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Abstract. In this paper, we describe a new approach for recovering 3D
geometry from an uncalibrated image sequence of a single axis (turn-
table) motion. Unlike previous methods, the computation of multiple
views encoded by the fundamental matrix or trifocal tensor is not re-
quired. Instead, the new approach is based on fitting a conic locus to
corresponding image points over multiple views. It is then shown that
the geometry of single axis motion can be recovered given at least two
such conics. In the case of two conics the reconstruction may have a two
fold ambiguity, but this ambiguity is removed if three conics are used.
The approach enables the geometry of the single axis motion (the 3D ro-
tation axis and Euclidean geometry in planes perpendicular to this axis)
to be estimated using the minimal number of parameters. It is demon-
strated that a Maximum Likelihood Estimation results in measurements
that are as good as or superior to those obtained by previous methods,
and with a far simpler algorithm. Examples are given on various real se-
quences, which show the accuracy and robustness of the new algorithm.

1 Introduction

Acquiring 3D models from single axis motion sequences, particularly turnta-
bles, has been widely used by computer vision and graphics researchers. The
key component of the 3D reconstruction is the recovery of the rotation angles.
Traditionally, rotation angles are obtained by careful calibration [4,17,22,23].
Fitzgibbon et al. [8] extended the single axis approach to recover unknown rota-
tion angles using a projective geometry model of the motion. In their method,
corresponding points are carefully tracked over each pair of images for the fun-
damental matrices and each triplet of images for the trifocal tensors. Mendonça
et al. [15] recover the rotation angles from profiles of surfaces. The search for
corresponding points is transformed into a search for epipolar tangencies. All of
the above papers have some discussion on the invariants in this special single
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axis motion. However the ideal points i and j , which play a very important role
in rotation angle recovery, are not discussed explicitly.

Recently a new method has been proposed [11] which does not incur the
expense of computing trifocal tensors or of the nonlinear optimization involved
in computing epipolar tangencies. Instead, corresponding points in different im-
ages are fitted to a conic. It is then shown that rotation angles can be directly
computed from only one conic and one fundamental matrix. The remaining ge-
ometric quantities can be obtained using more conics.

In this paper, we show further that even one fundamental matrix is unnec-
essary. All single axis geometry can be computed from at least two conics by
directly calculating the image of the circular points. Thence all invariant quanti-
ties of the single axis motion can be computed. The advantage of the new method
over the existing ones is straightforward. First, it is intrinsically a multiple view
approach as all geometric information from the whole sequence is nicely summa-
rized in the conics! This contrasts with the computation of fundamental matrices
and trifocal tensors which use only a subsequence of 2 and 3 views respectively.
Second, as will be shown in section 4, the essential geometry of the image single
axis geometry may be specified by six parameters and this may be minimally
estimated from two conics (a total of 10 parameters). Previous methods have in-
volved estimating more than this minimum number of parameters, e.g. 18 tensor
parameters from 3 views.

The paper is organized as follows. A review of the geometry of single axis
motion is given in Section 2. Section 3 describes the invariants under the single
axis motion case and the rotation angle recovery based on these invariants. A
Maximum Likelihood Estimation method for these invariants and conics fitting
is given in Section 4. Section 5 demonstrates two experiments. One is on the
reconstruction of the Hannover dinosaur from a turntable image sequence. The
other is on a reconstruction of a girl who is seated in a rotating chair. The latter
is a short video sequence and we want to show that 3D photography can be
easily done. Finally, a short conclusion is given in Section 6.

2 Review of the Geometry of Single Axis Motion

Throughout the paper, scalars are denoted in plain letters or lower case Greek.
Assuming a pin-hole camera model, the object space may be considered as em-
bedded in P3 and the image space embedded in P2. Vectors in P2 are denoted in
lower case boldface and vectors in P3 and matrices in upper case boldface. The
camera performs the projection from P3 to P2, and can be represented by a 3×4
matrix P3×4 of rank 3 whose kernel is the projection center. The relationship
between a point X in P3 and a point x in P2 can be written as

λx = P3×4X, (1)

where x and X are in homogeneous coordinates and λ is a non-zero scalar.
A typical set up for single axis motion consists of a stationary CCD camera

in front of a turntable on which the object to be reconstructed is placed [17,18].
The internal parameters of the camera are assumed fixed.
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Fig. 1. Fixed image entities

For a single axis motion, without loss of generality, the rotation axis of the
turntable is chosen to be the z-axis the world coordinate. Then each point on the
object is moving in its plane that is perpendicular to the z-axis. Indeed, there is a
pencil of horizontal planes. The invariants related to the geometry of single axis
motion have been established in [8]. These invariants on the image plane are:

1. The line ls which is the image of the rotation axis.
2. The line l∞ which is the image of the intersection line for all horizontal

planes. Actually, it is the vanishing line of all the horizontal planes.
3. The point xs which is the image of the intersection of the rotation axis with

the horizontal plane through the camera center.
4. The point v which is the vanishing point of the rotation axis.

