
the consistent viewpoint constraint.

By this result, we make a step towards uncalibrated photometric stereo for
objects whose reflectance includes not only body (diffuse) component, but also
interface (specular) component. Such composite reflectance models are certainly
not new to photometric stereo applications, see e.g. [2,11,10,9], but in those
methods, in contrast to the ours, the light sources are supposed to be known.

The specific representative of composite reflectance model (the superposi-
tion of Lambertian and mirror-like reflectance) is selected in this work because
as specularities are sparse in the images, they can be treated as outliers to the
Lambertian reflectance model. This gives us a valuable possibility to study the
problem as Lambertian photometric stereo with additional information repre-
sented by the consistent viewpoint constraint.

2 Consistent Viewpoint Constraint

The problem we will analyze is photometric stereo with uncalibrated lights S for
objects whose reflectance is given by superposition of Lambertian and specular
terms. As discussed in Section 1, we treat this problem as uncalibrated Lam-
bertian photometric stereo with additional geometrical information provided by
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Fig. 1. Reflectance geometry. For Lam-
bertian reflectance, brightness seen by a
camera is dependent on cosine of the an-
gle of incidence and independent on the
viewing direction.

Fig. 2. Specular geometry configuration.
Surface normal nS is a bisector between
the viewing direction v and the illumina-
tion direction l.

specularities. In this section we review the geometry of mirror-like reflection, and
formulate the constraint implied by the observation of specularities in images.

It is well understood that specularities occur at loci where light reflects on
a smooth surface in a mirror-like manner towards the observing sensor. Hence,
mirror-like reflection carries valuable information about geometrical configura-
tion of the viewing vector, the illumination vector, and the surface normal: if
a specularity is observed in an image, then at the corresponding surface point,
surface normal is a bisector of the viewing and illumination vectors (see Fig. 2).
Therefore for the viewing direction it holds that

v = 2(l · nS)nS − l = 2
(
ŝ · b̂S

)
b̂S − ŝ (3)

where ̂ denotes normalization to unity, and nS is a normal that is observed as
specular under illumination of direction l. The right-most part of the equation
essentially states the same fact in “natural” photometric stereo variables. We
call l and nS (as well as s and bS) a specular pair.

The equation may be viewed as a formula for computing viewpoint direction
from known light s and specular normal bS . The key fact to be observed is that
this relation states: no matter which specular pair is used for viewing direction
evaluation, all give the same result.

Consistent viewpoint constraint. A collection of specular pairs fol-
lows the consistent viewpoint constraint if they all, by (3), give the same
viewing direction v.

Does the consistent viewpoint constraint reduce the uncalibrated photomet-
ric stereo ambiguity? We will analyze what transformations may be applied to
the true normals and the true lights, such that the transformed specular pairs,
inserted into (3), all give the same vector. Let us denote this vector u and write
the equivalent of (3) for the transformed lights and normals:

u =
2

[
(A−�s) · (AbS)

]
AbS

||A−�s||||AbS ||2 − A−�s
||A−�s|| , (4)
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where || · || are explicitly written normalization factors. Multiplying both sides
of the equation by ||A−�s||||AbS ||2A�, we get

α(s,bS)w = 2(s · bS)PbS − (bS ·PbS)s , (5)

where α(s,bS) = ||A−�s||||AbS ||2 absorbs (unknown) scaling factors,P denotes
A�A and w denotes A�u; and we applied the fact that (A−�s)·(AbS) = s·bS .
Note that in this equation, vector w may be treated as fully independent on P
because P = A�A gives A only up to arbitrary orthogonal transformation. We
show in Appendix that for a convex smooth specular object illuminated from all
directions it must hold that P = λ2I, λ �= 0 (P is a scaled identity). From that
it follows that the only transformations under which the consistent viewpoint
constraint is preserved are A = λO, O ∈ O(3). Fixing the coordinate frame by
a usual choice (image plane spans plane x − y, viewing direction coincides with
axis z), the allowable transformations A are those that preserve the viewing
direction. Writing them explicitly,

A = λ

±1 0 0
0 1 0
0 0 ±1

Rz(ξ) ξ ∈ 〈0, 2π) , λ > 0 . (6)

In this equation, Rz(ξ) stands for rotation around the z-axis (the viewing di-
rection) by angle ξ. The ambiguity in sign of the third coordinate was included
in (6) only for the sake of completeness, but naturally the correct sign is easily
set by orienting the normals towards the viewing direction (normals that are
inclined from the viewpoint are invisible). The ambiguity in sign of the first co-
ordinate stays unresolved until some additional constraint is applied (or until it
is resolved manually).

