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Abstract. In order to investigate the deep structure of Gaussian scale space im-
ages, one needs to understand the behaviour of critical points under the influence
of parameter-driven blurring. During this evolution two different types of spe-
cial points are encountered, the so-called scale space saddles and the catastrophe
points, the latter describing the pairwise annihilation and creation of critical points.
The mathematical framework of catastrophe theory is used to model non-generic
events that might occur due to e.g. local symmetries in the image. It is shown
how this knowledge can be exploited in conjunction with the scale space saddle
points, yielding a scale space hierarchy tree that can be used for segmentation.
Furthermore the relevance of creations of pairs of critical points with respect to
the hierarchy is discussed. We clarify the theory with an artificial image and a
simulated MR image.

1 Introduction

The presence of structures of various sizes in an image demands almost automatically
a collection of image analysis tools that is capable of dealing with these structures.
Essential is that this system is capable of handling the various, a priori unknown sizes
or scales. To this end various types of multi-scale systems have been developed.

The concept of scale space has been introduced by Witkin [16] and Koenderink
[8]. They showed that the natural way to represent an image at finite resolution is by
convolving it with a Gaussian of various bandwidths, thus obtaining a smoothened image
at a scale determined by the bandwidth. This approach has lead to the formulation of
various invariant expressions — expressions that are independent of the coordinates —
that capture certain features in an image at distinct levels of scale [4].

In this paper we focus on linear, or Gaussian, scale space. This has the advantage
that each scale level only requires the choice of an appropriate scale; and that the image
intensity at that level follows linearly from any previous level. It is therefore possible
to trace the evolution of certain image entities over scale. The exploitation of various
scales simultaneously has been referred to as deep structure by Koenderink [§]]. It per-
tains to information of the change of the image from highly detailed —including noise
— to highly smoothened. Furthermore, it may be expected that large structures “live”
longer than small structures (a reason that Gaussian blur is used to suppress noise). The
image together with its blurred version was called “primal sketch” by Lindeberg [[12].
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Since multi-scale information can be ordered, one obtains a hierarchy representing the
subsequent simplification of the image with increasing scale. In one dimensional images
this has been done by several authors [7/15], but higher dimensional images are more
complicated as we will discuss below.

An essentially unsolved problem in the investigation of deep structure is how to
establish meaningful links across scales. A well-defined and user-independent constraint
is that points are linked if they are topological equal. Thus maxima are linked to maxima,
etc. This approach has been used in 2-D images by various authors, e.g. [13]], noticing
that sometimes new extrema occurred, disrupting a good linking. This creation of new
extrema in scale space has been studied in detail by Damon [2], proving that these
creations are generic in images of dimension larger than one. That means that they are
not some kind of artifact, introduced by noise or numerical errors, but that they are to
be expected in any typical case.

Apart from the above mentioned catastrophe points (annihilations and creations)
there is a second type of topologically interesting points in scale space, viz. scale space
critical points. These are spatial critical points with vanishing scale derivative. This
implies a zero Laplacean in linear scale space. Although Laplacean zero-crossings are
widely investigated, the combination with zero gradient has only been mentioned occa-
sionally, e.g. by [6/9/11]].

Since linking of topologically identical points is an intensity based approach, also the
shape of iso-intensity manifolds must be taken into account. Scale space critical points,
together with annihilations and creations allow us to build a hierarchical structure that
can be used to obtain a so-called pre-segmentation: a partitioning of the image in which
the nesting of iso-intensity manifolds becomes visible.

It is sometimes desirable to use higher order (and thus non-generic) catastrophes to
describe the change of structure. In this paper we describe several of these catastrophes
in scale space and show the implications for both the hierarchical structure and the
pre-segmentation.

