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Abstract. Natural scenes contain rich stochastic motion patterns which

are characterized by the movement of a large number of small elements,

such as falling snow, raining, ÿying birds, þrework and waterfall. In this

paper, we call these motion patterns textured motion and present a gen-

erative method that combines statistical models and algorithms from

both texture and motion analysis. The generative method includes the

following three aspects. 1). Photometrically, an image is represented as

a superposition of linear bases in atomic decomposition using an over-

complete dictionary, such as Gabor or Laplacian. Such base representa-

tion is known to be generic for natural images, and it is low dimensional

as the number of bases is often 100 times smaller than the number of

pixels. 2). Geometrically, each moving element (called moveton), such

as the individual snowÿake and bird, is represented by a deformable

template which is a group of several spatially adjacent bases. Such tem-

plates are learned through clustering. 3). Dynamically, the movetons are

tracked through the image sequence by a stochastic algorithm maximiz-

ing a posterior probability. A classic second order Markov chain model is

adopted for the motion dynamics. The sources and sinks of the movetons

are modeled by birth and death maps. We adopt an EM-like stochastic

gradient algorithm for inference of the hidden variables: bases, move-

tons, birth/death maps, parameters of the dynamics. The learned models

are also veriþed through synthesizing random textured motion sequences

which bear similar visual appearance with the observed sequences.

Natural scenes contain rich stochastic motion patterns which are characterized

by the movement of a large number of small deformable elements (or particles).

For example, raining, snowing, bird ÿock, moving crowd, þrework, waterfalls,

and so on. The analysis and synthesis of such motion patterns, called textured

motion in this paper, are important for a variety of applications in both vision

and graphics, and stimulate growing interest of the two communities.

Graphics methods. In graphics, the objective is to render textured

motion in video or cartoon animation, and the quality of the rendered motion is

usually measured by three basic criteria.

A. Heyden et al. (Eds.): ECCV 2002, LNCS 2350, pp. 583−598, 2002.
 Springer-Verlag Berlin Heidelberg 2002

1  Introduction: Objectives and Previous Work



1. It should be realistic. This motivates work for modeling and learning the

photometric and dynamic properties from real video due to the complexity

of textured motion. Usually, data driven statistical modeling is often more

appropriate than physically-based modeling.

2. It should be stylish. This is required for applications in non-photo realistic

rendering (NPR), for example, rendering a waterfall in a cartoon movie. It is

desirable to separate the dynamics of motion from its photometric appear-

ances, so that the video appears symbolic but with realistic motion.

3. It should be controllable. For a better blending of the motion with other 3D

objects in a scene, one should increase the degree of freedoms in maneuvering

the motion. For example, it is desirable to control the sources and sinks where

the motion elements appear and disappear, to control the individual moving

elements, to change its motion direction etc.

In the graphics literature, both physically-based and data driven models are

reported. The former includes the work which create animations of ÿre and

gaseous phenomena with particles [12, 5]. The latter includes the 1). video tex-

ture[14] which ÿnds smooth transition points in a video sequence from which the

video could be replayed with minimum artifacts; 2). 3D volume texture[18] which

generates motion through non-parametric sampling from an observed video mo-

tivated by recent work on texture synthesis. Though the statistical models of

the video texture or 3D volume texture can render some realistic animations,

such models do not model the dynamic and geometric properties of the moving

elements.

Vision methods. In computer vision, the analysis of textured motion

has applications for video analysis, such as motion segmentation, annotation,

recognition and retrieval, detecting abnormal motion in a crowd, and so on.

Needless to say that a good vision model of textured motion is useful for ani-

mation in graphics as mentioned above. For such applications, a vision model

should satisfy the following properties.

1. It should be suÆcient and general. It is not enough to just render a syn-

thesized sequence that looks like the original as the video texture do, the

model should also be able to capture the variability and therefore can be

generalized to new data.

2. It should be parsimonious and low dimensional for computation. This re-

quests the model capture the semantics of the motion. This also requests

the modeling of photometric, geometric, and dynamic aspects of the motion

| consistent with the graphics criteria.

In the vision literature, as these motion patterns lie in the domains of both

motion analysis and texture modeling, statistical models are proposed from both

directions with a trend of merging the two. In the following, we brieþy review

these work to set the background of our method.