In this paper we resolve the remaining ambiguity using the integrability con-
straint. Integrability constraint fixes both the sign of the first coordinate (thus
the handedness of the coordinate system) and the rotation angle ξ modulo π.
This means that the final ambiguity is convex/concave ambiguity composed with
isotropic scaling. This result follows from the fact that the intersection of the
O(3) group (of which transformations (6) with λ = 1 are a sub-group) with the
generalized bas-relief group is a two-element set of the identity transformation
and the transformation that reflects the first two coordinates [1].

Finally, let us observe how many specular pairs do we need to establish the
consistent viewpoint constraint. Equation (5) represents three scalar equations
for each specular pair. After eliminating the unknown constant α(s,bS), there
are two independent equations per specular pair. The unknowns w and P are
both up to scale, so the number of degrees of freedom to fix is 2 (from the
vector w) plus 5 (from the symmetric matrix P). We thus observe that at least
four specular pairs in general configuration are needed to apply the consistent
viewpoint constraint.

So far, we have not analyzed which configurations of four specular pairs
are singular, nor the problem of (possible) finite solution multiplicity for non-
singular configurations. However, in experiments we observed unique solution
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in all cases. Analysis of which sets of four specular pairs give well-conditioned
solution is a topic for future research.

3 Experiment

In this experiment we show normal and albedo reconstruction for two objects:

1. WhiteBall which is a highly polished billiard ball of uniform albedo,
2. ChinaPot which is a glazed china tea pot with painted motif.

Images were acquired by 12 bit cooled camera (COOL-1300 by Vosskühler, stan-
dard Computar 75mm lens) under tungsten illumination (150W, stabilized direct
current). The light was moved by hand around the object. The distance between
object and light was not kept constant. No information about lights has been
measured nor recorded. Input images for the WhiteBall object are shown in
Fig. 3.

Fig. 3. Input data for the WhiteBall object.

Data was processed in 9 consecutive steps:
1. The mean of 10 dark frames was subtracted from each of the input images.
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Fig. 4. Two examples of Lambertian behaviour masks for the WhiteBall object.

Fig. 5. Selected specular regions (marked with red contour and rounded by small white
circle for better reading) used to apply the consistent viewpoint constraint, for both
objects.

2. Image points whose intensity fell below or over respective thresholds were
labeled as non-Lambertian, the other ones as candidates for Lambertian
points.

3. Candidates for Lambertian points were confirmed to be Lambertian in the
case that in four randomly selected images, they belonged to sufficiently
large image pixel sets with Lambertian behavior (i.e., if intensities of the
pixel set in any of four images could be sufficiently well expressed as a linear
combination of intensities of the pixel set in the other three images). Only
such quadruples of images were involved whose any three corresponding light
directions were sufficiently far from being coplanar (automatic check of this
condition was done using simple conditioning number tests). Two selected
Lambertian-consistent masks resulting from this step are shown in Fig. 4.

4. Lambertian portion of data was factorized by Jacobs algorithm [7]. From the
factorization pseudolights S were obtained.

5. Pseudonormals B were computed using Lambertian image regions and the
pseudolights obtained in the previous step. Each normal was fit individu-
ally by using least-square fit. After that, pseudolights were re-evaluated by
an analogous procedure, and this iterative process (alternating between re-



Specularities Reduce Ambiguity of Uncalibrated Photometric Stereo 53

Fig. 6. Results on the WhiteBall object.
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Fig. 7. Results on the ChinaPot object.

Fig. 8. Integrability violation measure as a function of rotation of normals around
the viewing direction (ξ ∈ 〈0, 360) [deg]). The WhiteBall object (left) and the ChinaPot
object (right). The two plots in each graph (shown in red and blue) correspond to two
coordinate frame handednesses. Normals are integrable in only one of them.
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computation of pseudonormals and pseudolights as in [5]) was repeated 10
times. The residual (the sum of squared differences between the predicted
and observed intensities over the valid image regions) converged to about
1/3 of its initial value. The result of this step is shown in Fig. 6(a) for the
WhiteBall object and in Fig. 7(a) for the ChinaPot object. Note neither the
illuminated normals nor albedo do correspond to our expectations.

6. Specularly reflecting normals in four images were determined. Specular re-
gions were selected by hand from the set of segmented non-Lambertian re-
gions available from Step 3. The selections are shown in Fig. 5. Pseudo-
normals from the previous step were averaged over the whole extension of
the respective specularity.

7. A transformationA was found that maps specular pseudonormals and corre-
sponding pseudolights onto those which fulfill the consistent viewpoint con-
straint. The idea of the algorithm was to design ‘ideal’ specular pairs (which
follow the consistent viewpoint constraint exactly), and look for transfor-
mation A that maps experimentally obtained specular pseudonormals and
pseudolights closest (in a least-square sense) to these ideal specular pairs.
The algorithm was essentially of the same type as the well-known bundle-
adjustment method and we acknowledge the article of Triggs et al. [12]
that helped us to design it. The transformation itself was parametrized as
A = diag [1, λ2, λ3]V�1. A unique solution existed in both objects.

