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Abstract. Following Futurism, we show how periodic motions can be

represented by a small number of eigen-shapes that capture the whole

dynamic mechanism of periodic motions. Spectral decomposition of a

silhouette of an object in motion serves as a basis for behavior classi-

ÿcation by principle component analysis. The boundary contour of the

walking dog, for example, is ÿrst computed eÆciently and accurately. Af-

ter normalization, the implicit representation of a sequence of silhouette

contours given by their corresponding binary images, is used for gener-

ating eigen-shapes for the given motion. Singular value decomposition

produces these eigen-shapes that are then used to analyze the sequence.

We show examples of object as well as behavior classiÿcation based on

the eigen-decomposition of the binary silhouette sequence.

1 Introduction

Futurism is a movement in art, music, and literature that began in Italy at
about 1909 and marked especially by an eÿort to give formal expression to the
dynamic energy and movement of mechanical processes. A typical example is
the `Dynamism of a Dog on a Leash' by Giacomo Balla, who lived during the
years 1871-1958 in Italy, see Figure 1 [2]. In this painting one could see how
the artist captures in one still image the periodic walking motion of a dog on
a leash. Following Futurism, we show how periodic motions can be represented
by a small number of eigen-shapes that capture the whole dynamic mechanism
of periodic motions. Singular value decomposition of a silhouette of an object
serves as a basis for behavior classiþcation by principle component analysis.
Figure 2 present a running horse video sequence and its eigen-shape decompo-
sition. One can see the similarity between the þrst eigen-shapes - Figure 2(c,d),
and another futurism style painting "The Red Horseman" by Carlo Carra [2] -
Figure 2(e). The boundary contour of the moving non-rigid object is computed
eÆciently and accurately by the fast geodesic active contours [15]. After normal-
ization, the implicit representation of a sequence of silhouette contours given by
their corresponding binary images, is used for generating eigen-shapes for the
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given motion. Singular value decomposition produces the eigen-shapes that are
used to analyze the sequence. We show examples of object as well as behavior
classiÿcation based on the eigen-decomposition of the sequence.

Fig. 1. `Dynamism of a Dog on a Leash' 1912, by Giacomo Balla. Albright-Knox Art

Gallery, Buÿalo.

2 Related Work

Motion based recognition received a lot of attention in the last several years.
This is due to the general recognition of the fact that the direct use of temporal
data may signiÿcantly improve our ability to solve a number of basic computer
vision problems such as image segmentation, tracking, object classiÿcation, etc.,
as well as the availability of a low cost computer systems powerful enough to
process large amounts of data.

In general, when analyzing a moving object, one can use two main sources of
information to rely upon: changes of the moving object position (and orientation)
in space, and object deformations.

Object position is an easy-to-get characteristic, applicable both for rigid and
non-rigid bodies that is provided by most of the target detection and tracking
systems, usually as a center of the target bounding box. A number of techniques
[17], [16], [11], [26] were proposed for the detection of motion events and for the
recognition of various types of motions based on the analysis of the moving object
trajectory and its derivatives. Detecting object orientation is a more challenging
problem which is usually solved by ÿtting a model that may vary from a simple
ellipsoid [26] to a complex 3D vehicle model [18] or a speciÿc aircraft-class model
adapted for noisy radar images as in [9].

While object orientation characteristic is more applicable for rigid objects,
it is object deformation that contains the most essential information about the
nature of the non-rigid body motion. This is especially true for natural non-rigid
objects in locomotion that exhibit substantial changes in their apparent view,
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Fig. 2. (a) running horse video sequence, (b) ÿrst 10 eigen-shapes, (c,d) ÿrst and second
eigen-shapes enlarged, (e) `The Red Horseman', 1914, by Carlo Carra, Civico Museo
d'Arte Contemporanea, Milan.

as in this case the motion itself is caused by these deformations, e.g. walking,
running, hoping, crawling, ÿying, etc.

