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Abstract. We present a technique for performing the tracking stage
of optical motion capture which retains, at each time frame, multiple
marker association hypotheses and estimates of the subject’s position.
Central to this technique are the equations for calculating the likelihood
of a sequence of association hypotheses, which we develop using a
Bayesian approach. The system is able to perform motion capture using
fewer cameras and a lower frame rate than has been used previously, and
does not require the assistance of a human operator. We conclude by
demonstrating the tracker on real data and provide an example in which
our technique is able to correctly determine all marker associations and
standard tracking techniques fail.

Keywords. Visual motion, correspondence problem, tracking, optical
motion capture

1 Introduction

A significant problem in optical motion capture is determining which of the
markers worn by the actor, if any, generated a particular detection on a partic-
ular camera’s image plane at a particular time. This problem is most apparent
when two markers appear close together in the view of one camera or when
markers become occluded. In such cases, most motion capture systems will of-
ten attribute a detection to the wrong marker, or lose track of the given marker
for the remainder of the sequence [9,10]. For this reason, nearly all motion cap-
ture systems require a human operator to guide the tracking process.

In this paper, we present a technique which retains, at each time frame of
video input, more than one marker association hypothesis. We show how to
calculate the likelihood of each of these hypotheses and the most likely path
through these hypotheses over the video sequence for the specific case of tracking
human motion.

The multiple hypothesis technique which we propose was first used by the
engineers of radar systems and has since been used extensively in this field [13,1].
It is similar to the Viterbi algorithm [6], which is widely used in communications
and other pattern recognition systems, however its use in computer vision has
been limited. Cox and Hingorani [4] describe a multiple hypothesis technique for
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tracking corners in a video sequence, although each detected feature is tracked
independently in the 2D camera plane. In constrast, we make use of a skeletal
model of a human figure and thus incorporate the inter–dependence of marker
positions to better associate detections to markers and to track markers occluded
by another part of the figure [9,16,15,12].

Cham and Rehg [3], who claim to be first to use a multiple hypothesis ap-
proach to visually track human figures, also use a kinematic model, however
detection is done by template matching so that feature corrspondence is a contin-
uous variable. For this reason, they resort to Monte Carlo techniques to estimate
the most likely figure positions.

Rasmussen and Hager [11] use point measurements and thus discrete cor-
respondences, similar to us, and develop an expression for the likelihood of a
correspondence similar to that developed in this paper. They do not, however,
propogate multiple hypotheses nor use a 3D kinematic model.

Song et al [17,18] also provide good work on tracking markers detected on
people. Their focus is on developing a highly constrained model in order to assist
in marker association, however their work is specific to single camera views and
they also do not propagate multiple association hypotheses.

To the knowledge of the authors, this paper presents the first adaptation of
multiple hypothesis tracking to optical motion capture in which a 3D kinematic
model of the figure is used and in which point measurements are detected in
multiple cameras. We believe that our technique is capable of performing mo-
tion capture using fewer cameras and a lower frame rate than has been used
previously. More significantly, the tracker is able to output the complete orien-
tation and position of the figure throughout the sequence without requiring the
assistance of a human operator.

The computational requirements of the proposed tracker mean that it is
unlikely to execute in real-time. However, due to being fully automatic, only
a few minutes are required to track most motion capture sequences. Thus, the
tracker could be run during the motion capture session. The director could assess
the actor’s performance almost immediately and decide whether to keep the
sequence or shoot it again.

The following section describes the multiple hypothesis tracker for optical
motion capture. It provides the equations for calculating the most likely path
through the trellis of hypotheses, which is the primary contribution of this paper.

The third section of this paper details the results when the tracker is used to
capture the motions of a dancer, which include both high accelerations and sig-
nificant marker occlusions. For this analysis, only two digital cameras operating
at 25 frames/second and a single Pentium PC were used. We present real motion
capture data for which the multiple hypothesis tracker is able to determine the
correct marker association for each frame of the sequence and standard tracking
techniques are not.
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2 Method

It is well known that skeleton–based models significantly assist motion capture
systems [9,16,15,12]. In these systems, the desired system state, xk, at time k,
is a vector containing the global position of the actor, the relative orientations
of each limb and possibly the lengths of the limbs (or the deviation of the limb
lengths from some base skeleton).

The measurement, zk, is a vector containing the 2D coordinates of the bright
points detected by the motion capture cameras at time k. The length of this
vector will vary over time as markers become hidden and revealed due to the
movement of the actor.