8. This transformation was applied to pseudonormals and pseudolights output
from Step 5. The consistent viewpoint direction resulting from the previous
step was rotated to [0, 0, 1]�.
The results of this step are shown in Figs. 6(b) and 7(b). Note that the
resulting albedo is uniform, as expected. It is already the disambiguated
albedo of the object. Note also the viewpoint-illuminated normal fields are
already symmetric in both objects, as expected.

9. Integrability constraint was applied to resolve the rotation angle ξ and
the sign of the first coordinate in transformation (6). The integrability con-
straint violation measure was constructed as a sum of squared height dif-
ferences computed over elementary loops in the normal field. Note that for
integrable surface the change in height over a closed loop vanishes. The mea-
sure was computed for ξ ∈ 〈0, 2π) on pseudonormals output from Step 8 as
well as on these pseudonormals with the x-component reflected (blue and
red plots in Fig. 8). The coordinate frame handedness was selected according

1 This corresponds to the SVD decomposition of A (11) with U set to the identity
and λ1 set to 1. Specifically, the optimized parameters were: viewpoint direction v,
four ideal specular normals nS , and the parameters of transformation A. Ideal spec-
ular lights were computed by reflecting the (optimized) viewing direction v around
(optimized) ideal specular normals nS . Initial parameter values were: λ2 = λ3 = 1,
V initiated randomly (random rotation, solution was observed not to be depen-
dent on this initial choice), ideal specular normals were set to normalized specular
pseudonormals, and v to normalized average of these. The iterative algorithm con-
verged quickly (in about 15 iterations) into a unique solution.
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to which of the two plots gave lower minima. The two minima in such plot
correspond to the convex-concave ambiguity which was resolved by hand.
The result of this step is shown in Figs. 6(c) (illuminated from left and top
directions) and 7(c) (illuminated from four directions as indicated). Note the
normals look as expected. This is confirmed by self-shadow boundaries as
shown in Fig. 6(d) and 7(d).

4 Implications

In this section we show that there exist problems in computer vision that are
formally very similar to the discussed problem of uncalibrated photometric stereo
with consistent viewpoint constraint.

In Section 2, we analyzed the problem of uncalibrated photometric stereo,
and the role of consistent viewpoint direction in constraining essentially affine
ambiguity of uncalibrated photometric stereo. Here we show the validity of the
following statement:

Let affine structure of an object be evaluated by affine geometric stereo
with uncalibrated cameras. If four cameras in a general configuration ob-
serve specularities being reflected by the object surface from one distant
point light source, then the original affine ambiguity reduces into similar-
ity (composition of rotation, isotropic scaling, and change in coordinate
frame handedness).

This statement follows from the analysis given in Section 2, where all the
results apply if we make substitution light direction ↔ viewing direction.

To check the validity of this observation in detail, let there be a surfaceX that
is parametrized by u and v, X = X(u, v). Geometrical stereo with uncalibrated
affine projection matrices evaluates the shape up to an affine transformation
because the projections xj(u, v) of point X(u, v) in the j-th affine camera Cj

are2

xj(u, v) =

[
Cj

1,1 Cj
1,2 Cj

1,3

Cj
2,1 Cj

2,2 Cj
2,3

] X1(u, v)
X2(u, v)
X3(u, v)

 =
[
Cj

1,C
j
2

]�
X(u, v) = CjTX(u, v)

(7)

and thus xj(u, v)’s are invariant under transformation Cj 	→ ACj , X 	→ A−�X,
where A ∈ GL(3). It is known (see Yuille et al. [15]) that under these affine
transformations the camera viewing vectors vj ∼ Cj

1 ×Cj
2 are transformed co-

variantly and the surface normals n ∼ ∂X
∂u × ∂X

∂v are transformed contravariantly:
v ∼ A−�v, and n ∼ An (∼ means “up to a scaling factor”). Thus the normals
in affine geometrical stereo transform like in photometric stereo, and the camera
viewing vectors behave just like the illumination directions. But, in addition,
2 Origins of image frames in all cameras are aligned.
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the specular geometry condition (see Fig. 2) is also symmetrical with respect to
the change l↔ v. After we formulate the equivalent of the consistent viewpoint
constraint (in this case, it could be called consistent specular illumination con-
straint), the mathematics of the problem is the same. The affine ambiguity is
therefore reduced into composition of scaling, rotation around (unknown) illu-
mination direction, and change in coordinate frame handedness; but this is the
similarity ambiguity.