2 Theory

Let L(x) denote an arbitrary n dimensional image, the initial image. Then L(x;t)
denotes the n + 1 dimensional Gaussian scale space image of L(x). By definition,
L(x;t) satisfies the diffusion equation: AL = 9L, where AL denotes the Laplacean
of L. Spatial critical points, i.e. saddles and extrema, at a certain scale ¢, are defined as
the points at fixed scale to where the spatial gradient vanishes: VL(x;tg) = 0. The type
of a spatial critical point is given by the eigenvalues of the Hessian H, the matrix with
the second order spatial derivatives, evaluated at its location. Note that the trace of the
Hessian equals the Laplacean. For maxima (minima) all eigenvalues of the Hessian are
negative (positive). At a spatial saddle point H has both negative and positive eigenvalues.

Since L(x; t) is a continuous — even smooth — function in (x; ¢)-space, spatial critical
points are part of a one dimensional manifold in scale space, the critical curve.

As aresult of the maximum principle, critical points in scale space, i.e. points where
both the spatial gradient and the scale derivative vanish: VL(x;t) = 0 A 8;L(x;t) = 0,
are always saddle points and called scale space saddles
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Consequently, the extended Hessian H of L(x;t), the matrix of second order deriva-
tives in scale space defined by
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has both positive and negative eigenvalues at scale space saddles. Note that the elements
of H are purely spatial derivatives. This is possible by virtue of the diffusion equation.

2.1 Catastrophe Theory

The spatial critical points of a function with non-zero eigenvalues of the Hessian are
called Morse critical points. The Morse Lemma states that at these points the qualitative
properties of the function are determined by the quadratic part of the Taylor expansion of
this function. This part can be reduced to the Morse canonical form by a slick choice of
coordinates. If at a spatial critical point the Hessian degenerates, so that at least one of the
eigenvalues is zero (and consequently its determinant vanishes), the type of the spatial
critical point cannot be determined. These points are called catastrophe points. The term
catastrophe was introduced by Thom [14]. A thorough mathematical treatment can be
found in the work of Arnol’d, e.g. [1]]. More pragmatic introductions and applications
are widely published, e.g. [5].

The catastrophe points are also called non-Morse critical points, since a higher order
Taylor expansion is essentially needed to describe the qualitative properties. Although
the dimension of the variables is arbitrary, the Thom Splitting Lemma states that one can
split up the function in a Morse and a non-Morse part. The latter consists of variables
representing the k£ “bad” eigenvalues of the Hessian that become zero. The Morse part
contains the n — k remaining variables. Consequently, the Hessian contains a (n — k) x
(n — k) sub-matrix representing a Morse function. It therefore suffices to study the part
of k variables. The canonical form of the function at the non-Morse critical point thus
contains two parts: a Morse canonical form of n — k variables, in terms of the quadratic
part of the Taylor series, and a non-Morse part. The latter can by put into canonical form
called the catastrophe germ, which is obviously a polynomial of degree 3 or higher.

Since the Morse part does not change qualitatively under small perturbations, it
is not necessary to further investigate this part. The non-Morse part, however, does
change. Generally the non-Morse critical point will split into a non-Morse critical point,
described by a polynomial of lower degree, and Morse critical points, or even exclusively
into Morse critical points. This event is called a morsification. So the non-Morse part
contains the catastrophe germ and a perturbation that controls the morsifications.

Then the general form of a Taylor expansion f(x) at a non-Morse critical point of an
n dimensional function can be written as (Thom ‘s Theorem): f(x;\) = CG+ PT +Q,
where CG(z1, ..., x)) denotes the catastrophe germ, PT'(x1,...,2k; A1,...,A;) the
perturbation germ with an [ dimensional space of parameters, and the Morse part () =
> i €ty with e; = £1.

The set of so-called simple real singularities have catastrophe germs given by the
infinite series A3 df L2k k> land Dif df 42y £ y*=1 k > 4. The germs A and
A, are equivalent for k = 1 and k even. Note that these catastrophes can be represented
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in a 2D coordinate system. In this paper we investigate the starting germs of both series,
viz. the Ag,As, and Dy.

2.2 Catastrophes and Scale Space

The number of equations defining the catastrophe point equals n + 1 and therefore it
is over-determined with respect to the n spatial variables. In scale space, however, the
number of variables equals n + 1 and catastrophes occur as isolated points.