There exists a large number of papers dealing with the classiþcation of mov-
ing non-rigid objects and their motions, based on their appearance. Lipton et
al. describe a method for moving target classiþcation based on their static ap-
pearance [19] and using the skeletonization [13]. Polana and Nelson [24] used
local motion statistics computed for image grid cells to classify various types of
activities. An original approach using the temporal templates and motion his-
tory images (MHI) for action representation and classiþcation was suggested by
Davis and Bobick in [3]. Cutler and Davis [10] describe a system for real-time
moving object classiþcation based on periodicity analysis. It would be impossi-
ble to describe here the whole spectrum of papers published in this þeld and we
refer the reader to the following surveys [5], [14] and [21].

The most related to our approach is a work by Yacoob and Black [29], where
diýerent types of human activities were recognized using a parameterized rep-
resentation of measurements collected during one motion period. The measure-
ments were eight motion parameters tracked for þve body parts (arm, torso,
thigh, calf and foot).

In this paper we concentrate on the analysis of the deformations of mov-
ing non-rigid bodies in an attempt to extract characteristics that allow us to
distinguish between diýerent types of motions and diýerent classes of objects.
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3 Our Approach

Our basic assumption is that for any given class of moving objects, like humans,
dogs, cats, and birds, the apparent object view in every phase of its motion can be
encoded as a combination of several basic body views or conÿgurations. Assum-
ing that a living creature exhibits a pseudo-periodic motion, one motion period
can be used as a comparable information unit. Then, by extracting the basic
views from a large training set and projecting onto them the observed sequence
of object views collected from one motion period, we obtain a parameterized
representation of object's motion that can be used for classiÿcation.

Unlike [29] we do not assume an initial segmentation of the body into parts
and do not explicitly measure the motion parameters. Instead, we work with
the changing apparent view of deformable objects and use the parameterization
induced by their form variability.

In what follows we describe the main steps of the process that include,

{ Segmentation and tracking of the moving object that yield an accurate ex-
ternal object boundary in every frame.

{ Periodicity analysis, in which we estimate the frequency of the pseudo-
periodic motion and split the video sequence into single-period intervals.

{ Frame sequence alignment that brings the single-period sequences above to
a standardized form by compensating for temporal shift, speed variations,
diþerent object sizes and imaging conditions.

{ Parameterization by building an eigen-shape basis from a training set of
possible object views and projecting the apparent view of a moving body
onto this basis.

3.1 Segmentation and Tracking

As our approach is based on the analysis of deformations of the moving body,
the accuracy of the segmentation and tracking algorithm in ÿnding the target
outline is crucial for the quality of the ÿnal result. This rules out a number of
available or easy-to-build tracking systems that provide only a center of mass or
a bounding box around the target and calls for more precise and usually more
sophisticated solutions.

Therefore we decided to use the geodesic active contour approach [4] and
speciÿcally the `fast geodesic active contour' method described in [15], where
the segmentation problem is expressed as a geometric energy minimization. We
search for a curve C that minimizes the functional

S[C] =

Z L(C)

0

g(C)ds;

where ds is the Euclidean arclength, L(C) is the total Euclidean length of the
curve, and g is a positive edge indicator function in a 3D hybrid spacial-temporal
space that depends on the pair of consecutive frames Itÿ1(x; y) and It(x; y). It
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gets small values along the spacial-temporal edges, i.e. moving object boundaries,
and higher values elsewhere.

In addition to the scheme described in [15], we also use the background
information whenever a static background assumption is valid and a background
image B(x; y) is available. In the active contours framework this can be achieved
either by modifying the g function to reÿect the edges in the diþerence image
D(x; y) = jB(x; y)ÿIt(x; y)j, or by introducing additional area integration terms
to the functional S(C):

S[C] =

Z
L(C)

0

g(C)ds+ ÿ1

Z
in(C)

jD(x; y)ÿ c1j
2da+ ÿ2

Z
out(C)

jD(x; y)ÿ c2j
2da;

where ÿ1 and ÿ2 are ýxed parameters and c1, c2 are given by:

c1 = averageinside(C)[D(x; y)]

c2 = averageoutside(C)[D(x; y)]

The latter approach is inspired by the `active contours without edges' model
proposed by Chan and Vese [6] and forces the curve C to close on a region
whose interior and exterior have approximately uniform values in D(x; y). A
diþerent approach to utilize the region information by coupling between the
motion estimation and the tracking problem was suggested by Paragios and
Deriche in [22].

Figure 3 shows some results of moving object segmentation and tracking
using the proposed method.

