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Abstract. The modal correspondence method of Shapiro and Brady
aims to match point-sets by comparing the eigenvectors of a pairwise
point proximity matrix. Although elegant by means of its matrix repre-
sentation, the method is notoriously susceptible to differences in the re-
lational structure of the point-sets under consideration. In this paper we
demonstrate how the method can be rendered robust to structural differ-
ences by adopting a hierarchical approach. We place the modal matching
problem in a probabilistic setting in which the correspondences between
pairwise clusters can be used to constrain the individual point corre-
spondences. To meet this goal we commence by describing an iterative
method which can be applied to the point proximity matrix to identify
the locations of pairwise modal clusters. Once we have assigned points to
clusters, we compute within-cluster and between-cluster proximity ma-
trices. The modal co-efficients for these two sets of proximity matrices
are used to compute cluster correspondence and cluster-conditional point
correspondence probabilities. A sensitivity study on synthetic point-sets
reveals that the method is considerably more robust than the conven-
tional method to clutter or point-set contamination.

1 Introduction

Eigendecomposition, or modal analysis, has proved to be an alluring yet elu-
sive method for correspondence matching. Stated simply, the aim is to find the
pattern of correspondence matches between two sets of objects using the eigen-
vectors of an adjacency matrix or an attribute proximity matrix. The problem
has much in common with spectral graph theory [1] and has been extensively
studied for both the abstract problem of graph-matching [17,16], and for point
pattern matching [14,12,11]. In the case of graph-matching the adjacency ma-
trix represents either the weighted or unweighted edges of the relational structure
under study. For point pattern matching, the proximity matrix represents the
pairwise distance relationships. The method may be implemented in a number
of ways. The simplest of these is to minimize the distance between the modal co-
efficients. A more sophisticated approach is to use a factorization method such
as singular value decomposition to find the permutation matrix which minimizes
the differences between the adjacency structures. Unfortunately, the method in-
variable fails when the sets of objects being matched are not of the same size due
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to structural differences. The reason for this is that the pattern of eigenvectors
is unstable when structural differences are present.

There are several concrete examples in the pattern analysis literature. Turn-
ing our attention to graph-matching, Umeyama has an eigendecomposition
method that recovers the permutation matrix that maximizes the correlation or
overlap of the adjacency matrices for graphs of the same size [17]. This method
uses a factorization method to find the permutation matrix that brings the two
graphs into correspondence. Horaud and Sossa [5] have adopted a purely struc-
tural approach to the recognition of line-drawings. Their representation is based
on the immanental polynomials for the Laplacian matrix of the line-connectivity
graph. By comparing the coefficients of the polynomials, they are able to index
into a large data-base of line-drawings. Of more direct relevance to this paper is
the literature on point-pattern matching. Borrowing ideas from structural chem-
istry, Scott and Longuet-Higgins were among the first to use eigendecomposition
methods for point correspondence analysis [12]. They showed how to recover cor-
respondences via singular value decomposition on the point association matrix
between different images. However, the method has a number of well documented
problems relating to the small range of scale and angle differences for which it
is effective. In an attempt to overcome these problems, Shapiro and Brady [14]
have developed a method in which point sets are matched by comparing the
eigenvectors of the point proximity matrix. Here the proximity matrix is con-
structed by computing the Gaussian weighted distance between points. Matching
between different point-sets is effected by comparing the pattern of eigenvectors,
or modal co-efficients, in different images. The method extends the range of an-
gle and scale differences over which reliable correspondences can be recovered.
However, the method fails for point sets of different sizes. In a recent paper [2]
we have revisited the method of Shapiro and Brady. Our aim was to use the cor-
respondence information delivered by the method to develop an EM algorithm
for point-set alignment. For structurally intact point-sets subject to positional
jitter, we showed that the performance of the Shapiro and Brady method could
be improved using ideas from robust statistics to compute the proximity matrix
and to compare the modal co-efficients. To overcome the difficulties encountered
with point-sets of different size, an explicit alignment process was required.