Let Ωk be a possible association at time k. This discrete–valued variable
specifies which markers generated each detected point, which markers were not
detected and which detections were erroneous (not due to a marker). The state,
measurement and association are related via the non–linear measurement func-
tion,

zk = h(xk, Ωk) + wk (1)

where wk is noise present in the detection process.
Posing the problem in a Bayesian framework, we desire to estimate, at each

time frame k, the state that maximises the posterior density function,

P (xk|z1, .., zk) =
∑
Ωk

P (xk|Ωk, z1, .., zk)P (Ωk). (2)

Most motion capture systems do this by first estimating the most likely
assocation, Ω(1)

k , using a predicted value of the state, x̂k, which is calculated
using previous values of the state (xk−1, etc) and some model of how the state
is expected to evolve over time. The new state, xk, is then a function only of
this association, thus assuming only one non-zero term in the above summation
and forcing the state posterior density function to be uni–modal.

In Multiple Hypothesis Tracking, up to I estimates of the state, x(i)
k , where

i ∈ {1, .., I}, are retained at each time frame, k. At a new time frame, k + 1,
the J most likely marker associations, Ω(i,j)

k+1 , where j ∈ {1, .., J}, are calculated,
and from each of these, the state at time k + 1 is estimated. Thus, the term
P (xk|Ωk, z1, .., zk) in equation (2) contains I modes and the summation contains
J terms. Combining these probability densities provides a new state posterior of
up to IJ modes, of which only the most likely I are propagated forward so as
to stop the trellis of possible hypotheses and states growing exponentially.

The following sections discuss these stages of the multiple hypothesis tracker
for optical motion capture in further detail.

2.1 Determining the Likely Association Hypotheses

The probability of a given marker association hypothesis, Ωk, at time k, is

P (Ωk|zk, xk) =
1
c
p(zk|Ωk, xk)P (Ωk|xk) (3)
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where c is a constant. In order to maximise this function, we require xk, the
unknown state. Typically, xk is replaced with a prediction, x̂k, calculated using
previous values of the state and a model of how a human body is expected to
move. It is assumed that the true and predicted values of the state are close
enough that, independent of which is used in equation (3), the same value of Ωk

provides its maximum.
The multiple hypothesis tracker, however, does not make this assumption. In-

stead, the J most likely association hypotheses are calculated using equation (3)
and each of the I predicted states. It is assumed that one of these J hypotheses,
not necessarily the first, maximises this equation had the true state been used.
The probability of these hypotheses constitute the weighting, P (Ωk), of the J
terms of equation (2).

Let M be the number of cameras and N be the number of markers worn
by the subject under observation. Let Ωk be the set {Ωm

k }, where Ωm
k is

the marker association for camera m and m ∈ {1, ..,M}. Let Ωm
k be the set

{Qm
k , R

m
k , φ

m
k , ζ

m
k , ξ

m
k }, where

– Qm
k is the number of detected bright points in camera m at time k,

– Rm
k is the number of markers detected in camera m at time k,

– φm
k (r) is the detection generated by marker r in camera m at time k (r ∈

{1, .., Rm
k }),

– ξm
k (q) is the qth detection in camera m which was not generated from a
marker (false detections) (q ∈ {1, .., Qm

k −Rm
k }), and

– ζm
k (n) is the nth marker not detected in camera m (n ∈ {1, .., N −Rm

k }).
The first term of equation (3), p(zk|xk, Ωk), is the likelihood that the mea-

surement at time k resulted from the state xk and the particular association Ωk.
It is,

p(zk|xk, Ωk) =
M∏

m=1




Qm
k −Rm

k∏
q=1

pFA(ξm
k (q))

Rm
k∏

r=1

pD(φm
k (r), r)


 (4)

where pFA(q) is the likelihood that detection q is a false detection and pD(q, r)
is the likelihood that detection q is due to marker r.

We assume that false detections are uniformly distributed over the image
plane of the camera and that a single detection is corrupted by Gaussian noise
(the measurement noise, wk). Thus,

pFA(q) =
1
A

(5)

pD(q, r) =
1
c
exp

((
[zk]q − [h(x̂k)]r

)T
Σ−1([zk]q − [h(x̂k)]r

))
(6)

where A is the area of the image plane of the camera on which the detection
occurred and Σ is the covariance of the detection error, wk. The notation [v]i
extracts the ith point from the stacked vector of 2D coordinates in v.