Contours can be represented in various ways. Here, in order to have a uniýed
coordinate system and be able to apply a simple algebraic tool, we use the
implicit representation of a simple closed curve as its binary image. That is, the
contour is given by an image for which the exterior of the contour is black while
the interior of the contour is white.

3.2 Periodicity Analysis

Here we assume that the majority of non-rigid moving objects are self-propelled
alive creatures whose motion is almost periodic. Thus, one motion period, like a
step of a walking man or a rabbit hop, can be used as a natural unit of motion
and extracted motion characteristics can by normalized by the period size.

The problem of detection and characterization of periodic activities was ad-
dressed by several research groups and the prevailing technique for periodicity
detection and measurements is the analysis of the changing 1-D intensity signals
along spatio-temporal curves associated with a moving object or the curvature
analysis of feature point trajectories [23], [20], [25], [27]. Here we address the
problem using global characteristics of motion such as moving object contour
deformations and the trajectory of the center of mass.

By running frequency analysis on such 1-D contour metrics as the contour
area, velocity of the center of mass, principal axes orientation, etc. we can detect
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Fig. 3. Non-rigid moving object segmentation and tracking.

the basic period of the motion. Figures 4 and 5 present global motion character-
istics derived from segmented moving objects in two sequences. One can clearly
observe the common dominant frequency in all three graphs.

The period can also be estimated in a straightforward manner by looking for
the frame where the external object contour best matches the object contour in
the current frame. Figure 6 shows the deformations of a walking man contour
during one motion period (step). Samples from two diÿerent steps are presented
and each vertical pair of frames is phase synchronized. One can clearly see the
similarity between the corresponding contours. An automated contour matching
can be performed in a number of ways, e.g. by comparing contour signatures or
by looking at the correlation between the object silhouettes in diÿerent frames.
Figure 7 shows four graphs of inter-frame silhouette correlation values measured
for four diÿerent starting frames taken within one motion period. It is clearly
visible that all four graphs nearly coincide and the local maxima peaks are
approximately evenly spaced. The period, therefore, can be estimated as the
average distance between the neighboring peaks.

3.3 Frame Sequence Alignment

One of the most desirable features of any classiþcation system is the invariance
to a set of possible input transformations. As the input in our case is not a static
image, but a sequence of images, the system should be robust to both spacial
and temporal variations.
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Fig. 4. Global motion characteristics measured for walking man sequence.

Spatial Alignment: Scale invariance is achieved by cropping a square bound-
ing box around the center of mass of the tracked target silhouette and re-scaling
it to a predeÿned size (see Figure 8).

One way to have orientation invariance is to keep a collection of motion
samples for a wide range of possible motion directions and then look for the
best match. This approach was used by Yacoob and Black in [29] to distinguish
between diþerent walking directions. Although here we experiment only with
motions nearly parallel to the image plane, the system proved to be robust to
small variations in orientation. Since we do not want to keep models for both left-
to-right and right-to-left motion directions, the right-to-left moving sequences
are converted to left-to-right by horizontal mirror ýip.

Temporal Alignment: A good estimate of the motion period allows us to
compensate for motion speed variations by re-sampling each period subsequence
to a predeÿned duration. This can be done by interpolation between the binary
silhouette images themselves or between their parameterized representation as
explained below. Figure 9 presents an original and re-sampled one-period sub-
sequence after scaling from 11 to 10 frames.

Temporal shift is another issue that has to be addressed in order to align
the phase of the observed one-cycle sample and the models stored in the train-
ing base. In [29] it was done by solving a minimization problem of ÿnding the
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Fig. 5. Global motion characteristics measured for walking cat sequence.

optimal parameters of temporal scaling and time shift transformations so that
the observed sequence is best matched to the training samples. Polana and Nel-
son [24] handled this problem by matching the test one-period subsequence to
reference template at all possible temporal translations.

Assuming that in the training set all the sequences are accurately aligned, we
ÿnd the temporal shift of a test sequence by looking for the starting frame that
best matches the generalized (averaged) starting frame of the training samples,
as they all look alike. Figure 10 shows (a) - the reference starting frame taken
as an average over the temporally aligned training set, (b) - a re-sampled single-
period test sequence and, (c) the correlation between the reference starting frame
and the test sequence frames. The maximal correlation is achieved at the seventh
frame, therefore the test sequence is aligned by cyclically shifting it 7 frames to
the left.