The aim in this paper is to return to the Shapiro and Brady [14] method
and to focus on how the method can be rendered robust to structural differ-
ences in the point-sets. We adopt a hierarchical approach. The method is based
on the observation that the modes of the proximity matrix can be viewed as
pairwise clusters. Moreover, the modal co-efficients represent the affinity of the
raw points to the clusters. This idea has been exploited by several authors to de-
velop powerful image segmentation [15] and grouping methods [13,8,6]. Sengupta
and Boyer [13] have used property matrix spectra to characterise line-patterns.
Various attribute representations are suggested and compared. Shokoufandeh,
Dickinson and Siddiqi [16] have shown how graphs can be encoded using lo-
cal topological spectra for shape recognition from large data-bases. Sarkar and
Soundararajan [10] have shown how graph-spectral methods can be combined
with cellular automata to learn grouping structure. Finally, a number of authors
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have used spectral methods to perform pairwise clustering on image data. Shi
and Malik [15] use the second eigenvalue to segment images by performing an
eigen-decomposition on a matrix of pairwise attribute differences using the iter-
ative normalised cut method. Sarkar and Boyer [9] and Freeman and Perona [8]
have developed matrix factorisation methods for line-grouping. In a recent paper,
Weiss [18] has compared a number of matrix factorisation methods for matching
and segmentation, and has commented on the way in which they compute the
proximity matrix. His conclusion was that performance could be significantly im-
proved if the matrix is correctly normalised. Inoue and Urahama [6] have shown
how the sequential extraction of eigen-modes can be used to cluster pairwise
pixel data as an alternative to computationally expensive methods, such as the
mean-field annealing idea of Buhmann and Hoffman [4]. Rather than explicitly
grouping the points prior to matching, here we aim to characterise the potential
groupings in an implicit or probabilistic way and to exploit their arrangement
to provide constraints on the pattern of correspondences.

Our approach is as follows. Each mode of the point-proximity matrix is taken
to represent a potential grouping or cluster of points. For each group, we can
compute a cluster centre point-position. While the pattern of modal co-efficients
of the proximity matrix may be disturbed by structural differences in the point-
sets, the centre-points of the groups or clusters may be more stable. Hence, we
can use the cluster-centre proximity matrix to improve the correspondence pro-
cess. Here we use an evidence combining method which is posed in a hierarchical
framework. We compute the probability that pairs of points are in correspon-
dence by developing a mixture model over the set of possible correspondences
between the most significant groupings of points. In this way the cluster-centre
correspondences, weight the point-correspondence probabilities. We discuss vari-
ous alternative ways in which the correspondence process may be modelled using
the modal co-efficients of the point and cluster centre proximity matrices. We
compare these alternatives with both the Shapiro and Brady method and our
previously reported method.

2 Point Correspondence

The modal approach to point correspondence introduced by Shapiro and Brady
[14] commences by enumerating a point proximity matrix. This is a continuous
or weighted counterpart of the graph adjacency matrix. Rather than setting the
elements to unity or zero depending on whether or not there is a connecting edge
between a pair of nodes, the elements of the proximity matrix are weights that
reflect the strength of a pairwise adjacency relation. The weights of the proximity
matrix are computed by taking a Gaussian function of the interpoint distances,
Once the proximity matrix is to hand, then correspondences are located by
computing its eigenvectors. The eigenvectors of the proximity matrix become
the columns of a transformation matrix which operates on the original point
identities. The rows of the transformation matrix represent the components of
the original points in the directions of the eigenvectors. We can locate point
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correspondences by searching for rows of the transformation matrix which have
maximal similarity.

Unfortunately there are two drawbacks with this modal method of corre-
spondence. Firstly, there is no clear reason to use Gaussian weighting in favour
of possible alternatives. Gaussian weighting may not be the most suitable choice
to control the effects of pattern distortion due to point movement under mea-
surement error or deformation under affine or perspective geometry. Secondly,
the method proves fragile to structural differences introduced by the addition
of clutter or point drop-out. In a recent paper we have addressed the first of
these problems by using robust error kernels to compute the proximity matrix
[2]. Here we focus on the second problem, and develop a hierarchical method
matching point-sets.

In this section we review the existing work on the modal matching of point-
sets, before detailing an improved method aimed at overcoming the problem of
different point set size.

