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Abstract. Reconstruction-based super-resolution from motion video
has been an active area of study in computer vision and video analy-
sis. Image alignment is a key component of super-resolution algorithms.
Almost all previous super-resolution algorithms have assumed that stan-
dard methods of image alignment can provide accurate enough alignment
for creating super-resolution images. However, a systematic study of the
demands on accuracy of multi-image alignment and its effects on super-
resolution has been lacking. Furthermore, implicitly or explicitly most
algorithms have assumed that the multiple video frames or specific re-
gions of interest are related through global parametric transformations.
From previous works, it is not at all clear how super-resolution performs
under alignment with piecewise parametric or local optical flow based
methods. This paper is an attempt at understanding the influence of
image alignment and warping errors on super-resolution. Requirements
on the consistency of optical flow across multiple images are studied and
it is shown that errors resulting from traditional flow algorithms may
render super-resolution infeasible.

1 Introduction

Enhancement of image resolution, called super-resolution, by processing multi-
ple video images has been studied by many researchers over the past decade.
The majority of super-resolution algorithms formulate the problem as a signal
reconstruction problem from multiple samples. These algorithms are based on
sampling theorems which state that given enough uniform or non-uniform sam-
ples, signals can be reconstructed. In single images captured over discrete grids,
super-resolution may not be possible since all parts of the scene may not be ad-
equately sampled by a single image. Multiple images captured using motions of
the sensor or objects potentially provide adequate samples for super-resolution
of any given image frame. However, ensuring the accuracy of sample locations
from multiple images demands adequate alignment between multiple images that
may be related through arbitrarily complex motion models. Almost all previ-
ous super-resolution algorithms have assumed that standard methods of image
alignment can provide accurate enough alignment for creating super-resolution
images. Implicitly or explicitly most algorithms have assumed that the multiple
video frames or specific regions of interest are related through global paramet-
ric transformations. However, a systematic study of the demands on accuracy
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of multi-image alignment and its effects on super-resolution has been lacking.
Moreover, when multiple video frames cannot be aligned by global parametric
models, local models like optical flow need to be used for alignment. From pre-
vious works, it is not at all clear how super-resolution performs under alignment
with piecewise parametric or local optical flow based methods.

This paper is an attempt at understanding the influence of image alignment
and warping errors on super-resolution. We first present an analysis on how op-
tical flow affects super-resolution algorithms. In particular, we adopt a general
motion model composed of a global parametric model plus local flow [15]. To
understand what is the impact of flow error on super-resolution, we introduce
an image degradation model that explicitly incorporates the motion/flow er-
ror. We then convert such a geometric error into image noise. Focusing on the
gradient-based flow computation leads us to discover an interesting phenomenon:
large/small motion errors are associated with small/large image gradients. This
suggests that image warping error is not as catastrophic as the flow error, and
implies that image warping process may be well-behaved and hence flow-based
super-resolution is feasible.

In order to address the core alignment issue itself, we experiment with novel
flow algorithms. Though we show that it is image warping not flow that is directly
linked to the super-resolution process, flow is especially critical for reconstruc-
tion of high-frequency components in the signal. The flow algorithms we employ
address two issues: flow consistency and flow accuracy. Flow consistency implies
that the flow computed from frame A to frame B should be consistent with
that computed from B to A. Flow accuracy measures the absolute error in flow.
The new algorithms take advantage of multi-image alignment in contrast with
traditional flow algorithms devoted to pairwise image alignment. By computing
all flows simultaneously, we propose a method that is similar to ”bundle adjust-
ment” used in parametric registration. Consistent and bundled flow estimation
addresses the issues of flow consistency and accuracy.

2 Related Work

Work on super-resolution can be divided into two main categories:
reconstruction-based methods [1-9] and learning-based methods [11-13]. The the-
oretical foundations for reconstruction methods are (non-)uniform sampling the-
orems while learning-based methods employ generative models that are learned
from samples. The goal of the former is to reconstruct the original (super-
sampled) signal while that of the latter is to create the signal based on learned
generative models. In contrast with reconstruction methods, learning-based
super-resolution methods assume that corresponding low-resolution and high-
resolution training image pairs are available [11-13]. In [12], a general-purpose
learning is applied and has demonstrated some good results for super-resolution.

The majority of super-resolution algorithms belong to the signal reconstruc-
tion paradigm. Among this category are frequency-based methods [9], Bayesian
methods [4-6], BP (back-projection) methods [I], POCS (projection onto con-
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vex set) methods [3], non-uniform sampling based methods [7-8] and hybrid
methods [2]. These methods are deeply root in sampling theorems. According to
these theorems, perfect reconstruction can be achieved as long as adequate sub-
samples are available. Image alignment is typically used to ensure the availability
of samples. Knowing if the samples are enough is important since in general the
condition could vary from point to point in the images. There exist techniques
that can be used to handle this issue automatically, e.g., regularization tech-
niques. As for alignment, it is the key for the success of all reconstruction-based
super-resolution algorithms. With accurate alignment, the reconstruction task
is relatively easy. This is clearly demonstrated in [7].