These fixed image entities are illustrated schematically in Figure 1.

3 Single Axis Geometry and Conic Loci

Our first remark is that the trajectory of the corresponding points in different
images of any given space point, displayed in any particular image plane, is a
conic by the very definition of single axis motion (Figure 2) [19]. This extremely

Fig. 2. Dinosaur sequence and Conics
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trivial observation that the previous methods fail to exploit is the starting point
of our new methods of determining single axis geometry from conic loci. It will
be seen that we can compute the geometry by simply fitting conics to the tracked
points over at least five images. A minimum of 2 conics is necessary to recover
the entire geometry of single axis motion.

3.1 Computing the Image of the Circular Points from Conics

The first essential observation is that all conic locus of image points of an object
from a single axis motion contain the image of the circular points.

This can be easily proved by the fact that the trajectory of a given object
point in space from a single axis motion is always a circle and different points
therefore give circles of different radius on different planes which are all par-
allel and perpendicular to the single rotation axis. All circles go through their
respective circular points of the plane they are lying on by the very definition
of the circular points [20]. As all these supporting planes are parallel, i.e. they
share a common line at infinity on which the circular points lie. We may thus
conclude that all circles of different radius on different parallel planes from the
single axis motion share the common pair of circular points i and j. Because this
is a projective property it remains true for the projection onto any image plane.
In any particular image plane, this means that all conic loci of corresponding
points intersect in the pair of common circular points i and j. Thus, by just
computing intersection points of at least two conic loci, we obtain the image of
the circular points, and also the vanishing line of the parallel planes.

Consider the intersection of a pair of conics, there are always 4 intersection
points including complex and infinite points according to Bezout’s theorem. In
terms of real intersection points, they may be 0, 1, 2, 3, or 4 according to the
configurations.

– For the case of 1 or 2 real intersection points, it is straightforward that the
only pair of complex conjugate points is the image of the circular points.

– It is generally impossible to have 3 or 4 real intersection points if the conics
are real perspective image of the circles from the single axis motion by its
definition.

Fig. 3. The intersections of two conics
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– The most difficult case is when there is no real intersection points. This is
in fact very common if we just look at the illustrative conic loci in Figure 3.
In this case, we obtain two pairs of complex conjugate points. There is a
reconstruction ambiguity coming from the ambiguity of the two pairs of
complex conjugate points. Of course, this ambiguity can be immediately
removed as soon as we have more than 2 conics.

3.2 The Complete Computation Method

After having described the key components of computing the image of the cir-
cular points from at least two conics, we can summarize the complete method
of computing rotational angles and the underlying single axis geometry.

1. Fit two conics Cp and Cq to all tracked points over the sequence for two
given points respectively. At this stage, two points tracked over at least 5
images are needed.

2. Compute the intersection points of the two conics Cp and Cq. We may have
either one pair of complex conjugates or two pairs of complex conjugates. If
there is a unique pair of complex conjugates, the image of circular points i
and j are exactly this pair of complex conjugates. However if there are two
possible pairs of complex conjugate points, we obtain two possible solutions.
This double solution ambiguity can be removed by using any additional
conic.

3. Compute the vanishing line
l∞ = i× j.

4. Obtain the projection of the two circle centers as the pole of the line l∞

op = C−1
p l∞,

oq = C−1
q l∞.

5. Compute the rotation axis as

ls = op × oq.

6. Compute the angular motion between two views from the tracked points. i.e.
points a and b on two views are tracked points on conic Cp, the rotation
angle of the two views can be calculated by using Laguerre’s formula [20]

θab =
1
2i

log({lopa, lopb; lopi, lopj}).
The fixed image entities for the single axis motion deduced from two conics

are shown in Figure 4.a and the rotation angle with respected to the image
entities is shown in Figure 4.b.

Compare with Figure 1, the vanishing point v of the rotation axis cannot be
obtained from the conics. This means that although metric structure in all planes
perpendicular to the rotation axis can be accurately determined, the reconstruc-
tion along the rotation axis has a 1D projective ambiguity. This same result is
also shown by Fitzgibbon et al. [8] and other researchers [1,16,24] which have
two parameters not determined. The ambiguity can be removed by specifying
camera aspect ratio and parallel vertical scene lines.
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Fig. 4. (a) Fixed image entities deduced from conics. (b) The rotation angle with
respect to the image entities.