The transfer of the catastrophe germs to scale space has been made by may authors,
[2)3)7012], among whom Damon’s account is probably the most rigorous. He showed that
the only generic morsifications in scale space are the aforementioned A5 (called Fold)
catastrophes, describing annihilations and creations of pairs of critical points. These
two points have opposite sign of the determinant of the Hessian before annihilation and
after creation. All other events are compounds of such events.

Definition 1. The scale space fold catastrophe germs are defined by
fHx15t) def x3 + 621t

fe(z1, 25 %) def 3 — 621 (23 + ).

The Morse part is given by >+, €;(x2 + 2t), where Y -, €; # 0 and ¢; # 0 Vi.

Note that both the scale space catastrophe germs and the quadratic terms satisfy the
diffusion equation. The germs f* and f¢ correspond to the two qualitatively different
Fold catastrophes at the origin, an annihilation and a creation respectively. Non-generic
scale space catastrophe events can be modelled by modifying the A and Dy, series
such, that they satisfy the diffusion equation. We will show that perturbation of the non-
generic models resolves the generic Fold catastrophes. From Definition [[lit is obvious
that annihilations occur in any dimension, but creations require at least 2 dimensions.
Consequently, in 1D signals only annihilations occur. Furthermore, for images of arbi-
trary dimension it suffices to investigate the 2D case due to the Splitting Lemma.

2.3 Scale Space Hierarchy

From the previous section it follows that each critical curve in (x;¢)-space consists of
separate branches, each of which is defined from a creation event to an annihilation
event. We set # ¢ the number of creation events on a critical path and # 4 the number of
annihilation events. Since there exists a scale at which only one spatial critical point (an
extremum) remains, there is one critical path with # 4 = #¢, whereas all other critical
paths have # 4 = #¢ + 1. That is, all but one critical paths are defined for a finite scale
range.

One of the properties of scale space is non-enhancement of local extrema. Therefore,
isophotes in the neighbourhood of an extremum at a certain scale ¢y move towards the
spatial extremum at coarser scale, until at some scale ¢; the intensity of extremum
equals the intensity of the isophote. The iso-intensity surface in scale formed by these
isophotes form a dome, with its top at the extremum. Since the intensity of the extremum
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is monotonically in- or decreasing (depending on whether it is a minimum or a maximum,
respectively), all such domes are nested. Retrospectively, each extremum branch carries
a series of nested domes, defining increasing regions around the extremum in the input
image.

These regions are uniquely related to one extremum as long as the intensity of the
domes doesn’t reach that of the so-called critical dome. The latter is formed by the iso-
intensity manifold with its top at the extremum and containing a (nearby) scale space
saddle, where both points are part of the same critical curve. That is, the scale space
saddle is apparent at the saddle branch that is connected in an annihilation event with the
extremum branch. The intensity at this point has a local extremum on the saddle branch.

In this way a hierarchy of regions of the input image is obtained in a straightforward
manner, which can be regarded as a pre-segmentation. It also results in a partition of the
scale space itself. See for more details Kuijper and Florack [[10].

The crucial role is played by the scale space saddles and the catastrophe points. As
long as only annihilation and creation events occur, the hierarchy is obtained straight-
forward. However, sometimes higher order catastrophes are needed to describe the local
structure, viz. when two or more catastrophes happen to be almost incident and cannot
be segregated due to numerical imprecision or (almost) symmetries in the image.

3 Catastrophes and Scale Space Saddles

In this section we discuss the appearance of catastrophe events in scale space and the
effect on scale space saddles. Firstly, results on one dimensional images are given,
because in this particular case scale space saddles coincide with catastrophe points.
Secondly, multi-dimensional images are discussed. In higher dimensions the structure is
more complicated, since generically scale space saddles do not coincide with catastrophe
points. It suffices to investigate 2D images, since the A and D catastrophes are restricted
to 2 bad variables.

3.1 A, Catastrophe in 1D

The A, catastrophe is called a Fold and is defined by 3 + \x. It scale space appearance
is given by
L(w;t) = 2° + 6xt.