5 Conclusions

As a basic result of this paper we have shown that if object reflectance is a sum of
Lambertian and specular terms, the uncalibrated photometric stereo ambiguity
is reduced into effectively 2dof group of transformations (compositions of rotation
around the viewing vector, isotropic scaling and change in coordinate frame
handedness). For that, identification of specularities in images corresponding
to four different distant point lights in general configuration is sufficient. We
expect a similar result will hold if the specular spike is blurred by isotropic
surface roughness. This result brings us closer to the practical situation when
‘one waves a torch in front of an object and Euclidean structure is revealed.’
The good applicability of the approach was verified experimentally on two real
objects made of different material.

Note that albedo is obtained without imposing the integrability constraint.
The integrability is used to fix only 1dof of the normal field. Since integrability
must be computed on normal derivatives, any reduction of the number of param-
eters to be found significantly improves the accuracy of the resulting normals.

As we noted, lights and cameras play a symmetric role in the consistent
viewpoint constraint. Hence, by interchanging lights and cameras, the constraint
may also be applied to the case of uncalibrated geometric stereo with four affine
cameras in a general configuration observing specularities from a single distant
point light source.
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Appendix

Let S be a unit sphere in IR3. Let v be a vector from S and let S1/2 be a set of
unit vectors bS ∈ S for which it holds that v ·bS ≥ 0 (thus S1/2 is a half-sphere,
with v being its axis). Vector v represents viewing direction and vectors bS

represent visible normals. For given normal bS , let s denotes the light direction
under which bS is specular (so that bS and s is a specular pair).

We are asking the following question: if the normals are transformed as bS 	→
AbS and lights as s 	→ A−�s, what are the only transformations that preserve
the consistent viewpoint condition (4)?

First, we showed in Section 2 that this question is equivalent to asking what
symmetric positively definite matrices P = A�A exist such that

αw = 2(s · bS)PbS − (bS ·PbS)s , (8)
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where w ∈ S is some vector which is fixed for all bS ∈ S1/2, and α is a scaling
constant (different for each specular pair).

Obviously, the necessary condition for the validity of (8) is that ∀bS ∈ S1/2:

w ∈ span(PbS , s) , (9)

or, equivalently,

PbS ∈ span(w, s) . (10)

ButP is symmetric and positively definite and thus its effect on bS represents
anisotropic scaling in arbitrary three orthogonal directions. To see that, let us
write the SVD decomposition of A and P:

A = Udiag(λ1, λ2, λ3)V� λ1, λ2, λ3 > 0; U,V ∈ O(3) , (11)
P = Vdiag(λ2

1, λ
2
2, λ

2
3)V

� . (12)

Thus P scales along the direction of eigenvector Vi (i-th column of V) by
the respective λi.

Then normals bS
i = ±Vi (where ± is properly selected according to whether

Vi is or is not in S1/2) that are specular under corresponding lights si are
mapped onto themselves (up to a scale), and consequently w ∈ span(bS

i , si), i =
1 . . . 3. That implies that w = span(bS

1 , s1) ∩ span(bS
2 , s2) ∩ span(bS

3 , s3) = v.
But (10) must hold for all bS and we must therefore require PbS ∈ span(v, s) =
span(v,bS). The only way to arrange it is to align one of the scaling directions
(say, V1) with v, and to set the scalings along the other two directions equal
(λ2 = λ3). Next, we show that all λi’s must be equal.

Let us complete (11) and (12) by writing decomposition of A−� as

A−� = Udiag(
1
λ1

,
1
λ2

,
1
λ3

)V� . (13)

Observe that a particular choice of the matrix U has no effect on the validity
of the consistent viewpoint constraint, since it only transforms both s and bS

Fig. 9. Scaling the V1 component of normals by λ1 while scaling the same component
of lights by 1/λ1 results in that the new specular pair violates consistent viewpoint
constraint if λ1 �= 1.
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by a global orthogonal transformation (cf. (11)). It therefore suffices to consider
the effect of transformations (11) and (13) on bS and s, respectively, with U set
to identity.

Fig. 9 shows one pair of specular normal and corresponding light source
before (bS ,s) and after (b

S
,s) the photometric stereo transformation. Without

the loss of generality we set λ2(= λ3) = 1. The figure illustrates the fact that
when, for example, λ1 > 1, then the transformed normal makes a smaller angle
with v than the original normal, while the transformed light makes a greater
angle with v as compared with the original light. From that it follows that for
transformed normals and lights v is not consistent with the specular geometry
condition unless it holds that λ1 = λ2 = λ3.

Thus we have the result that P may be only the scaled identity P = λ2I.
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