Early vision work on textured motion was done by (Szummer and Picard,

1996)[17] who adopt a spatial-temporal auto-regression (STAR) model from
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(Cliÿ and Ord, 1976)[4]. Let I(x; y; t) be the intensity of a pixel (x; y) at time t,
a STAR model assumes that I(x; y; t) is a regression of its neighboring pixels

I(x; y; t) =

pX

i=1

aiI(x+ Æxi; y + Æyi; t+ Æti) +N(0; ÿ2); (1)

where (Æxi; Æyi; Æti) is the displacement of a neighboring pixel in space and time,
and ai; i = 1; :::; p are parameters to be þt. A linear (or partial) order is imposed
so that I(x; y; t) only depends on pixels at previous frames Æti < 0;8i for fast
synthesis. Such model can be considered as an extension from a causal Gaussian
Markov random þeld model (GMRF) used in texture modeling by adding the
time dimension. Along the line of texture modeling, Bar-Joseph et.al.[1] extended
the work by Heeger and Bergen (1995) and others[19] to multi-resolution analysis
in a tree structured representation, in a similar spirit to (Wei and Lovoy, 2000).

Although these algorithms can show synthesis of good motion, we argue that
the concept of treating a motion pattern as a solid texture is perhaps not ap-
propriate. Because textures are physically the status of systems with massive
elements at thermodynamic equilibrium characterized by maximum entropy dis-
tributions[19]. However, this assumption is not observed in textured motions, for
example, þre or gaseous turbulence, which are clearly not at equilibrium.

The recent work (Soatto, Doretto, and Wu, 2001)[15] engages the motion
dynamics explicitly. By a SVD analysis, Soatto et al. represent an image I(t)
by a small number of principal components. The projections of I(t) on these
components, denoted by x(t), is modeled by a Markov model,

x(t+ 1) = Ax(t) +Bv(t); I(t) = Cx(t) + n(t); (2)

where v(t) is the noise driving the motion and n(t) is the image noise for the
reconstruction residues. The parameters A;B;C are learned by maximum like-
lihood estimation (MLE). This model can generate impressive synthesis for a
variety of motion patterns and can also be used for recognition[13].

Being considered as an extension the work [15], Fitzgibbon considered not
only the stochastic part for textured motion, but also the parametric component
introduced by the camera motion [16]. In [16], the images are also represented
by the principal components with peroidc coeÆcients, and the Auto-Regression
(AR) model is used to handel stochastic textured motion. The parametric compo-
nent for camera motion is governed by projective geometry model. The objective
of the method is to both eÆciently þt the AR model and correctly register the
image sequence.

Our method. In this paper, we present a generative method for the
analysis and synthesis of textured motion, motivated by the vision and graphics
criteria discussed above. Our model includes the following three aspects.

1. Photometrically, an image is represented as a superposition of linear bases
in atomic decomposition using an over-complete dictionary, such as Gabor
or Laplacian. Such base representation is known to be generic for natural
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images, and it is low dimensional as the number of bases is often 100 times

smaller than the number of pixels.

2. Geometrically, each moving element (called moveton), such as the individual

snowÿake, bird, is represented by a template which is a group of several

spatially adjacent bases. Such templates are deformable to account for the

variabilities of the elements and are learned through clustering.

3. Dynamically, the movetons are tracked through the image sequence by a

stochastic algorithm maximizing a posterior probability. A classic Markov

chain model is adopted for the motion dynamics, as in[15]. The sources and

sinks of the movetons are modeled by birth and death maps.

We adopt an EM-like stochastic gradient algorithm for inference of the hidden

variables: bases, movetons, birth/death maps, parameters of the dynamics.

To þx notation, let I[0; ÿ ] denote an image sequence on a 2D lattice þ = f(x; y) :
0 ÿ x; y ÿ Lg in a discretized time interval [0; ÿ ] = f0; 1; 2; :::; ÿg. For (x; y) 2 þ

and t 2 [0; ÿ ], I(x; y; t) denotes the pixel intensity, and I(t) 2 I[0; ÿ ] is a single

image frame.

Fig. 1. A \cable model" for movetons.