The only perturbation parameter is given by ¢ by the identification A = 6¢. It has a scale
space saddle if both derivatives are zero. So it is located at the origin with intensity equal
to zero. The determinant of the extended Hessian is negative, indicating a saddle. The
parametrisation of the critical curve with respect to ¢ is (z(s); t(s)) = (£v—2s;5),5 <
0 and the parametrised intensity reads P(s) = +4sv/—2s,s < 0, see Figure [Th. The
critical dome is given by the isophotes L(z;¢) = 0 through the origin, so (z;t) = (0;t)
and (z;t) = (x; — ). Figure[Ib shows isophotes L = constant in the (z; ¢, L(x;1))-
space, where the self-intersection of the isophote L = 0 gives the annihilation point.
This isophote gives the separatrices of the different parts of the image. The separation
curves in the (x;t)-plane are shown in Figure [Ik: for ¢ < 0 four segments are present,
for t > 0 two remain.
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Intensity

Fig. 1. Fold catastrophe in 1D: a) Parametrised intensity of the critical curve. b) 1+1D intensity
scale space surface. ¢) Segments of b), defined by the scale space saddle.

3.2 Aj Catastrophe in 1D

Although all catastrophes are generically described by fold catastrophes, one may en-
counter higher order catastrophes, e.g. due to numerical imprecision or symmetries in
the signal when a set of two minima and one maximum change into one minimum,
but one is not able to detect which minimum is annihilated. At such an event also the
extended Hessian degenerates since one of the eigenvalues becomes zero.

The first higher order catastrophe describing such a situation is the A3 (Cusp) catas-
trophe: +x* + Az + \ox2. The scale space representation of the catastrophe germ
reads & (2% + 1222t + 12t2). Obviously, scale fulfils the role of the perturbation by \s.
Therefore the scale space form is given by

L(z;t) = 2* + 1222t + 12% + ex,

where the two perturbation parameters are given by t for the second order term and ¢
for the first order term. If € = 0 the situation as sketched above occurs. The catastrophe
takes place at the origin, where two minima and a maximum change into one minimum
for increasing ¢. At the origin both L,, and L,; are zero, resulting in a zero eigenvalue
of the extended Hessian. The parametrised intensity curves are shown in FigurePh. Note
that at the bottom left the two branches of the two minima with equal intensity coincide.
The case 0 <| € |« 1, where a morsification has taken place, is visualised in Figure
Bb. This Figure shows the remaining Fold catastrophe of a minimum and a maximum
(compare to Figure [[h), and the unaffected other minimum.

Intensity Intensity
1 1
0.75 0.75
0.5 0.5
0.25 0.25

] s
1 0 25 0.5 1 -1 -0 5 0.5 1

-0.5 0.5
0.75 0.75
-1 1

Fig. 2. Parametrised intensity of the Cusp catastrophe a) e =0 b) 0 <] € [ 1
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Depending on the value and sign of € one can find the three different types of catas-
trophe shown in Figure[3ha-c. With an uncertainty in the measurement they may coincide,
as shown in Figure BH, where the oval represents the possible measure uncertainty.

Fig. 3. Critical paths in the (x;t)-plane. a) e < 0 b)e = 0 c¢) e > 0 d) detection of the critical
paths around the origin with uncertainty represented by the oval.

With the degeneration of the extended Hessian at the origin if € = 0, also the shape
of the isophotes change, as shown in Figure[dl Since one eigenvalue is zero, the only
remaining eigenvector is parallel to the ¢-axis. So there is no critical isophote in the
t-direction, but both parts pass the origin horizontally. Furthermore the annihilating
minimum cannot be distinguished from the remaining minimum.