2.1 Shapiro and Brady

We are interested in finding the correspondences between two point-sets, a model
point-set z and a data point-set w. Each point in the image data set is repre-
sented by an position vector co-ordinates w

¯ i = (xi, yi)T where i is the point
index. In the interests of brevity we will denote the entire set of image points by
w = {w

¯ i,∀i ∈ D} where D is the point set. The corresponding fiducial points
constituting the model are similarly represented by z = {z

¯j ,∀j ∈ M} where M
denotes the index-set for the model feature-points z

¯j .
The role of the weighting function used to compute the elements of the prox-

imity matrix is to model the probability of adjacency relations between points.
The standard way to represent the adjacency relations between points is to use
the Gaussian proximity matrix. If i and i′ are two data points, then the corre-
sponding element of the proximity matrix is given by

HD(i, i′) = exp
[
− 1
2s2

||w
¯ i − w

¯ i′ ||2
]

(1)

The modal structure of the two point-sets is found by solving the eigenvalue equa-
tion det[H − λI] = 0 together with the associated eigenvector equation Hφl =
λlφl, where λl is the lth eigenvalue of the matrix H and φl is the corresponding
eigenvector. The vectors are ordered according to the magnitude of the associated
eigenvalues. The ordered column-vectors are used to construct a modal matrix
Φ = (φ1|φ2|φ3|.....). The column index of this matrix refers to the magnitude or-
der of the eigenvalues while the row-index is the index of the original point-set.
This modal decomposition is repeated for both the data and transformed model
point-sets to give a data-point modal matrix ΦD = (φD

1 |φD
2 |φD

3 |...|φD
|D|) and a

model-point modal matrix ΦM = (φM
1 |φM

2 |φM
3 |...|φM

|M|). Since the two point-sets
are potentially of different size, the modes are truncated of the larger point-set.
This corresponds to removing the last ||D|−|M|| rows and columns of the larger
matrix. The resulting matrix has o = min[D,M] rows and columns.
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The modal matrices can be viewed as inducing a linear transformation on the
original identities of the point-sets. Each row of the modal matrix represents one
of the original points. The column entries in each row measure how the original
point identities are distributed among the different eigen-modes.

Based on this eigendecomposition Shapiro and Brady [14] find correspon-
dences by comparing the rows of the model matrices ΦM and ΦD. The decision
concerning the correspondences is made on the basis of the similarity of different
rows in the modal matrices for the data and the model. The measure of similar-
ity is the Euclidean distance between the elements in the corresponding rows.
According to Shapiro and Brady the correspondence probabilities are assigned
according to the following binary decision

ζSB
i,j =

{
1 if j = argminj′

∑o
l=1 ||ΦD(i, l)− ΦM (j′, l)||2

0 otherwise
(2)

The decision regarding the most likely correspondence can then be made on the
basis of the maximum value of the probability.

2.2 Prior Work

In this section we briefly review our previous work aimed at improving the
modal matching method. It must be stressed that the aim of this work was to
compute correspondence probabilities for the purposes of point-set alignment
using a variant of the EM algorithm. For point-sets of the same size which were
not subject to contamination by clutter or dropout, we showed that the accuracy
of correspondence matching could be improved by a) using a weighting function
suggested by robust statistics to compute the point proximity matrix and b)
comparing the modal co-efficients using a robust statistical procedure.

In Shapiro and Brady’s original work the weighting function was the Gaussian
[14]. Our first contribution has been to show that alternative weighting functions
suggested by the robust statistics literature offer significant improvements [2].

According to robust statistics, there are some choices of possible weighting
functions. In our previous work [2] we showed that the sigmoidal weighting func-
tion, generated by the hyperbolic tangent function

HD(i, i′) =
2

π||w
¯ i − w

¯ i′ || log cosh
[
π

s
||w
¯ i − wi′ ||

]
(3)

gives improved performance under positional jitter.
The second contribution was to show that the method of assigning corre-

spondences could be significantly improved if the elements of the modal matrix
were compared using a robust statistical procedure. When there is a significant
difference between one or more of the components of the eigenvectors, then these
errors dominate the Euclidean distance measure used by Shapiro and Brady. One
way to make the computation of correspondences robust to outlier measurement
error is to accumulate probability on a component by component basis over the
eigenvectors. To do this assume that the individual elements of the modal matrix
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are subject to Gaussian measurement errors and compute the correspondence
probability using the formula

ζCH
i,j =

∑o
l=1 exp

[
−k||ΦD(i, l)− ΦM (j, l)||2

]

∑
j′∈M

∑o
l=1 exp

[
−k||ΦD(i, l)− ΦM (j′, l)||2

] (4)

where k is a constant. In this way large measurement errors contribute insignifi-
cantly through the individual exponentials appearing under the summation over
the components of the eigenvectors.