The emphasis of this work is on the feasibility of super-resolution under
general non-parametric motion models. Consistent estimation of global motion
models (e.g. homographies) are therefore not reviewed here. Accurate alignment
demanded by super-resolution may be difficult under general motion models
since the system is not heavily over-determined as in the case of global para-
metric models. Another factor that contributes to the difficulty is that motion
is typically estimated from noisy low-resolution images and interpolated to the
higher resolution. Ideally, accurate motion estimation should be estimated from
high-resolution images that are not available. Restricting the motion models
to global parametric limits the application of super-resolution greatly. To work
with general image sequences, we have to loosen such requirements. Otherwise,
we would have to resort to solving a difficult segmentation problem: segment out
moving objects and compute the parametric motion models for the objects. For
non-rigid objects, it is even more difficult. In [17], a method for reliable block
motion estimation is suggested for super-resolution in which multiple motion
vectors are created for each block. However, our work shows that for reconstruc-
tion based methods, cross-frame consistency of motion estimates is important
for super-resolution.

3 Flow-Based Super-Resolution

We first address the issue of feasibility of flow-based super-resolution.

3.1 Analysis of Flow Error for Super-Resolution

Classical Signal Reconstruction. Without loss of generality, we use 1D
signals for analysis. We assume that the original high-resolution digital signal
f(n) has bandwidth (—wq,wp) with wy > 7/2 and two sub-sampled versions of
the signal, f1(n) and f2(n), are available. There are two sub-sampling modes
considered here: (i) decimation only, and (ii) blurring and decimation. In the
decimation-only case: f1(n) = f(2n) and fa(n) = f(2n — 1). Assume that the
two sub-sampled signals are aliased, that is their spectra are created by wrapping
the high-frequency part of the original signal into its low-frequency band. Math-
ematically, their Fourier transforms [18] are related to the Fourier transform of
the original high-resolution signal as:
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[ F(w/2), | w|< 21 — 2w
Fi(w) = {F(w/Q) + A1 (w/2), otherwise ’
and
F (w) — {F(w/2) eXp(*jw/Q), | w |§ 2 — 2(")0
2 F(w/2)exp(—jw/2) — A1(w/2) exp(—jw/2), otherwise

where A;(w/2) = F((w — 27)/2) + F((w + 27)/2) is the aliased component
composed of the original mid-frequency and wrapped high-frequency. To recover
the original signal using an estimated signal shift ng, we perform the following
operation: F(w) = (F1(2w) + F»(2w) exp(jwiig))/2.

In the case of perfect alignment g = 1, the original signal can be perfectly re-
covered since the aliasing items are cancelled. In the case of imperfect alignment,
dng # 0, the reconstructed signal is as follows:

Flw) = {F(w)(l—i—exp[j(.u(mo])/27 | w |< 27 — 2wo
F(w)(1 + exp[jwdno])/2 + (A1 (w) + Az (w) exp[jwdno])/2, otherwise

Thus, while the reconstructed signal is affected across the whole spectrum by
mis-alignment, the effect on the high-frequency components is more severe. In
the case of blurring and decimation, we first recover the blurred signal and then
perform de-blurring. The same analysis applies as long as the cut-off frequency
of the blurring filter is equal to or larger than wy. In summary, alignment is
critical for perfect reconstruction.

The above analysis does not take into account that alignment is computed
from the sub-sampled signals. In the following we study the relationship between
signal alignment and signal warping for a 2D signal.

Reconstruction based on Alignment and Warping. In order to model the
high-to-low resolution image formation process, we adopt the matrix notations
used in [2]. Specifically,

Y = DiCr Fi X + N, (1)

where X is the original high-resolution image, Y, is the kth low-resolution frame,
Dy, Cy , Fy, are decimation, blurring and motion-warping matrices, respectively,
that embody the corresponding transformations, Vi is the noise model at low-
resolution. Note that given a motion representation (including optical flow), F
can be used to represent the corresponding warping transformation. Based on
this model and the assumption of zero-mean Gaussian noise, the ML-estimator
of X from Y}, is

X = argy min{(Y — HX)TW (Y — HX)} (2)
where W is the weight matrix determined by noise Ni, matrix H is defined as
[H)x = DyCyF). However, this model does not allow for alignment error. In
order to account for the uncertainty of estimated alignment, we augment the
above model as:

Y. :Dka(Fk+5Fk)X+Nk :DkaFkX+(Nk+N§k) (3)
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where N&* ©f 5E X . Comparing Egs. () and (B)), we notice an additional noise
term. Now the ML-estimator needs to be modified as:

X = argy min{(Y — HX)"WF(Y - HX)} (4)
where the new weight matrix is computed from both the noise terms N )I;’“ and
Np.