In this section, we study the representation of a single image frame I 2 I[0; ÿ ].

For clarity, we remove the time index. We represent an image as a superposition
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of a small number of image bases, in a scheme which is often called atomic

decomposition in wavelets and image coding[9, 10, 3].

I =

NX

j=1

ÿjbj + n; b 2 þ: (3)

In equation (3), bj is an image base from a dictionary þ, ÿj is its coeÆcient, and

n is a noise process for the residues. The dictionary includes all bases which are

transformed versions of three base functions (mother wavelets) ý`; ` = 1; 2; 3,

þ = fTx;y;ÿ;þ Æ ý` : (x; y) 2 ü; û 2 [0; 2ú); ù 2 [ùmin; ùmax]; ` = 1; 2; 3g

Tx;y;ÿ;þ denotes a transform with (x; y; û; ù) for translation, rotation, and

scaling respectively.

We denote the set of base functions by ø = fý`; ` = 1; 2; 3g. We choose

the Laplacian of Gaussian (LoG), Gabor cosine (Gcos), and Gabor sine (Gsin)

shown in Figure 1.a. These base functions represent blobs, bars and step edges

respectively (see the symbolic sketches in Figure 1.a). We choose 8 scales, and

12 orientations.

Thus we transform an image I into a base representation, called a base map.

B = (bj = (ÿj ; `j ; xj ; yj ; ûj ; ùj) : j = 1; 2; :::; N):

As þ is over-complete, we should discuss how B is inferred from I later. We

choose the base representation for two reasons.

1. Low dimensionality. The number of bases is usually 100-fold smaller than

the number of pixels. Figure 2 shows a snowing sequence, each frame can

be approximated by N ÿ 100 bases (see Figure 2.b). When N increases to

800 bases, the reconstructed images in Figure 2.c) are of very high precision.

This also introduces a coarse-to-ÿne strategy for computation.

2. Generality. It is well known that the LoG and Gabor bases are generic repre-

sentations for the ensemble of natural images[11], and are also fundamental

to human visual perception.

In natural image sequences, the image bases often form spatially coherent groups.

This is most evident in sequences where the moving elements (or \movetons")

are identiÿable, such as the individual snow þakes, and þying birds. Figure 1.b

shows two examples. A snow þake is a sum of three bases: 2 ý
1
's and 1 ý

2
at

various scales and space displacements. A bird consists of 7 bases: 3 ý
1
's, 2 ý

2
's

2 ý3's. The number of bases, and their relative positions and coeÆcients may

vary between the movetons. By deÿning a distance between the movetons, one

can cluster the movetons into a small number of deformable templates.

÷ = fö`(õ) : ` = 1; 2; :::; ng
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Fig. 2. Example of a snowing sequence. (see snow obs.avi and snow syn.avi for movies)

with ` indexing the moveton types and ÿ being the parameters for relative defor-

mations of the bases within a moveton. Thus we obtain a dictionary of movetons

with some transformations,

þ = f Tx;y;ÿ;þ Æ ý` : (x; y) 2 ü; û 2 [0; 2ú); ù 2 [ùmin; ùmax]; ` g: (4)

In practice, not all bases are necessarily grouped into movetons. We call the

ungrouped ones free bases, which are treated as degenerated movetons, i.e. each

moveton has one base, for clarity of notation. For the N bases in the base map

B, suppose we group them into J movetons, then we arrive at a more meaningful

representation of the image, with dimensions further reduced than B.

M = (új = (`j ; xj ; yj ; ûj ; ùj ; ÿj); j = 1; 2; :::; J); J ÿ N:

Each moveton új is represented by 1 þ `j þ n for the type of the deformable tem-

plate, xj ; yj ; ûj ; ùj for the position, orientation, and scale of the overall moveton,

and ÿ for the deformable within the moveton.

During the computation, we should learn the deformable templates ø` and

compute the movetons and free bases M from images. For example, Figure 3.a

displays the symbolic sketches for a set of typical deformable templates of the
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Fig. 3. The computed motion elements: snow ÿakes and random examples.

snowing sequence shown in Figure 2. Figure 3.b shows 120 random movetons

sampled from the moveton dictionary ÿ . Each moveton is a snow ÿake. This

sample shows the variety and generality of the deformable models learned with

bases.