These two refinements of Shapiro and Brady’s method offer some improve-
ments in terms of robustness to positional jitter and affine skew. However, when
the point-sets under study are of different size, i.e. they are subject to structural
corruption, then both methods fail. The reason for this is that the co-efficients
of the modal matrices become unstable and can not be used for correspondence
matching. Our aim in to this paper is to suggest a way of overcoming this prob-
lem.

3 Modal Clusters

Our aim if to pose the modal correspondence of point-sets in a hierarchical
framework. We commence by locating the modal clusters of the point-sets under
study. This is an iterative process which alternates between two steps. The first
step involves computing the mean position vector for each mode of the proximity
matrix. The second step involves computing a revised proximity matrix from
the mean modal position vectors. Once this iterative process has converged, we
select the mean position vectors associated with the most significant modes of the
proximity matrix. These position-vectors are used to compute a modal-cluster
proximity matrix. By using constraints provided by the modal correspondences
of the cluster-centres, we aim to improve the correspondence matching of the
raw point-sets. In this section, we describe how to perform the iterative modal
clustering and how to compute the modal proximity matrix.

The coefficients of the modal matrix Φ can be viewed as providing informa-
tion concerning pairwise clusters of points. Each mode, i.e. each column of the
modal matrix ΦD, is represented by an orthogonal vector in a |D| dimensional
space. The columns associated with the eigenvalues of largest magnitude repre-
sent the most significant arrangements of points, while those associated with the
eigenvalues of smallest magnitude represent insignificant structure. For a given
point i the different modal co-efficients Φ(i, l), l = 1, ..., |D| represent the affinity
of the point to the different clusters. The larger the magnitude of the co-efficient,
the greater the cluster affinity. In other words, the entries in the columns of the
modal matrix represent the membership affinities for the different clusters. The
row-entries, on the other hand represent the way in which the individual points
are distributed among the different clusters. Here we aim to exploit this property
of the modal matrix to develop a fast and robust matching method.
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Our idea is based on the simple observation, that while the modal coefficients,
i.e. the entries in the columns of the modal matrix, may not be stable under the
addition of extra points, the physical centre of the associated cluster will be
relatively robust to the addition of outliers.

3.1 Iterative Computation of the Modes

To locate the cluster-centres we adopt an iterative process. At each iteration,
we use the modal co-efficients to compute a mean position vector for each eigen-
mode. These modal-centres are then used to compute a revised proximity matrix.
In their turn, the modal co-efficients for this revised proximity matrix are used
to update the positions of the modal centres.

To this end we compute a mean position-vector for each eigen-mode. Let
Φ

(n)
D be the modal matrix at iteration n. For the mode with eigenvalue λl, the

position-vector for the cluster centre is

c
¯

D (n)
l =

∑|D|
i=1 |Φ(n)

D (i, l)|w
¯ i∑|D|

i=1 Φ
(n)
D (i, l)|

(5)

Next, we compute the revised proximity matrix for the modal position vec-
tors. The elements of the proximity matrix are again computed using the robust
weighting kernel and are given by

H
(n)
D (l, l′) =

2

π||c
¯

D (n)
l − c

¯
D (n)
l′ ||

log cosh
[
π

s
||c
¯

D (n)
l − c

¯
D (n)
l′ ||

]
(6)

By solving the eigenvalue equation det[H(n)
D − λ(n)I] = 0 together with the

associated eigenvector equation H(n)
D φ

(n)
l = λ

(n)
l φ

(n)
l , we compute the updated

a modal matrix Φ(n) = (φ(n)
1 |φ(n)