The final term in equation (3), P (Ωk|xk), is the probability that a certain
marker association is correct given a particular position of the subject. It is not
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conditioned on the measurement but instead weights p(zk|xk, Ωk) by how likely
it is that each marker is visible in each camera. For example, if the predicted state
suggests a particular marker is occluded in a given camera’s view, we should be
less inclined to associate a detection in that camera to the marker. Most motion
capture systems do not utilise this information when estimating the association
hypothesis and the advantage of doing so is discussed in [15,9].

Let the associations assigned to the detections in each camera be indepen-
dent. Thus,

P (Ωk|xk) =
M∏

m=1

P (Ωm
k |xk) (7)

where

P (Ωm
k |xk) = PFA(Qm

k −Rm
k )

Rm
k∏

r=1

PD(φm
k (r))

N−Rm
k∏

n=1

(1− PD(ζm
k (n))) . (8)

PFA(q) is the probability of detecting q erroneous bright points and is as-
sumed to be a Poisson distribution of mean λFA. λFA is the number of false
detections expected in a single camera/frame and is assumed constant.

PD(r) is the probability of detecting marker r and is calculated by ray–tracing
the predicted position of the marker onto the camera’s image plane. PD(r) is
zero if the ray from the marker passes through any part of the actor’s body,
which is modelled using cylinders and spheres, and λD, the probability that a
visible marker is detected, if the ray does not. We model PD(r) as changing
gradually, so that when the ray from the marker to the camera plane passes
close to the edge of a limb, PD(r) is between 0 and λD. That is, the limb edges
are considered “blurry”.

We observe that equation (3) can be written as

P (Ωk|zk, xk) =
M∏

m=1

f(Ωm
k , z

m
k , xk) (9)

Thus, in order to find the J most likely association hypotheses, we find
the values of Ωm

k which produce the J largest values of f(Ωm
k , z

m
k , xk) for each

camera, m. Only combinations of these J values are substituted into the above
equation, reducing the number of association hypotheses to test to JM .

We note that it is possible to calculate f(·, zm
k , xk) by constructing a square

matrix F of size (N + Qm) whose first N rows correspond to the markers and
whose first Qm columns correspond to the detections. Different values of the
association, Ωm

k , correspond to selecting different elements of F so that no row
or column is selected twice, and the value of − log [f(Ωm

k , z
m
k , xk)] is the sum

of the selected elements. Selecting element (i, j), where i ≤ N and j ≤ Qm,
corresponds to assigning marker i to detection j. Selecting elements in columns
(Qm + 1) to (Qm +N) correspond to assigning a marker as being not detected
and selecting elements in rows (N + 1) to (N +Qm) correspond to assigning a
detection as being not due to a marker (a false detection).
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From equations (4) and (7), it straightforward to show that the elements of
F are

F (q, r) =




− log [
pD(q, r)PD(r)

]
if r ≤ N , q ≤ Qm

− log [
pFA(r −N)PFA(r −N)

]
if r > N , q ≤ Qm

− log [
1− PD(r)

]
if r ≤ N , q = n+Qm

∞ if r ≤ N , q 	= n+Qm

0 if r > N , q > Qm

(10)

The problem of maximising f(·, zm
k , xk) is thus reduced to determining a

sequence, Ω′(q), of N + Qm unique column indices (q ∈ [1, N + Qm]) which
minimises

E =
N+Qm∑

q=1

F (q,Ω′(q)). (11)

This task is often refered to as the Linear Assignment Problem (LAP) and
fast and efficient algorithms exist for solving it [2,19].

The most likely association hypothesis, Ω(1), is the unconstrained LAP so-
lution, Ω′. Further hypotheses are found by fixing elements of F which occur in
Ω′ to ∞ and re-calculating the LAP solution. This technique for determining
the best J solutions to the LAP is detailed in [5].

2.2 Updating the State Estimate

For each of the I estimates of the state, x(i)
k−1, at time k−1, a prediction for time

k is made and the J most likely association hypotheses, Ω(i,j)
k , are calculated

using the procedure described in the previous section. That is, each of the I
modes of the state posterior density function are considered independently when
estimating the association hypotheses.

Given an association hypothesis at time k, the next step of the tracking
process is to use this to estimate the the state, xk.

We define Ψ (i)
k as a sequence of association hypotheses, {Ω(i1,j1)

1 , .., Ω
(ik,jk)
k }.