3.4 Parameterization

In order to reduce the dimensionality of the problem we ÿrst project the object
image in every frame onto a low dimensional base that represents all possible ap-
pearances of objects that belong to a certain class, like humans, four-leg animals,
etc.

Let n be number of frames in the training base of a certain class of ob-
jects and M be a training samples matrix, where each column corresponds to
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(ÿ) (ÿ+3) (ÿ+6) (ÿ+9)

Fig. 6. Deformations of a walking man contour during one motion period (step). Two
steps synchronized in phase are shown. One can see the similarity between contours in
corresponding phases.

a spatially aligned image of a moving object written as a binary vector. In our
experiments we use 50ÿ50 normalized images, therefore,M is a 2500ÿnmatrix.
The correlation matrix MMT is decomposed using Singular Value Decomposi-
tion as MMT = UÿV T , where U is an orthogonal matrix of principal directions
and the ÿ is a diagonal matrix of singular values. In practice, the decomposi-
tion is performed on MTM , which is computationally more eÆcient [28]. The
principal basis fUi; i = 1::kg for the training set is then taken as k columns of U
corresponding to the largest singular values in ÿ. Figure 11 presents a principal
basis for the training set formed of 800 sample images collected from more than
60 sequences showing dogs and cats in motion. The basis is built by taking the
k = 20 ÿrst principal component vectors.

We assume that by building such representative bases for every class of ob-
jects and then ÿnding the basis that best represents a given object image in
a minimal distance to the feature space (DTFS) sense, we can distinguish be-
tween various object classes. Figure 12 shows the distances from more than 1000
various images of people, dogs and cats to the feature space of people and to
that of dogs and cats. In all cases, images of people were closer to the people
feature space than to the animals' feature space and vise a versa. This allows us
to distinguish between these two classes. A similar approach was used in [12] for
the detection of pedestrians in traÆc scenes.

If the object class is known (e.g. we know that the object is a dog), we can
parameterize the moving object silhouette image I in every frame by projecting
it onto the class basis. Let B be the basis matrix formed from the basis vectors
fUi; i = 1::kg. Then, the parameterized representation of the object image I is
given by the vector p of length k as p = BT vI , where vI is the image I written
as a vector.
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relation measured for four initial frames.

The idea of using a parameterized representation in motion-based recognition
context is certainly not a new one. To name a few examples we mention again
the work of Yacoob and Black [29]. Cootes et al. [8] used similar technique for
describing feature point locations by a reduced parameter set. Baumberg and
Hogg [1] used PCA to describe a set of admissible B-spline models for deformable
object tracking. Chomat and Crowley [7] used PCA-based spatio-temporal ÿlter
for human motion recognition.

Figure 13 shows several normalized moving object images from the original
sequence and their reconstruction from a parameterized representation by back-
projection to the image space. The numbers below are the norms of diþerences
between the original and the back-projected images. These norms can be used
as the DTFS estimation.

Now, we can use these parameterized representations to distinguish between
diþerent types of motion. The reference base for the activity recognition consists
of temporally aligned one-period subsequences, whereas the moving object sil-
houette in every frame of these subsequences is represented by its projection to
the principal basis. More formally, let fIf : f = 1::Tg be a one-period, tempo-
rally aligned set of normalized object images, and pf ; f = 1::T a projection of
the image If onto the principal basis B of size k. Then, the vector P of length kT

formed by concatenation of all the vectors pf ; f = 1::T , represent a one-period
subsequence. By choosing a basis of size k = 20 and the normalized duration of
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(a) (b)

Fig. 8. Scale alignment. A minimal square bounding box around the center of the
segmented object silhouette (a) is cropped and re-scaled to form a 50 ÿ 50 binary
image (b).

Fig. 9. Temporal alignment. Top: original 11 frames of one period subsequence. Bot-
tom: re-sampled 10 frames sequence.

one-period subsequence to be T = 10 frames, every single-period subsequence is
represented by a feature point in a 200-dimensional feature space.