2 |φ(n)
3 |.....). This process is iterated until the

modal position vectors stabilize. The final modal position vectors are noted by
c
¯

D (∞)
l and the final modal co-efficient matrix by Φ(∞)

D .
Once the pairwise clustering process has converged, then we can assign points

to modal clusters. We represent the arrangement of points using both a set of
within-cluster proximity matrices and a single between-cluster proximity ma-
trixes. The modal structure of the between-cluster proximity matrix is used to
compute the probabilities that individual cluster centres are in correspondence.
The modal structure of the within-cluster proximity matrices are used to com-
pute the probability that individual points within corresponding clusters match
to one-another. Details of how the within-cluster and between-cluster modal
structure is computed are outlined in the subsequent two subsections of the
paper.

3.2 Within-Cluster Modal Matrices

When the iterative clustering process has converged, then the elements of the
modal matrix can be used to assign points to clusters. We are interested in



A Hierarchical Framework for Spectral Correspondence 273

using the modal co-efficients and the cluster centre locations to compute the
probability P (i ∈ ωd) that the node i belongs to the cluster associated with
mode ωd of the original point-set. We use the co-efficients of the first S columns
of the modal matrix Φ(∞)

D to compute the cluster membership probability. Here
we assume that cluster membership probability is proportional to the magnitude
of the entry in the row indexed i and column indexed ωd of the modal matrix
Φ

(∞)
D and write

P (i ∈ ωd) = Φ∗
D(i, ωd) =

|Φ(∞)
D (i, ωd)|∑S

l=1 |Φ(∞)
D (i, ωd)|

(7)

For the points belonging to each cluster, we construct a within-cluster prox-
imity matrix. To do this we first identify the points which belong to each modal
cluster. This is done of the basis of the cluster-membership probabilities P (i ∈
ωd). The set of points assigned to the cluster ωD is CD

ωd
= {i|P (i ∈ ωd) > Tc}

where Tc is a membership probability threshold. To construct this matrix we
will need to relabel the points using a cluster point index which runs from 1 to
|Cωd

|. Accordingly we let δDi,ωd
denote the point-index assigned to the node i in

the cluster ωd. The proximity matrix for the points belonging to this cluster is
denoted by FωD

and the corresponding modal matrix is ΘD
ωd
. The modal matrix

for the cluster indexed ωm in the model point-set is denoted by ΘM
ωm

.

3.3 Between Cluster Modal Matrix
We also construct a between-cluster modal matrix to summarize the global struc-
ture or arrangement of the original point-set w. To do this we select the posi-
tions of the cluster-centres for the S largest eigenvalues, i.e. the first S columns
of Φ(∞)

D . There are a number of ways of choosing S. Here we set the value of
S so that the co-efficients of the subsequent columns of Φ(∞)

D are insignificant.
If T is a threshold, then the condition is that |Φ(∞)

D (i, l)| < T for i = 1, ..., |D|
and l > S. Our idea is to use the modes of the S × S cluster-centre proximity
matrix GD for the purposes of matching. Accordingly, we solve the equation
det(GD − ΛDI) = 0 to locate the eigenvalues of the modal cluster-centre prox-
imity matrix. The eigenvectors ψL, L = 1, .., S of the cluster-centre proximity
matrix are found by solving the equation GDψ

D
l = ΛD

l ψ
D
l As before, these eigen-

vectors can be used to construct a modal-matrix for the cluster centre positions.

The matrix has the eigenvectors of G as columns, i.e. ΨD =
(
ψD

1 |ψD
2 |.....ψD

S

)

This procedure is repeated to construct a second S × S cluster-centre modal
matrix ΨM for the set of model points z. Since the principal modal-clusters are
selected on the magnitude-order of the associated eigenvalues, there is no need
to re-order them.