Fig.4. Critical isophotes in the (x;t)-plane.a) e <0 b)e =0 c)e >0

3.3 A, Catastrophe in 2D

The scale space Fold catastrophe in 2D is given by:
L(z,y;t) = a® + 6t + a(y® + 2t), (1)

where o = £1. Positive sign describes a saddle — minimum annihilation, negative sign
a saddle — maximum one. Without loss of generality we take a« = 1. The catastrophe
takes place at the origin with intensity equal to zero and the scale space saddle is located
at (z,y;t) = (—%,0; —1%) with intensity —5-. The surface L(z,y;t) = —5- through
the scale space saddle is shown in Figure [Sa. It has a local maximum at (x,y;t) =
(%, 0; —%2): the top of the extremum dome. The iso-intensity surface through the scale
space saddle can be visualised by two surfaces touching each other at the scale space
saddle. One part of the surface is related to the corresponding extremum of the saddle.
The other part encircles some other segment of the image. The surface belonging to the
extremum forms an dome. The critical curve intersects this surface twice. The saddle
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branch has a intersection at the scale space saddle, the extremum branch at the top of
the dome, as shown in Figure[Ja.

The parametrisation of the two branches of the critical curve with respect to ¢ is
given by (z(s),y(s);t(s)) = (£v/—2s,0; s), s < 0, see Figure Bb. The intensity of the
critical curve reads L(s) = 2s + 4sy/—2s, s < 0. The scale space saddle is located at
f%, the catastrophe at s = 0. These points are visible in Figure Bb as the local
minimum of the parametrisation curve and the connection point of the two curves (the
upper branch representing the spatial saddle, the lower one the minimum), respectively.

S =

Intensity Intensity
0.2

0.1
Catastrophe (.05

-0.

4

Fig. 5. a) 2D Surface trough the scale space saddle. b) Intensity of the critical curve, parametrised
by the x-coordinate. c) Same for the t-coordinate.

Note that an alternative parametrisation of both branches of the critical curve simul-
taneously is given by (z(s), y(s); t(s)) = (s,0; —3s?). Then the intensity of the critical
curve is given by L(s) = —2s3 — s2, see Figure Bc. The catastrophe takes place at
5 =0, the saddle at s = — % These points are visible in Figure[3c as the extrema of the
parametrisation curve. The branch s < 0 represents the saddle point, the branch s > 0

the minimum.

3.4 Ag Catastrophe in 2D

With the similar argumentation as in the one dimensional case it is also interesting to
investigate the behaviour around the next catastrophe event. The 2D scale space extension
of the Cusp catastrophe is given by

L(z,y;t) = %x‘l + 2t + 12+ a2t +y?) 4 ex
where, again, o« = 1. If ¢ # 0 a fold catastrophe results. The critical curves in the
(z;t)-plane at ¢ = 0,y = 0 are shown in Figure [6Bh. They form a so-called pitchfork
bifurcation at the origin, the catastrophe point.

One can verify that the critical points lay on the curves given by (z(s), y(s);t(s)) =
(0,0; s) and (x(s),y(s); t(s)) = (£v/—6s,0;5),s < 0.

The intensities are given by Li1(s) = (0,0;s) = s + 2as with its extremum at
s = —a and La(s) = L(£y/—65,0;5) = —2s% + 2as,s < 0. The latter has an
extremum at s = 1q. Since s < 0, these scale space saddles only occur if o < 0. It is

2
therefore essential to distinguish between the two signs of .



Understanding and Modeling the Evolution of Critical Points 151

€ Intensity

o
B W N RO RN

Fig. 6. a) Critical paths. b) Critical paths with zero-Laplacean, catastrophe point and scale space
saddle if > 0. c) Intensity of the critical paths. The part bottom-left represents two branches
ending at the catastrophe point.

Case a > 0. For positive «, the curve (z,y;t) = (0,0;s) contains saddles if ¢t < 0
and minima if ¢ > 0. The other curve contains minima on both branches. At the origin
a catastrophe occurs, at (z,y;t) = (0,0, —«) a scale space saddle, see Figure[6b. The
intensities of the critical curves are shown in Figure Bc; The two branches of the minima
for t < 0 have equal intensity. The iso-intensity manifold in scale space forms a double
dome since the two minima are indistinguishable, see Figure [Zh.