That is, Ψ (i)
k defines a single path through the trellis of possible hypotheses. The

best estimate of xk is then one which maximises

P (xk|z1, .., zk, Ψk) =
1
c
p(zk|xk, Ωk)P (Ωk|xk)P (xk|z1, .., zk−1, Ψk−1) (12)

where Ωk is the final element of Ψk. The first two terms of this expression have
been defined in the previous section, while the third is the distribution of the
predicted state, x̂k.

Equation (12) is similar to equation (3) although the unknown variable is now
the state so the manipulations of the previous section do not help. A number of
techniques have been proposed to solve this problem, such as the particle filter [7,
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8] and the extended Kalman filter [1], although these techniques usually consider
only the first and third terms of this expression. One method of incorporating
the effect of the term P (Ωk|xk) into the state estimation is discussed in [14].

We have found that a good estimate of xk is given by maximising the likeli-
hood function, p(zk|xk, Ωk), using a gradient ascent algorithm, initialised using
the predicted value of the state, x̂k.

Upon determining the new state, x(i,j)
k , from each marker association hypoth-

esis, Ω(i,j)
k , we are able to calculate the probability of the path of hypotheses

Ψ
(i,j)
k = {Ψ (i)

k−1, Ω
(i,j)
k }, which is given by

PΨ
k ≡ P (Ψk|z1, .., zk, x1, .., xk)

=
1
c
p(z1, .., zk|Ψk, x1, .., xk)P (Ψk|x1, .., xk)

=
1
c
p(zk|Ωk, xk)P (Ωk|xk)P (Ψk−1|z1, .., zk−1, x1, .., xk−1)

=
1
c
p(zk|Ωk, xk)P (Ωk|xk)PΨ

k−1. (13)

Thus, the procedure for calculating the probability of a path of hypotheses is
recursive: at each new time frame, we need only calculate p(zk|Ωk, xk)P (Ωk|xk)
and multiply this with the probably of the path at time k− 1. Note that at first
glance, it may appear that p(zk|Ωk, xk)P (Ωk|xk) was calculated when determin-
ing the probability of the association hypothesis (the sum of the elements of the
LAP solution, from equation 3), however this calculation was performing using
x̂k, not the MAP estimate of the state, xk.

Upon calculating the probabilities of Ψ (i,j)
k , only the I most likely are re-

tained, so as to stop the trellis of possible hypotheses growing exponentially.
The state estimates which correspond to these I hypotheses are then used to
predict the state at time k+1 and repeat the algorithm for the next time frame.

It is possible that two different state estimates produce the same association
hypothesis when estimating likely hypotheses. That is, Ω(i1,j1)

k = Ω
(i2,j2)
k for

i1 	= i2. In this case, two hypothesis paths have merged and it is not necessary
to retain both, even if the probability of both fall within the best I, because it
is likely that both hypothesis paths will generate the same state estimate and
likely association hypotheses in future time frames. When paths merge, the most
likely path is retained. That is, the I most likely values of Ψ (i,j)

k are chosen so
that their final elements, Ω(i,j)

k , are unique.
Note that as k increases and association hypotheses are added to each of the

retained paths, the most likely path may change and the most likely state at any
time j < k, may change also. This occurs when the tracking system determines
a particular association hypothesis at one time is most likely, but when future
frames and detections reveal that this was not the case. It is in these situations
that typical single hypothesis trackers fail.

The final output of the tracking system is the sequence of state estimates,
{x(i1)

1 , .., x
(i2)
K }, corresponding to the most likely hypothesis path.
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3 Results

The multiple hypothesis tracker was implemented and tested using two cameras
operating at 25 frames/sec. The actor wore 15 markers.

Figure 1 shows the actor at some time k during a sequence in which she
was dancing. Figure 2 shows the detections made by each camera at this time
(indicated by the circles). Also shown in this figure is the predicted position of
the actor (indicated by the shadow) and the markers (the crosses), calculated
from the most likely state estimate, x̂(1)

k .

Fig. 1. View of the actor
at frame k.

camera 1 camera 2

Fig. 2. Detections made at each camera plane (circles)
and the predicted position of each marker (crosses) at
time k.

In the previous time frame, the dancer’s left foot was behind her right leg
and the markers on her left toe and left ankle were occluded from both cameras.
At time k, however, the marker on her left toe was detected in camera 1, as can
be seen in these two figures.

The three most likely association hypotheses, given x̂(1)
k , are shown in figure 3.

The most likely association, as given by equation (3), is shown on the left of this
figure and suggests the new detection resulted from the dancer’s left ankle. It is
the association hypothesis Ω(1,2)

k , shown in the centre of figure 3, which is correct.
The third association hypothesis suggested switches the assignment between the
markers on the left and right ankles.