To summarize, we have a following generative model for an image I, with

dimensions reduced sequentially,

M
ÿ
ÿ! B

þ
ÿ! I

Now we turn to the image sequence I[0; þ ]. As shown in Figure 1.c, a moveton ý

can be traced over a certain time interval [tb; te] and thus its trajectory is what

we call a \cable". Typically in a moveton template, one base has relatively large

coeÆcient and scale, such as the main body of the bird or snow ÿake, and its

trajectory forms the core of the cable. The core base is surrounded by a number

of minor bases which account for the deformations. Due to self-rotation, the

trajectories of these minor bases form the coil surrounding the cable core. In a

coarse-to-þne computation, we can compute the trajectories of the cores þrst,

and then add the coils sequentially. Thus we denote a cable by

C[tb; te] = (ý(tb); ý(tb + 1); :::; ý(te)): (5)
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In practice, the core of a moveton is relatively consistent through its life span,

and the number of coil bases may change over time, due to self-occlusion etc.

Since these bases are often minor, we assume the number of coil bases are ÿxed

in a cable for simplicity.

We adopt a classic 2nd order Markov model which is suÆcient for the dy-

namics of a moveton C[tb; te]. In other words we ÿt the trajectory (the cable)

C[tb; te] by regression. Such models are extensively used in tracking[8].

ÿ(t) = Aÿ(tÿ 1) +B þ ÿ(tÿ 2) + C +DN(0; þ2
0
) t 2 [tb + 2; te]

ÿ(tb + 1) = A0ÿ(tb) + C 0 +D!

(ÿ(tb); tb) ý PB(ÿ; ý); (ÿ(te); te ÿ tb) ý PD(ÿ; ý):

One can simplify the equation in a canonical form expressed in equation (2).

ÿ(t) is a vector representing a number of bases including both the photometric

(by base coeÆcients) and geometric information. The matrices A;B;C;D;A0; C 0

capture the change of image appearances and the motion of the movetons, and

these matrices are usually diagonal. Since the motion patterns we are studying

is textured motion, we assume that those movetons have similar dynamics. That

means those trajectories share the same A;B;C;D;A0; C 0.

The ÿrst moveton ÿ(tb) and its timing tb follows a probability PB(ÿ; ý) which

we call the birth map for movetons. PB speciÿes the \sources" of the movetons

where the movetons are often originated. Similarly, the end of the trajectory ÿ(te)

and its life span te ÿ tb are governed by a death map PD(ÿ; ý). PD reveals the

\sinks" in a lattice. ÿ is a long vector, PB and PD are high dimensional. Although

other attributes in ÿ can be modeled if necessary, we are most interested in the

location (x; y).

Fig. 4. The computed trajectories of snow ÿakes and the source and sink maps.

For example, Figure 4 displays the computed trajectories ( 4.b), birth (source)

map (4.c), and death (sink) map (4.d) of the snowing sequence shown in Figure 2.

The dark locations at the death/birth maps indicate high probabilities. Thus
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the algorithm \understands" that the snow ÿakes enter mostly from the upper-

right corner and disappear around the lower-left corner. We sum over the other

variables at each (x; y).

During the learning process, suppose we have computed K cables from a

sequence I[0; ÿ ], Ci[t
b

i
; t
e

i
]; i = 1; 2; :::;K, we represent PB and PD in a non-

parametric form,

PB(þ; ý) =
1

K

KX

i=1

Æ(þÿþi(t
b

i
); ýÿtb

i
); PD(þ; ý) =

1

K

KX

i=1

Æ(þÿþi(t
b

i
); ýÿ(te

i
ÿt

b

i
))

where Æ() is a Parzen window centered at 0. Then we can project PB and PD to

the (x; y) dimensions as marginal probabilities.

In practice, the death and birth of movetons may be synchronized. For ex-

ample, in the þrework scene shown in Figure 10, a large number of movetons

can come and go together. This requests the PB and PD be joint probabilities

for a large number of movetons.

Fig. 5. Three transition states while birds ÿying.

Fig. 6. 3D graphic model of ÿying birds and their ÿying states transition.