AMVA

Fig.7. 2D Surfaces trough the scale space saddles at a Cusp catastrophe, a) o > 0,b) a < 0,t =
%aand )a<0,t=—-«

A small perturbation (0 <| € |< 1) leads to a generic image containing a Fold
catastrophe and thus a single cone. However, as argued in section [3.2] this perturbation
may be too small to identify the annihilating minimum. We will use this degeneration
in Section[ to identify multiple regions with one scale space saddle

Case a < 0. If « is negative, the curve (z,y;t) = (0,0;s) contains a maximum if
t < 0 and a saddle if ¢ > 0, while the curve (z,y;t) = (£v/—6s,0;5s),s < 0 contains
saddles. Now 3 scale space saddles occur: at (x,y;t) = (0,0; —«) and (z,y;t) =
(£v/=3a,0; 3a), see Figure Bh. The corresponding intensities are shown in Figure[Bb,
where again the intensities of the two saddle branches for ¢ < 0 coincide.

The iso-intensity surfaces through the scale space saddles are shown in Figure[Zb-c.
The scale space saddles at t = %a both encapsulate the maximum at the t-axis. The
scale space saddle at t = —qis void: it is not related to an extremum. This is clear from
the fact that there is only one extremum present.
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-2 . .
Fig. 8. a) Critical paths with zero-Laplacean, catastrophe point and scale space saddle if « = —1.

b) Intensity of the critical paths. The part bottom-left represents two branches ending at the
catastrophe point. ¢) Critical paths with o < 0, 4€? < —3a®, zero-Laplacean, catastrophe point
and scale space saddle.

If a small perturbation (0 <| € |< 1) is added, the three scale space saddles remain
present in the generic image. Their trajectories in the (x;t)-plane are shown in Figure
[Bk. Now a Fold catastrophe is apparent, but also a saddle branch containing two (void)
scale space saddles, caused by the neighbourhood of the annihilating saddle-extremum
pair.

Degeneration of det(#). The extended Hessian degenerates if its determinant van-
ishes, yielding 4« (2t — x2) = 0. This implies 2¢ = x2. Then L, = 0 reduces to
%xg +¢e=0and L; = 0 implies 22 = —a, so the point of degeneration is located at
(z,y;t) = (=, 0, —3a), where o < 0 and 9¢? = —160.

This special value for v, € # 0 is located at the non-annihilating saddle branch where
the two scale space saddle points coincide, i.e. where the saddle branch touches the zero-
Laplacean. This case is non-generic, since the intersection of the critical curve and the
hyperplane AL = 0 at this value is not transverse. This value describes the transition of
the case with two void scale space saddles to the case without scale space saddles: For
| e|< %\/ —a two void scale space saddles occur on the non-annihilating saddle branch
as shown in Figure Bc. For | € |> 1/—a® none occur since it does not intersect the
zero-Laplacean. In other words: a Fold catastrophe in scale space occurs, regarding two
scale space critical points (i.e. saddles) with different signs of det(#) and controlled by
the perturbation parameter e.

3.5 DI Catastrophe in 2D

The D catastrophe, called hyperbolic umbilic, is given by o3 + z:y2. The perturbation
term contains three terms: ;2 + A2y + A32. Its scale space addition is 8zt. Obviously
scale takes the role of A;. The scale space hyperbolic umbilic catastrophe germ with
perturbation is thus defined by

L(z,y;t) = 2° + zy® + 8xt + a(y® + 2t) + By

where the first part describes the scale space catastrophe germ. The set (v, 3) form the
extra perturbation parameters. One can verify that at the combination («, 5) = (0,0)
four critical points exist for each ¢ < 0. At ¢ = 0 the four critical curves annihilate
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simultaneously at the origin. This is non-generic, since this point is a scale space saddle
with det(H) = 0.

Morsification takes place in the two parameters. Firstly, if & £ 0 and 8 = 0, the
annihilations are separated. At the origin a Fold catastrophe occurs. On the saddle branch
of the critical curve both a scale space saddle and a Cusp catastrophe are found. Secondly,
if @« = 0 and 8 # 0, the double annihilation breaks up into two Fold annihilations with
symmetric non-intersecting critical curves. A scale space saddle is not present.