At this point, typical motion capture trackers would fail. The state they
would generate, x(1,1)

k , is incorrect.
Figure 4 shows the likely association hypotheses at time k+1 for each of the

3 state estimates retained at time k. In this frame, the marker on the dancer’s
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Fig. 3. The likely association hypotheses at time k and the resulting state estimate
using each (each of the three columns represent a different hypothesis). The upper
two rows show the associations for the two cameras, marked by the ellipses. Circles
in these figures represent the detections made by the camera while the shadow and
markers show the predicted state and marker locations projected onto that camera’s
image plane, as given by x̂k. The bottom row shows the state estimates given these
three association hypotheses.

left toe is detected in both cameras while the marker on her left ankle continues
to remain occluded to both.

It can be seen from figure 4, that the most likely association hypothesis at
time k + 1, given the most likely state estimate, x(1,1)

k , at time k, is to assign
the new detection to the dancer’s left ankle, propagating the error made in the
previous frame. The multiple hypothesis tracker realises this mistake when it
evaluates the likelihoods of each of the six possible paths (equation 13). The
additional detection in the second camera is enough to make Ω(2,1)

k+1 more likely

than Ω(1,1)
k+1 .
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Fig. 4. The likely association hypotheses
at time k + 1, and the resulting state es-
timate using each, for the three state es-
timates retained at time k. At this time
frame, the two most likely hypotheses were
calculated.

Note that Ω(1,1)
k+1 = Ω

(2,2)
k+1 . In this case, two hypothesis paths have merge

and only one path containing this association hypothesis is retained. Similarly,
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Ω
(1,2)
k+1 = Ω

(2,1)
k+1 , which ensures one each of the three hypothesis formed at time

k are propagated to time k + 2.
Figure 5 shows the trellis of possible hypotheses and paths for the small part

of the dancing sequence discussed here. As can be seen, at time k + 1, the most
likely path of hypotheses passes through the second most likely hypothesis at
time k (indicated by the bold arrows).

Frame k Frame k+1Frame k-1

Ψ

Ω

Association hypothesis 3

PΨ
k

= 0.02
k+1
(1,1)

= 0.86
k-1
ΨP

Association hypothesis 1

(1,1)

P(Ω

) = 0.42,P(Ω
k
(1,2)

Association hypothesis 2

) = 0.43,P(Ω(1,1)
k

= 0.37
k
ΨP

P(Ω(1,3)
k

= 0.13
k
ΨP

= 0.36
k

(2,2)

P

Association hypothesis 1

Association hypothesis 3

) = 0.15,

) = 0.19,

) = 0.36,

) = 0.30,

Association hypothesis 2

Association hypothesis 1

P(

(1,2)

= 0.32

k+1

k

ΩP(

k+1

= 0.17
k
ΨP

= 0.10
k
ΨP

P(Ω

Ψ

k+1
= 0.24

k
ΨP

(2,1)

P(Ω

PP(Ω
k+1

Association hypothesis 4

) = 0.11,

) = 0.04,(3,1)
k+1

= 0.01
k
ΨP

) = 0.05,

Fig. 5. Section of the trellis of possible hypothesis paths for the dancer sequence. The
bold arrows mark the most likely path at time k + 1 and the dashed arrows mark the
paths that were disregarded because they merged with ones more likely.

4 Conclusions

We have presented a technique for performing the tracking stage of optical mo-
tion capture which retains, at each time frame, multiple marker association
hypotheses and estimates of the subject’s position. We have derived, using a
Bayesian approach, the equations for calculating the likelihood of a particular
association hypothesis and for a path of possible hypotheses through the video
sequence.

As the multiple hypothesis tracker considers the most likely marker associa-
tion when evaluating hypothesis paths, it performs at least as well as a typical
single hypothesis system. It has been found, however, that situations occur in
which typical systems fail to determine the correct association and in which our
tracker succeeds. An example of such a case from real data has been shown. The
system appears able to perform successfully using fewer cameras and a lower
frame rate than has been used previously, but most significantly, it does not
require the assistance of a human operator.
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The number of state estimates to retain, I, and the number of hypotheses to
calculate, J , at each time frame is a function of the complexity of the system: the
number of cameras, markers and the type of motion being captured. Although
the processing power required at each time frame increases exponentially with
IJ , the multiple hypothesis process is ideally suited to adaptation for parallel
processing, in which real time performance becomes a possibility.
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