Furthermore, sometimes when the movetons are non-rigid objects or articu-

lated objects, we may observe certain repeating states in their movements, for

example, the birds ÿapping their wings while ÿying. Thus we also need to model

the state transition of those movetons. As the result, we extend the motion dy-

namics model with more states. Figure 5 shows the clustered three states (þ1,

þ2, þ3) of the poses when birds ÿying. And Figure 6 displays the 3D graphic

591A Generative Method for Textured Motion



model for the birds and their ÿying states transition. During the synthesis of

birds ÿy, once we determine the birds' ÿying pathes, we can make those birds

ÿapping their wings by sampling the transition states from the model.

To summarize, we denote all parameters in the motion equation above by,

ÿ = (A;B;C;D;B;A0; C 0; PB ; PD; T (þj))

Given an observed image sequence I
obs

[0; ý ] as training data, we want to achieve

two objectives.

1. Make inference about all the hidden (latent) variable which are represented

by an unknown of K cables,

W [0; ý ] = (K; f(tbi ; t
e
i ; Ci) : [tbi ; t

e
i ] ÿ [0; ý ]; i = 1; 2; :::;Kg ):

2. Compute the optimal þt for all parameters in the generative model ü =

(û; ÿ ), with û being the set of deformable templates for the movements, and

ÿ governing the birth, death, and motion of the movetons.

The formulation is standard in statistics for learning a model with latent vari-

ables (missing data), that is, the maximum likelihood estimate (MLE),

üÿ

= (ûÿ; ÿ ÿ

) = argmax log p(Iobs[0; ý ];ü): (6)

The likelihood is computed from the generative model with latent variables in-

tegrated (summed) out, For clarity of notation, we assume W are continuous

variables.

p(Iobs[0; ý ];ü) =

Z
p(Iobs[0; ý ]jW [0; ý ]; û)p(W [0; ý ]; ÿ )dW:

Let B(t) = fbt;j ; j = 1; 2; :::; N(t)g be the collection of all bases in the K

movetons (cables) at time t, then we can re-express W [0; ý ] as (B(0); :::;B(ý)),

by equation (3), p(I[0; ý ]jW [0; ý ]; û) is the product Gaussians,

p(Iobs[0; ý ]jW [0; ý ]; û) =

ÿY
t=0

G(Iobs(t)þ

N(t)X
j=1

út;jbt;j ; ù2o);

as we assume iid Gaussian noise G(0; ù2o) for n.

Following the motion representation, p(W [0; ý ]; ÿ ) is also a product of Gaus-

sians,

p(W [0; ý ]; ÿ ) =

KY
i=1

PB(þ(t
b
i ); t

b
)PD(þ(t

e
i ); t

e
i )p(þ(t

b
i + 1)jþ(tbi ); A

0; C 0; D)

ý

te
iY

t=tb
i
+2

p(þ(t)jþ(t þ 1); þ(tþ 2); A;B;C;D):
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To solve the MLE in eqn. (6), we set
@ log p(Iobs;ÿ)

@ÿ
= 0. This leads to

Z
[
@ log p(IobsjW ;ÿ)

@ÿ
+

@ log p(W ;þ )

@þ
]p(W jI; ý)dW = 0: (7)

Instead of using the classic EM algorithm, we adopt the stochastic gradient

algorithm[6] which is capable of being global optimal ý. It iterates three steps

with s indexing steps.

Step 1. Sampling W syn[0; ü ] ÿ p(W jIobs;ÿ). This includes computing the bases,

grouping bases into movetons, and tracking the movetons. The computation is

realized by a data driven Markov chain Monte Carlo techniques, including the

following reversible dynamics.

1). The death or birth of a motion trajectory þ of length one.

2). Extending or shrinking a trajectory.

3). Mutating two nearby trajectories at a certain base.

4). Diÿusing the coeÆcient, location, orientation, scale of a base in a trajec-

tory (Inferring B).

Step 2. Updating the motion dynamics parameters þ by regression,

þ (s+ 1) = (1þ û)þ (s) + û
@ log p(W syn[0; ü ];þ )

@þ
:

Step 3. Updating the moveton parameters þ by clustering and grouping,

ÿ(s+ 1) = (1þ û)ÿ(s) + û
@ log p(IobsjW syn;ÿ)

@ÿ
:

Finally, the birth, death maps, PB and PD , are updated by counting the the

head and tail of each cable at their locations in the frames.