4 Matching

The aim in this paper is to explore whether the additional information provided
by the modal clusters can be used to improve the robustness of the matching
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process to point addition and dropout. We would like to compute the probabil-
ity P (i ↔ j), that the data-point i ∈ D is in correspondence with the model
data-point j ∈ M. To do this we construct a mixture model over the set of
possible correspondences between the set of S modal clusters extracted from
the data point positions and the model point positions. Suppose that ωd and
ωm respectively represent labels assigned to the modal clusters of the data and
model point-sets. Applying the Bayes formula, we can write

P (i↔ j) =
S∑

ωd=1

S∑
ωm=1

P (i↔ j|ωd ↔ ωm)P (ωd ↔ ωm) (8)

where P (i↔ j|ωd ↔ ωm) represents the cluster-conditional probability that the
node i belonging to the data-graph cluster ωd is in correspondence with the node
j that belongs to the model-graph cluster ωm. The quantity P (ωd ↔ ωm) denotes
the probability that the data point-set cluster indexed ωd is in correspondence
with the model point-set cluster indexed ωm.

4.1 Cluster Conditional Correspondence Probabilities

To compute the cluster-conditional point correspondence probabilities we use the
modal structure of the within-cluster proximity matrices. These correspondence
probabilities are computed using the method outlined in Equation (4). As a
result, we write

P (i↔ j|ωd ↔ ωm) = (9)

=

∑Oωd,ωm

l=1 exp
[
−kw||ΘD

ωd
(δDi,ωd

, l)−ΘM
ωm

(δDjωm
, l)||2

]

∑
j′∈M

∑Oωd,ωm

l=1 exp
[
−kw||ΘD

ωd
(δDi,ωd

, l)−ΘM
ωm

(δMj′,ωm
, l)||2

]

where Oωd,ωm = min[|Cωm |, |Cωd
|| is the size of the smaller cluster.

4.2 Cluster Correspondence Probabilities

We have investigated two methods for computing the cluster correspondence
probabilities P (ωd ↔ ωm):

– Modal eigenvalues: The first method used to compute the cluster-centre
correspondence probabilities relies on the similarity of the normalized eigen-
values of the cluster-centre modal matrix. The probabilities are computed in
the following manner

P (ωd ↔ ωm) = (10)

exp
[
−ke

{
|ΛD

ωd
|∑S

ωd=1
|ΛD

ωd
| − |ΛM

ωm
|∑S

ωm=1
|ΛM

ωm
|

}2]

∑S
ωm=1 exp

[
−ke

{
|ΛD

ωd
|∑S

ωd=1
|ΛD

ωd
| − |ΛM

ωm
|∑S

ωm=1
|ΛM

ωm
|

}2]
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– Modal co-efficients: The mode correspondence probabilities have also been
computed by performing a robust comparison of the co-efficients of the modal
matrices of the cluster-centre proximity matrix. This is simply an application
of the method outlined in Equation (4) to the modal co-efficients of the
between-cluster proximity matrix. We therefore set

P (ωd ↔ ωm) = (11)
∑S

L=1 exp
[
−kb||ΨD(ωd, L)| − |ΨM (ωm, L)||2

]

∑S
ωm=1

∑S
L=1 exp

[
−kb||ΨD(ωd, L)| − |ΨM (ωm, L)||2

]

Note that we no-longer have to truncate the number of modes of the larger
point-set since we have chosen only the S principal clusters from both the
model and data.

4.3 Correspondence Probabilities
Using these models for the within and between-cluster modal co-efficients we
develop two models for the correspondence probabilities appearing in Equation
(10):

– Modal co-efficients

P (i↔ j) =
S∑

ωd=1

S∑
ωm=1

(12)

∑Oωd,ωm

l=1 exp
[
−kw||ΘD

ωd
(δDi,ωd

, l)−ΘM
ωm

(δDjωm
, l)||2

]

∑
j′∈M

∑Oωd,ωm

l=1 exp
[
−kw||ΘD

ωd
(δDi,ωd

, l)−ΘM
ωm

(δMj′,ωm
, l)||2

]

∑S
L=1 exp

[
−kb||ΨD(ωd, L)| − |ΨM (ωm, L)||2

]

∑S
ωm=1

∑S
L=1 exp

[
−kb||ΨD(ωd, L)| − |ΨM (ωm, L)||2

]

According to this formula, the correspondence match between the points i
and j receives support if they belong to clusters which have a high probability
of modal correspondence.