Image warping. Before we study the misalignment induced noise term, it is
important to review the basic warping technique. Given a source image I° and
the alignment transformation from this image to the warped image I, image
warping can be formulated as:

Z a; 1 QZ (5)

where «;’s are the interpolation coefﬁments, I°(q;) are pixels that surround the
center pixel I(qp) (very often qp is not on the integer grid) in the source image
and I*(p) is the corresponding pixel in the warped image. The given alignment
parameter u defines the relation between qg and p: p = qo + u|p].

Model for N 5" without Ni. We convert the geometric motion error into addi-
tional image noise via image warping. To simplify the analysis, we first assume
that the original image noise can be ignored.

Using Eq.[H, the warped image I (p) (matrix notation of Fj,X) is obtained
from I (matrix notation of X). Assuming an error in the estimated motion, the
warped image changes to I (p). For small motion error du, we can use a linear
approximation:

17 (p) ~ 1™ (p) + I* (p)du, + I (p)du,. (6)

In the iterative process of estimating motion from the reference image I to a
image I}, at each iteration I is warped to match I, [15]:

~ X aullan + ulpl). (7)

Note that the alignment parameters are in the same coordinates p in Egs.
and [1 Hence the components of N )1;’“ can be obtained as:

51" (p) ~ I*(p)dulp], + I, (p)du[p],,. (8)

This image noise (warping error) is dependent on pixel location. Now let us
model the motion error and image noise across the whole image region. We
further assume that the motion error is zero-mean (this might not be true in
general but appears to be a valid assumption from our experiments), then the
image noise has zero-mean. Its covariance can be computed as:

var(01™) = 2> 1) + 1) 17) — 2L, 1,(> | L1,),

using the covariance matrix for the estimated motion:
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It is well-known that larger image gradients lead to more precise motion
estimation. Clearly the image noise due to warping error is not only a function
of flow error but also of image gradients. In particular, relatively large motion
errors due to small gradients are balanced by the small gradients as shown in
Eq. [®). In other words, even if the motion is not very accurate, the warped image
is still very close to the warped image based on true motion. In summary, in the
case of small noise, optical flow can be used for the purpose of super-resolution.

3.2 Computing Consistent and Accurate Flows

Though we showed that it is image warping that directly influences the super-
resolution process, flow is especially critical for reconstruction of high-frequency
components.

Computing Consistent Flow. Counsistent flow [19] between a pair of frames
guarantees that the pair of flow fields, from frame 1 to frame 2 and from 2 to
1, will be consistent. In many applications, one-sided traditional flow algorithms
are independently applied in the two directions, and points where the two flows
are inconsistent are rejected. However, for reconstruction based super-resolution,
consistent flow is essential since the maximum-likelihood estimator typically min-
imizes error between an iteratively reconstructed super-resolved image and the
original low resolution images. Depending on the specific iterative technique used
for the reconstruction, pixels are mapped both ways between the low and the
high-resolution coordinate systems.

Traditional flow estimation algorithms ([I5], for instance) compute a flow
field between and image pair, I; and I3, using brightness constancy:

Ii(p1) = I2(p2), 9)

where p; and ps are the coordinates of frame 1 and 2 respectively. At each
iteration, a linearized approximation to the above equation if employed to solve
for increments in the flow field.

Ii(p2) ~ VIz(p2) " J12" uz[pa), (10)

where J15 is the Jacobian partial derivative matrix of p; w.r.t pa. Equation ([I0Q))
is the basic equation of iterative multi-grid algorithms that computes the flow
field from I; to Is. The following approximation is employed for the Jacobian:

TV I(p2) = 5(VEa(p2) + Vi (p2) ay

The above technique can be used to compute the pair of flow fields from I to
I; and vice-versa. However, such a computation does not guarantee the following
consistency constraint:
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P2 = p1 + w[p1]
112[P2] = - [pl] (12)

To enforce the two-way flow consistency, we propose computing just one flow
field, the consistent flow satisfying Eq (IZ) between any frame pair. Using the
consistency constraint and the brightness constraint (Eq. B)), we can derive the
consistent brightness constraint equation

1(p) = 1(p — yulp)) = L(p + yulp]). (13)

2
where I(p) is the virtual middle frame between the two frames. Using Taylor
series expansion, we obtain the following differential form:

I,(p) = L(p) - Ix(p) (14)
~ $(VIi(p) + VIx(p)) ulp].