3.3 Recovering Lost Angles

In practice, some points are missing in some views along the tracking path. The
rotation angles for these views in which the tracked points are missing cannot
be recovered. We show in this section how to find the ‘missing’ corresponding
points and then how to recover the angles of these views.

Figure 5 illustrates this configuration to help the following development. The
conic C on the plane π1 has been obtained from at least a point tracked over
five images. The point a is visible in views m1 and m2 as a1 and a2, but missing
in view m3, so the point a3 is not available. However, a point b is available in
the three views m1, m2, and m3 as b1, b2 and b3. Let us assume its unknown
conic trajectory is the conic Ci on the plane πi. As we know the two planes π1
and πi are parallel in space, they therefore share the same vanishing line l∞ and
the circular points i and j. Since the rotation angle between the view m1 and
m2 is known from the conic C. We may use Laguerre’s formula for the point b
on the plane πi:

θ12 =
1
2i

log({lo1b1 , lo1b2 ; lo1i, lo1j}),

where the point o1 is the only unknown vector of the image of the circle center.
Since o1 lies on ls, the one unknown component of this point can be calculated
from the known cross ratio {lo1b1 , lo1b2 ; lo1i, lo1j}.

From the reconstructed point o1, the rotation angle θ23 between the view m2
and m3 can be obtained.

θ23 =
1
2i

log({lo1b2 , lo1b3 ; lo1i, lo1j}).

Once the angle θ23 has been determined, Laguerre’s formula can be applied
again to the computation of the line loa3 . By intersecting the line loa3 with the
conic C, the missing point a3 is recovered.
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Fig. 5. Finding missing points and recovering missing angles.

4 Invariants Estimation and Conic Fitting Based on
Maximum Likelihood Estimation

It has been shown that the geometry of single axis motion can be recovered given
at least two conics. With the minimum of two conics the reconstruction may
have a two fold ambiguity, but one or more additional conics makes the solution
unique. In this section, a Maximum Likelihood Estimation (MLE) method is
given for simultaneous estimation of the fixed geometric entities and conics.

As mentioned earlier, each point on the object is moving on its plane which
is perpendicular to the z-axis and different points therefore form a pencil of
horizontal planes. For each such plane, there is a plane homography H which
maps the conic in the image plane to the circle lying on the horizontal plane,

Ccirle = H−�CconicH−1. (2)

And we assume the center of the circle is the origin of the plane and its radius
is one. We will derive a formula for this homography which will be used to
parametrize the MLE.

The homography can be decomposed into a concatenation of five matrices
R, S, T, A and Pu, representing rotation, isotropic scaling, translation, affine
and ‘pure projective’ transformations respectively [12,6,13]:

H = RSTAPu. (3)

where

Pu =



1 0 0
0 1 0
l1 l2 l3


 ,
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can be determined by the vanishing line l∞ = (l1, l2, l3)�.

A =




1
β −α

β 0
0 1 0
0 0 1


 ,

(α∓ iβ, 1, 0)T is the circular points on the affine plane which can be obtained by
Pu through circular points i and j. It is clear that the degree of freedom of the
circular points is four. Two for determining the ‘pure projective’ matrix and two
for determining the affine matrix. As shown in Figure 4, the other fixed image
entity is the rotation axis ls, which has two d.o.f.

T =



1 0 −t1
0 1 −t2
0 0 1


 ,

(t1, t2, 1)� is the pole of vanishing line l∞ with respect to conic Cn on the metric
plane. Since the pole is constrained by the rotation axis ls, only one degree of
freedom exists in the translation matrix.

S =




s 0 0
0 s 0
0 0 1


 ,

After processing by the matrices of Pu, A and T, the conic is transformed into
a circle with center at the original point. The isotropic scaling matrix scales the
circle to a circle with radius unity. There is one d.o.f. for each conic. Since the
rotation matrix does not affect the circle with center at the original point, no
degree of freedom lies in the matrix R for the circle.

In summary, there are in total 6 d.o.f. for the fixed entities (2 for each of the
two circular point, 2 for ls) and 2 for each conic (which correspond to where the
center is along the rotation axis (1) and its radius (1)). The cost function for the
MLE involves minimizing the sum of squared geometric distances (one for each
of the m measured points) over all 6 + 2n parameters for the fixed entities and
n conics.

C =
∑

n

∑
m

d⊥(x,C)2. (4)

However, as is shown in [10] this nonlinear cost function C can be approximated
as

d⊥(x,C)2 =
(xTCx)2

4((Cx)21 + (Cx)22)
,

where (Cx)i denotes the i-th component of the 3-vector Cx. This function is
optimized using the standard Levenberg-Marquart algorithm.