– Using eigenvectors and eigenvalues

P (i↔ j) =
S∑

ωd=1

S∑
ωm=1

(13)

∑Oωd,ωm

l=1 exp
[
−kw||ΘD

ωd
(δDi,ωd

, l)−ΘM
ωm

(δDjωm
, l)||2

]

∑
j′∈M

∑Oωd,ωm

l=1 exp
[
−kw||ΘD

ωd
(δDi,ωd

, l)−ΘM
ωm

(δMj′,ωm
, l)||2

]
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∑S
L=1 exp

[
−kb||ΨD(ωd, L)| − |ΨM (ωm, L)||2

]

∑S
ωm=1

∑S
L=1 exp

[
−kb||ΨD(ωd, L)| − |ΨM (ωm, L)||2

]

exp
[
−ke

{
|ΛD

ωd
|∑S

ωd=1
|ΛD

ωd
| − |ΛM

ωm
|∑S

ωm=1
|ΛM

ωm
|

}2]

∑S
ωm=1 exp

[
−ke

{
|ΛD

ωd
|∑S

ωd=1
|ΛD

ωd
| − |ΛM

ωm
|∑S

ωm=1
|ΛM

ωm
|

}2]

4.4 Parameters

There are a number of parameters which need to be controlled in our corre-
spondence matching method. The first of these are the widths s of the error
kernels used to compute the proximity matrices for the original points, the indi-
vidual clusters and the cluster-centres. In each case, we have found that the best
method is to set s to be equal to the median interpoint distance. There are three
exponential constants ke, kb and kw which must be set for the correspondence
probability computations. Here we set all three constants to 0.1.

5 Experiments

In this section we describe our experimental evaluation of the new modal corre-
spondence method. This is divided into two parts. We commence with a sensi-
tivity study on synthetic data. This is aimed at measuring the effectiveness of
the method when the point sets under study are subject to clutter and posi-
tional jitter. The second part of the study focuses on real world data. Here we
investigate the method when applied to finding point correspondences between
curvature features in gesture sequences.

5.1 Sensitivity Study

In our sensitivity study, we have compared the new correspondence method
with those of Shapiro and Brady [14] and our previous work [2]. The Shapiro
and Brady method is based purely on modal correspondence analysis, while
the our previous method uses modal correspondence probabilities to weight the
estimation of affine alignment parameters in a dual-step EM algorithm.

Our sensitivity study uses randomly generated point-sets. We ensure that
the point-sets have a clump structure by sampling the point positions from six
partially overlapping Gaussian distributions with controlled variance. We have
then added both new points at random positions, and, random point-jitter to the
synthetic data. The randomly inserted points have been sampled from a uniform
distribution. The positional jitter has been generated by displacing the points
from their original positions by Gaussian measurement errors. The displacements
have been randomly sampled from a circularly symmetric Gaussian distribution
of zero mean and controlled standard deviation.
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In Figure 1 we show the effect of increasing the number of randomly added
points. In this experiment, we commence with a point-set of size 100. The plot
shows the fraction of points correctly matched as a function of the number of
randomly added points. The long-dashed curve, i.e. the one with gives the consis-
tently lowest results, is the result of applying the Shapiro and Brady algorithm.
Here the fraction of correct correspondences falls below 25% once the fraction of
added clutter exceeds 2%. The dual-step EM used in our previous work which
finds correspondences by explicitly aligning the points, is shown as a dot-dashed
curve and performs best of all when the level of clutter is less than 20%. The
remaining two curves show the results obtained with the two variants of our
hierarchical correspondence algorithm detailed in Section 4.3. In the case of the
dotted curve the cluster correspondences are computed using only the modal
co-efficients of the between-cluster proximity matrix as described in Equation
(12). The solid curve shows the results obtained if the eigenvalues are also used
as described in Equation (13). There is little to distinguish the two methods.
Both perform rather more poorly than the dual-step EM algorithm when the
level of clutter is less than 20%. However, for larger clutter levels, they provide
significantly better performance. The additional use of the eigenvlaues results in
a slight improvement in performance.