The algorithm is initialized by a stochastic version of match pursuit[9] for the

base maps which is often very eÿective. We adopt a coarse-to-þne scheme and

track the core bases whose coeÆcients and scales are higher than a threshold,

and learn the motion dynamics þ . Then we lower the threshold to add the coil

bases quickly following the learned trajectory.

Our method for tracking movetons is similar to the condensation algorithm[8],

while is distinguished from it in two main aspects. Firstly, we have a full gener-

ative model of image rather than the tracking model whose likelihood can only

be evaluated relatively. Secondly, we are optimizing the whole trajectories and

thus will trace back in time during the computation, which means we don't have

to remember a huge samples for each movetons. This, in combination with the

generative model, saves large amount of time and memory.

For a typical sequence of 30 frames, the learning takes about 10-20 minutes in

a Pentium IV PC, and the synthesis of sequence can be done in nearly real-time.
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Fig. 7. Example of the bird sequence (see bird obs.avi, bird syn.avi).

Fig. 8. The computed trajectories of ÿying birds and the source and sink maps.

5 Experiments

We report the results on four textured motion sequences.

1. The snowing sequence. Fig. 2 shows the reconstruction of the snowing

images by bases, and a synthesized sequence. For movie, see the observed and

synthesized sequence at the attached avi ÿles snow obs.avi and snow syn.avi

respectively. The algorithm also computes the movetons (snow þake) templates,

and random samples are shown in Fig. 3 The trajectories and source/sink maps

are shown in Fig 4.

2. The ÿying bird sequence. Fig. 7.a and b show the observed and synthesize

sequences. The animation can be seen at the attached avi ÿles bird obs.avi and

bird syn.avi. The trajectories and source/sink maps are shown in Fig.8. The
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Fig. 9. The computed motion elements: ÿying birds and random examples

birds enter and exit the picture from the image boundary. The maps are rather

sparse because we reduced the number of cables (birds) for photo editing eÿect.

Fig.9 shows the deformable templates (a) where a core base is surrounded by a

number of small coil bases. The dashed connection means the coil base may or

may not appear all the time. A variety of templates and image instances of birds

(movetons) are shown in (b) and (c).

3. The ÿrework sequence. Fig. 10.a and b show the observed and synthesized

sequences. See attached þrework obs.avi and þrework syn.avi for the movies. The

trajectories and source/sink maps are shown in Fig.11. In the synthesis, we edit

the birth map PB(ÿ; þ) by changing its birth rate, assume a uniform distribution

for the sources over then lattice. Thus the synthesis has more þreworks.

4. The waterfall sequence. Fig.12 shows the observed and synthesized se-

quences. See attached waterfall obs.avi and waterfall syn.avi for the movies. The

trajectories and source sinks are shown in Fig.13. Fig.14 shows 10 typical water

drops in the waterfall which are a cluster of bases.

The generative model in this paper is motivated by the graphics and vision

criteria discussed in Section (1). It learns realistic motion patterns from real

data, separates the motion dynamics with photometric and geometric styles, and

thus achieves good controllability. For example, we can change the source/sink,
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Fig. 10. Example of the ÿrework sequence (see ÿrework obs.avi, ÿrework syn.avi)

Fig. 11. The computed trajectories of ÿreworks and the source and sink maps.

Fig. 12. Example of the waterfall sequence (see waterfall obs.avi, waterfall syn.avi)

alter the dynamics or geometry of movetons by group or by individuals. The

representation is semantically meaningful for vision applications as well because
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Fig. 13. The computed trajectories of waterfalls and the source and sink maps.

Fig. 14. The random examples of water drops.

the recovered trajectories etc. Needless to say that the generative description

W [0; ÿ ] achieves tremendous compression (usually 102-fold) compared to image

I[0; ÿ ].

In future work we should extend the model in the following aspects.

1. We shall study the spatial interactions of the moving elements, bifurcation

and merging of trajectories, and thus integrate good properties of the STAR

model to account for lighting variation in motions such as water.

2. We shall study the 3D positions of the moving elements (structure from

motion).
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