The 6 + 2n parameters are initialized by the method in Section 3 as follows.
First, each conic is fitted to corresponding points from more than 4 views [3,7].
Then the pole of each conic with respect to the vanishing line is calculated, and
the point on the rotation axis which is nearest to the pole is used to estimate
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the initial value of t1 (1 dof). Now, each conic can be transformed into a circle.
The radius of this circle determines the initial value of s (1 dof). Finally, each
conic is mapped to a unit circle with center at the origin and the points on the
conic is mapped to the points near the unit circle for the optimum procedure.

5 Experiments

The new algorithm of computing single axis geometry from only conics has
been implemented. The whole computational procedure is simple and robust.
We just give two examples to demonstrate the method. The first example is
from the popular dinosaur image sequence from the University of Hannover.
In this experiment, we have introduced a robust method for computing the
rotation angles. We also show directly the projective meaning of rotation angles
in an image plane. Another example is a video sequence of a girl in a rotating
chair. This example also shows the practicality of this algorithm and the ease of
computation.

The dinosaur sequence contains 36 views from a turntable with a constant
10 degrees angular motion. The angular accuracy is about 0.05 degrees[17]. Fig-
ure 6.a shows the tracking of some interest points of the sequence. Results of
conic fitting of the same sequence using MLE is shown in Figure 6.b. Figure 7
shows the results of recovered rotation angles.

Actually, the rotation angles can be labeled on the vanishing line after ran-
domly selecting a reference point. For instance, we may select the cross point of
lines l∞ and ls in Figure 8 as the reference point for zero rotation angle. Any
rotation angle can then be computed directly by applying Laguerre’s formula
and labeled on the vanishing line.

For any fitted conic, the intersections on the vanishing line with the lines
joining the conic pole and known corresponding points represent the angles of

Fig. 6. (a) Some tracked points from the dinosaur sequence. The marks of ’×’ indicate
the initial poles of the direct fitted conics with respected to the vanishing line. (b)
Fitted conics with the MLE. The marks of ’+’ indicate the poles of the MLE fitted
conics with respected to the vanishing line. The marks ’+’ are neatly located on the
rotation axis.
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Fig. 7. Recovered rotation angles for the whole sequence of 36 views.

views with respect to the reference point. Thus, the angles (with respect to the
reference point) of unknown corresponding points can be marked out on the van-
ishing line with the recovered rotation angles. Then, an unknown corresponding
point on the conic is given by the intersection between the conic and the line join-
ing its angle mark on the vanishing line and the conic pole. The corresponding
points in all views (Figure 9) can be determined.

Using the Shape-from-Silhouettes approach described in [5,17], the horizontal
slices of the dinosaur model can be obtained as illustrated in Figure 10. As the
vanishing point v is unknown, there remains unknown ratios among slices and
the reconstruction is up to two projective parameters as shown in Figure 11.

With a reasonable choice of the ratio, full reconstruction is obtained as illus-
trated in Figure 12.

The second example is of a girl in a rotating chair. The reconstruction is
done from a short video sequence. Figure 13 shows three images captured from
the video. Vertical lines in the background (Figure 13.c) are used for locating
the vanishing point v along the rotation axis. We also assume the camera aspect
ratio is one. Figure 14 shows the reconstructed 3D points in different views.
Figure 15 shows the reconstructed girl.

6 Conclusion

We have presented a novel intuitive method of computing single axis geometry
by fitting conic loci only to the corresponding points. The novelty of this algo-
rithm is that it does not need to calculate any multiple view geometry such as
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Fig. 8. Labeled rotation angles on the vanishing line (Dinosaur sequence). By selecting
one reference point on the vanishing line, any rotation angle can be labeled on the
vanishing line according to the Laguerre’s formula.

Fig. 9. Recovered corresponding points on one conic (Dinosaur sequence). After know-
ing the rotation angles in 36 views, with the fitted conic and a point on the conic, the
corresponding points in 36 views can be recovered.

fundamental matrices and trifocal tensors. We need only to compute two, or at
most three conics without any other geometric quantities in our new approach.
Using MLE and more than three conics can improve the estimation and recon-
struction. The algorithm is simple and robust and the number of parameters
to be estimated is substantially reduced compared to previous approaches. This
fact is verified by experiments on real data showing very good results.
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Fig. 10. Four Slices of the dinosaur.

Fig. 11. 3D reconstruction up to two projective parameters. Four reconstructions are
displayed with different choices of unknown parameters.

Fig. 12. Reconstructed dinosaur.

Fig. 13. Three images captured from the video. The video is a girl in a rotating chair.
A vertical line in the background is marked out for searching the vanishing point along
the rotation axis.



Single Axis Geometry by Fitting Conics 549

Fig. 14. 3D points of reconstructed girl from four different views.

Fig. 15. Reconstructed girl.
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