In the following experiment we processed a number of sequences of dogs
and cats in various types of locomotion. From these sequences we extracted 33
samples of walking dogs, 9 samples of running dogs, 9 samples with galloping
dogs and 14 samples of walking cats. Let S200ÿm be the matrix of projected
single-period subsequences, where m is the number of samples and the SVD of
the correlation matrix is given by SST = USÿSV S . In Figure 14(a) we depict
the resulting feature points projected for visualization to the 3-D space using the
three ÿrst principal directions fUS

i
: i = 1::3g, taken as the column vectors of

US corresponding to the three largest eigen values in ÿS. One can easily observe
four separable clusters corresponding to the four groups.

Another experiment was done over the `people' class of images. Figure 14(b)
presents feature points corresponding to several sequences showing people walk-
ing and running parallel to the image plane and running at oblique angle to the
camera. Again, all three groups lie in separable clusters.

The classiÿcation can be performed, for example, using the k-nearest-neighbor
algorithm. We conducted the `leave one out' test for the dogs set above, classi-
fying every sample by taking them out from the training set one at a time, and
the three-nearest-neighbors strategy resulted in 100% success rate.
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Fig. 10. Temporal shift alignment: (a) - average starting frame of all the training
set sequences, (b) - temporally shifted single-cycle test sequence, (c) - the correlation
between the reference starting frame and the test sequence frames

4 Concluding Remarks

We presented a new framework for motion-based classiÿcation of moving non-

rigid objects. The technique is based on the analysis of changing appearance of

moving objects and is heavily relying on high accuracy results of segmentation

and tracking by using the fast geodesic contour approach. The periodicity anal-

ysis is then performed based on the global properties of the extracted moving

object contours, followed by video sequence spatial and temporal normaliza-

tion. Normalized one-period subsequences are parameterized by projection onto

a principal basis extracted from a training set of images for a given class of

objects. A number of experiments show the ability of the system to analyze mo-

tions of humans and animals, to distinguish between these two classes based on

object appearance, and to classify various type of activities within a class, such

as walking, running, galloping. The `dogs and cats' experiment demonstrate the

ability of the system to discriminate between these two very similar by appear-

ance classes by analyzing their locomotion.
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Fig. 11. The principal basis for the `dogs and cats' training set formed of 20 ÿrst
principal component vectors.

References

1. A Baumberg and D Hogg. An eÆcient method for contour tracking using active
shape models. In In Proc. IEEE Workshop on Motion of Non-Rigid and Articulated
Objects, pages 194{199, Austin, 1994.

2. J R Beniger. The Arts and New Media
site. In www.usc.edu/schools/annenberg/asc/projects/ comm544/, University of
South California, Annenberg School for Communication.

3. A Bobick and J Davis. The representation and recognition of action using temporal
templates. IEEE Trans. on PAMI, 23(3):257{267, 2001.

4. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. IJCV, 22(1):61{
79, 1997.

5. C Cedras and M Shah. Motion-based recognition: A survey. IVC, 13(2):129{155,
March 1995.

6. T F Chan and L A Vese. Active contours without edges. IEEE trans. on Image
Processing, 10(2):266{277, February 2001.

7. O Chomat and J Crowley. Recognizing motion using local appearance, 1998.
8. T F Cootes, C J Taylor, D H Cooper, and J Graham. Active shape models: Their

training and application. CVIU, 61(1):38{59, January 1995.
9. N J Cutaia and J A O'Sullivan. Automatic target recognition using kinematic

priors. In Proceedings of the 33rd Conference on Decision and Control, pages
3303{3307, Lake Buena Vista, FL, December 1994.

10. R Cutler and L Davis. Robust real-time periodic motion detection, analysis, and
applications. PAMI, 22(8):781{796, August 2000.

11. S A Engel and J M Rubin. Detecting visual motion boundaries. In Proc. Workshop
on Motion: Representation and Analysis, pages 107{111, Charleston, S.C., May
1986.

12. U Franke, D Gavrila, S Gorzig, F Lindner, F Paetzold, and C Wohler. Autonomous
driving goes downtown. IEEE Intelligent System, 13(6):40{48, 1998.

13. H Fujiyoshi and A Lipton. Real-time human motion analysis by image skeletoniza-
tion. In Proc. of the Workshop on Application of Computer Vision, October 1998.