Figure 2 investigates the effect of positional jitter. Here we plot the fraction
of correct correspondence matches as a function of the standard deviation of the
Gaussian position error added to the point-positions. We report the level of jitter
using the ratio of the standard deviation of the Gaussian error distribution to the
average closest inter-point distance. Here there is nothing to distinguish the be-
haviour of our hierarchical correspondence method from the dual-step alignment
method. In each case the fraction of correct correspondences degrades slowly with
increasing point-position jitter. However, even when the standard deviation of
the position errors is 50% of the average minimum interpoint-distance then the
fraction of correct correspondences is still greater than 50%. By contrast, the
accuracy of the Shapiro and Brady method falls below 50% once the standard
deviation of the positional error exceeds 10% of the minimum interpoint distance.

Our final set of experiments on synthetic data investigate the effect of di-
luting the cluster-structure of the point-sets. Here we have gradually moved the
cluster-centres closer together and have investigated the effect on the fraction of
correct correspondences when there is structural error present. The results are
shown in figure 3. Here we represent the fraction of correct correspondences as
a function of the overlap between the clusters. We have also included tests to
show the performance of the algorithm when a 20% of clutter noise is added
to the overlapping. The solid curve and the dashed curve respectively show the
results obtained with the new method reported in this paper and the Shapiro
and Brady method when the point-sets contain no clutter. The performance
of the Shapiro and Brady method is poorer than the new method. Its sudden
drop-off in performance is attributable to the effect of increased point-density
as the clusters are overlapped. The dotted curve shows the result obtained with
our new method when we match to the point-set with 20% clutter. Obviously
the performance of the method is poorer than that obtained with the unclut-
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Fig. 1. Experimental results: structural error

Fig. 2. Experimental results: position error

tered point-set. However, increased proximity of the clusters does not appear to
significantly degrade performance.

5.2 Real World Data

In this section we provide some experiments with real world data. Our first
experiment involves images from a gesture sequence of a hand. The images used
in this study are shown in Figure 4. We commence by running the Canny edge
detector over the images to locate the boundary of the hand. From this edge data,
point features have been detected using the corner detector of Mokhtarian and
Suomela [7]. The raw points returned by this method are distributed relatively
uniformly along the outer edge of the hand and are hence not suitable for cluster
analysis. We have therefore pruned the feature points using a curvature criterion.
We have removed all points for which the curvature of the outline is smaller than
a heuristically set threshold. Initially there are some 800 feature points, but after
pruning this number is reduced to 271. The pruned feature-points are shown in
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Fig. 3. Experimental results: final diagram for test on the cluster stability

Fig. 4. Experimental results: real data experimentation

blue in the figure. They are clustered around the finger-tips and the points at
which the fingers join the hand. After applying the clustering method, the set
of centres shown in red is obtained. There are ten clusters in both images. The
yellow lines between the two images show the detected correspondences. The
fraction of correct correspondences is 81.2%.

Our second real world experiment involves a sequence of images obtained as
a subject rotates and tilts their human head. The feature points here are highly
non-planar. In Figure 5 we show the correspondences obtained. These are again
good, and their appear to be no systematic problems.

A final example is shown in Figure 6 where we show the results obtained on
an image pair from the roof-space of our lab. Here the correspondences are good
despite the fact that there is no clear cluster-structure.

6 Conclusions

In this paper we have shown how constraints provided by the arrangement of
modal groups of points can be used to improve the correspondence method
of Shapiro and Brady [14]. The idea has been to use the modal co-efficients
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Fig. 5. Experimental results: real data experimentation

Fig. 6. Experimental results: real data experimentation

of the point-proximity matrix to establish the whereabouts of significant point
groupings. We exploit these grouping to develop a hierarchical correspondence
method. This is a two-step process. First, we use the spatial arrangements of
the centre-points of the most significant groups to compute a between-cluster
proximity matrix. The modal co-efficients of this between-cluster proximity ma-
trix are used to establish correspondence probabilities between groups of points.
Second, for each group of points we compute a within-cluster proximity matrix.
The modal co-efficients of these within-cluster proxmity matrices are used to es-
tablish cluster-conditional point correspondence probabilities. Using the Bayes
rule we combine these two sets of probabilities to compute individual point cor-
respondence probabilities.

We have shown that while the Shapiro and Brady method fails once more
than a few percent of clutter is added, the new method degrades more gracefully.
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There are a number of ways in which the method described in this paper could
be extended. One of the most important of these is to extend the method to
line-pattern matching.
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