Finally, if both v and 3 are non-zero, this second morsification results in two critical
curves each of them containing an Fold annihilation. One the two critical curves contains
a scale space saddle.

The extended Hessian degenerates for x = —a. Then follows from L; = 0 that
z = o = 0 and from L, also 8 = 0, which is a non-generic situation.

3.6 D, Catastrophe in 2D

The D catastrophe, called elliptic umbilic, is given by 2 —62y2. The perturbation term
contains three terms: A1+ Aoy + A3y2. Its scale space addition is —6xt. Obviously scale
takes the role of \;. The scale space elliptic umbilic catastrophe germ with perturbation
is thus defined by

L(z,y;t) = 23 — 6xy® — 62t + a(y? + 2t) + By 2)

where the first part describes the scale space catastrophe germ. The set (¢, §) form the
extra perturbation parameters. The combination (a, 8) = (0, 0) gives two critical points
for all t # 0. At the origin a so-called scatter event occurs: the critical curve changes
from y-axis to x-axis with increasing ¢. Just as in the hyperbolic case, in fact two Fold
catastrophes take place; in this case both an annihilation and a creation.

The morsification for & = 0, 5 # 0 leads to the breaking into two critical curves
without any catastrophe.

The morsification for a« # 0, 3 = 0 leads to only one catastrophe event at the
origin: the Fold creation. The sign of e determines whether the critical curve contains a
maximum — saddle pair or a minimum-saddle pair. Without loss of generality we may
choose o = 1. Then the generic creation germ (see Definition [I) is defined as

L(z,y;t) = 2® — 62t — 62y +y? + 2t 3)

The scale space saddle is located at (z,y;t) = (3,0;75) and its intensity is
L(%,0;1%) = 5. The surface L(z,y;t) = 3- has a local saddle at (z,y;t) =
(—=5,0; =;),seeFi gure[9l At creations newly created extremum domes can not be present,
which is obvious from the maximum principle. Whereas annihilations of critical points
leads to the annihilations of level-lines, creations of critical points are caused by the re-
arrangement of present level-lines. The intersection of the iso-surface through the scale
space saddle and the critical curve therefore does not have a local extremum, but only
local saddles.

This fact becomes clearer if we take a closer look at the structure of the critical

curves. The creation containing critical curve is given by (x,y;t) = (£v/2t,0;¢t). The
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Fig. 9. Iso-intensity surface of the scale space saddle of the creation germ.

other critical curve, given by (z,y;t) = (§,44/7; — t;t), represents two branches
connected at the second catastrophe. This point, located at (z,y;t) = (%, 0; %), is an
element of both curves and obviously degenerates the extended Hessian. At this point
two saddle points and the created extremum go through a Cusp catastrophe resulting
in one saddle. Note that ignoring this catastrophe one would find the sudden change
of extremum into saddle point while tracing the created critical points. Obviously this
catastrophe is located between the creation catastrophe and the scale scale space saddle.
The latter therefore does not invoke a critical dome around the created extremum.

A complete morsification by taking 5 # 0 resolves the scatter. It can be shown that the
Hessian has two real roots if and only if || ]| < 35V/6. At these root points subsequently
a creation and an annihilation event take place on a critical curve. If ||3]| > 5/6 the
critical curve doesn’t contain catastrophe points.

Due to this morsification the two critical curves do not intersect each other. Also in
this perturbed system the minimum annihilates with one of the two saddles, while the
other saddle remains unaffected. The scale space saddle remains on the non-catastrophe-
involving curve. That is, the creation-annihilation couple and the corresponding saddle
curve is not relevant for the scale space saddle and thus the scale space segmentation.

The iso-intensity surface of the scale space saddle due to the creation germ does not
connect a dome-shaped surface to an arbitrary other surface, but shows only two parts
of the surface touching each other at a void scale space saddle, see e.g. Figure

4 Applications

In this section we give some examples to illustrate the theory presented in the previous
sections. To show the effect of a cusp catastrophe in 2D, we firstly take a symmetric
artificial image containing two Gaussian blobs and add noise to it. This image is shown
in Figure [[0h. Secondly, the effect is shown on the simulated MR image of Figure [0b.
This image is taken from the web site http://www.bic.mni.mcgill.ca/brainweb.
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Fig. 10. 2D test images a: Artificial image built by combining two maxima and additive noise. b:
181 x 217 artificial MR image.