473Dynamism of a Dog on a Leash



0 5 10 15 20 25 30
0

5

10

15

20

25

30

Distance to the "people" feature space

D
is

ta
nc

e 
to

 th
e 

"d
og

s 
&

 c
at

s"
 fe

at
ur

e 
sp

ac
e

dogs and cats
people       

Fig. 12. Distances to the `people' and 'dogs and cats' feature spaces from more than
1000 various images of people, dogs and cats.

       5.23       4.66       4.01       3.96       3.42       4.45       4.64       6.10       5.99       6.94       5.89

Fig. 13. Image sequence parameterization. Top: 11 normalized target images of the
original sequence. Bottom: the same images after the parameterization using the prin-
cipal basis and back-projecting to the image basis. The numbers are the norms of the
diÿerences between the original and the back-projected images.

14. D M Gavrila. The visual analysis of human movement: A survey. CVIU, 73(1):82{
98, January 1999.

15. R Goldenberg, R Kimmel, E Rivlin, and M Rudzsky. Fast geodesic active contours.
IEEE Trans. on Image Processing, 10(10):1467{75, October 2001.

16. K Gould, K Rangarajan, and M Shah. Detection and representation of events in
motion trajectories. In Advances in Image Processing and Analysis, chapter 14.

SPIE Optical Engineering Press, June 1992. Gonzalez and Mahdavieh (Eds.).

17. K Gould and M Shah. The trajectory primal sketch: a multi-scale scheme for rep-
resenting motion characteristics. In Proc. Conf. on Computer Vision and Pattern

Recognition, San Diego, CA, pages 79{85, 1989.

18. D Koller, K Daniilidis, and H-H Nagel. Model-based object tracking in monocular
image sequences of road traÆc scenes. International Journal of Computer Vision,
10:257{281, 1993.

19. A Lipton, H Fujiyoshi, and R Patil. Moving target classiþcation and tracking from
real-time video. In In Proc. IEEE Image Understanding Workshop, pages 129{136,

474 R. Goldenberg et al.



dog walking  
dog running  
dog galloping
cat walking  

walking   
running   
running−45

(a) (b)

Fig. 14. Feature points extracted from the sequences with (a) walking, running and
galloping dogs and walking cats, and (b) people walking and running parallel to the
image plane and at 45 degrees angle to the camera. Feature points are projected to the
3-D space for visualization.

1998.
20. F Liu and R W Picard. Finding periodicity in space and time. In Proc. of the 6th

Int. Conf. on Computer Vision, pages 376{383, Bombay, India, 1998.
21. D M Moeslund and E Granum. A survey of computer vision-based human motion

capture. CVIU, 81(3):231{268, March 2001.
22. N Paragios and R Deriche. Geodesic active regions for motion estimation and track-

ing. In Proc. of the 7th Int. Conf. on Computer Vision, pages 688{694, Kerkyra,
Greece, 1999.

23. R Polana and R C Nelson. Detecting activities. Journal of Visual Communication

and Image Representation, 5:172{180, 1994.
24. R. Polana and R.C. Nelson. Detection and recognition of periodic, nonrigid motion.

IJCV, 23(3):261{282, June 1997.
25. S M Seitz and C R Dyer. View invariant analysis of cyclic motion. Int. Journal of

Computer Vision, 25(3):231{251, December 1997.
26. J M Siskind and Q Morris. A maximum-likelihood approach to visual event clas-

siÿcation. In Proceedings of the Fourth European Conference on Computer Vision,
pages 347{360, Cambridge, UK, April 1996.

27. P S Tsai, M Shah, K Keiter, and T Kasparis. Cyclic motion detection for motion
based recognition. Pattern Recognition, 27(12):1591{1603, December 1994.

28. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro

Science, 3(1):71{86, 1991.
29. Y Yacoob and M J Black. Parameterized modeling and recognition of activities.

CVIU, 73(2):232{247, February 1999.

475Dynamism of a Dog on a Leash


	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Segmentation and Tracking
	3.2 Periodicity Analysis
	3.3 Frame Sequence Alignment
	3.4 Parameterization

	4 Concluding Remarks
	References