4.1 Artificial Image

Of the noisy image of Figure [I0h, a scale space image was built containing 41 scales
ranging exponentially from e¥ to e¥ . The calculated critical paths are presented in
Figure [TTh. Ignoring the paths on the border, caused by the extrema in the noise, the
paths in the middle of the image clearly shown the pitchfork-like behaviour. Note that
since the symmetric image is perturbed, instead of a cusp catastrophe a fold catastrophe
occurs. The scale space saddle on the saddle branch and its intensity define a closed
region around the lower maximum, see Figure [[Tb. However, if the noise were slightly
different, one could have found the region around the upper maximum. Knowing that the
image should be symmetric and observing that the critical paths indeed are pitchfork-
like, it is thus desirable to identify the catastrophe as a cusp-catastrophe. Then the scale
space saddle defines the two regions shown in Figure[TTk, which one may want to derive
given Figure[IQa.

',

Fig. 11. Example of a cusp catastrophe: a: Critical paths in scale space. b: Segment according to
a fold catastrophe. c: Segment according to a cusp catastrophe.

4.2 Simulated MR Image

Subsequently we took the 2D slice from an artificial MR image shown in Figure [[0b.
The scale space image at scale 8.37 with the large structures remaining is shown in
Figure[12h. Now 7 extrema are found, defining a hierarchy of the regions around these
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extrema as shown in Figure[I2Zb. In this case is it visually desirable to identify a region
to segment .S with more or less similar size as region Ss. This is done by assigning
a Cusp catastrophe to the annihilation of the extremum of segment Ss, in which the
extremum of segment S is also involved. Then the value of the scale space saddle
defining segment S5 also defines an extra region around the extremum in segment Sj.
This is shown in Figure[1Zk, reflecting the symmetry present in Figure [[2h. We mention
that in this example several creation-annihilation events occurred, as described by the
morsification of the D, catastrophe.

ot

Fig.12. a) Image on scale 8.4 b) Segments of the 7 extrema of a. c¢) Idem, with the iso-intensity
manifold of Sy chosen equally to S3.

5 Summary and Discussion

In this paper we investigated the (deep) structure on various catastrophe events in Gaus-
sian scale space. Although it is known that pairs of critical points are annihilated or
created (the latter if the dimension of the image is 2 or higher), it is important to describe
the local structure of the image around these events. The importance of this local de-
scription follows from its significance in building a scale space hierarchy. This algorithm
depends on the critical curves, their catastrophe points and the space space saddle points.
We therefore embedded the mathematically known catastrophes as presented in section
2lin the framework of linear scale space images.

Firstly, annihilations of extrema can occur in the presence of other extrema. In some
cases it is not possible to identify the annihilating extremum due to numerical limitations,
coarse sampling, or symmetries in the image. Then the event is described by a Cusp
catastrophe instead of a Fold catastrophe. This description is sometimes desirable, e.g. if
prior knowledge is present and one wishes to maintain the symmetry in the image. The
scale space hierarchy can easily be adjusted to this extra information. We gave examples
in section @on an artificial image and a simulated MR image. We discussed the A3 and
the D} for this purpose, but the higher order catastrophes in the sequences Ay, k > 4
and D}, k > 3 can be dealt with in a similar fashion.

Secondly, the morsification of the D, catastrophe was discussed, showing he suc-
cessive appearance of a creation — annihilation event on a critical curve. This doesn’t
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influence the hierarchical structure nor the pre-segmentation, but is only important with
respect to the movement of the critical curve in scale space.

The theory described in this paper extends the knowledge of the deep structure of

Gaussian scale space. It embeds higher order catastrophes within the framework of a scale
space hierarchy. It explains how these events can in principle be used for segmentation,
interpreted and implemented, e.g. if prior knowledge is available.
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