All the coordinates are in the coordinate system of I. An iterative version of this
new method can be readily derived. The advantages of computing consistent flow
are: 1) only one consistent flow needs to be estimated for an image pair, and 2)
the estimated flow by definition guarantees backward-forward consistency and
hence may be more accurate.

Computing Bundled Flow Fields. We can generalize the notion of flow
consistency over many frames by computing a consistent bundle of flow fields.
Suppose consistent flow is to be computed between three frames, I; and I3 to
frame Is with the flow fields designated as u; and us, respectively. Frame I is
chosen as the reference frame I. Traditional two-frame methods to compute the
two flows u;[p] and us[p] are based on two independent constraints: I (p1) =
I(p) and I3(ps) = I(p). Again, consistency between u; and us is not guaranteed
if the two are computed independently. A straightforward way to enforce the
consistency among flows is to add the following constraint: I3(ps) = I1(ps).

The iterative version of these constraints can be expressed in the common
coordinate system of p as:

I, =I,—1 ~YvI+vI) ou
/ ’ r T

Lis =13 — I~ 4(VI+VI3)) bug (15)
!’ ! ’ /! T ! T

Iys=1 —I3= %[(le) du; — (VI3) dug]

where I; are the warped version of I; using motion from the previous iteration,
duy[p] and dug[p] are the incremental flows computed at each iteration. The
bundled flow can be solved for by formulating the normal equations within a
window centered at each pixel by assuming a constant flow model inside the
window. For brevity, we omit the normal equations since these can be derived
easily from Eq.
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Accurate and Consistent Flow Fields. Note that the error minimized above
does not take into consideration the consistency between each pair of frames.
This is not possible for pairs of frames other than the reference frame since to
enforce pairwise consistency we need to use virtual coordinate systems for each
pair of frames. To handle this issue, we propose the following algorithm:

— First compute consistent pairwise flow u; ;41.

— Then cascade the consistent flows to obtain the initial flow estimates u; from
frame j to the reference frame.

— Bundle adjust the initial flow estimates.

3.3 Flow-Based Super-Resolution

We have analyzed the performance of super-resolution using a popular recon-
struction based super-resolution algorithm [1]. However, any of the other al-
gorithms [2-11] would also show a similar behavior since the error measures
minimized in all of them are similar. Although in [1] only parametric motion
models were employed, we use general flow as the alignment model.

Let us denote I ,(1") as the recovered high-resolution image and g,g") as the
simulated low-resolution image of the k-th frame, at the n-th iteration. The
iterative update of high-resolution image is expressed in [1] as:

K
I}(Ln+1) _ I}(zn) Z (gr _gk )1 8] - p} (16)

where K is the number of low-resolution images, p is a back-projection kernel,

1 s denotes a up-sampling operator by a factor s, [-]¥* denotes a forward-warping

(n) .

process. The simulated image g, ' is generated as follows:

g =[P - h} L s (17)

where []B* denotes a backward-warping process and A is a blurring kernel.
One important quantity embedded in the above formulation is the projection
error that measures the quality of the super-resolution

K
1 n
By = > (o —9") (18)
k=1

In Section E we will investigate how flow algorithms can affect this important
quality.

Estimating motion and performing super-resolution is a chicken-egg problem.
To resolve this issue, the following incremental strategy can be used:

Tterative motion estimation and super-resolution.

1. Compute motion from original low-resolution images.
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2. Interpolate low-resolution motion and perform super-resolution.

3. Use the super-resolved images to refine the motion at the high-resolution.
(This step and the next are optional.)

4. Perform super-resolution using the refined motion and repeat steps 3 & 4 if
needed.

Reject Warping Owutliers. In order to cover all aspects of motion error, a
reconstruction algorithm needs to account for warping errors in spite of accurate
and consistent motion estimation procedures. Recall that the error analysis is
based on small errors in flow computation. But this may not always be true
for general scene or video content. For example, in the case of large object
occlusions or scene changes in the video, the alignment is inherently wrong and
super-resolution is not possible. In such cases, we need to detect anomalies in
flow based on warping. We compute the cross-correlation between a target frame
and the warped frame, and if the correlation score at a point is below a certain
threshold, the corresponding warped pixels are ignored in the super-resolution
process. The correlation scores can also be used as weights with a maximum-
likelihood super-resolution estimator.

4 Experiments

We present experimental results with three types of datasets:

— Synthetic data that has synthetic motion and sub-sampled images. This data
is generated from one high-resolution image by creating multiple images with
synthetic motion.

— Semi-synthetic data that has synthetically sub-sampled images but real mo-
tion. This is generated from a real sequence of high-resolution images.

— Real sub-sampled image sequence.

The three different types of data allow us to systematically evaluate flow compu-
tation, the relation among flow error, warping error and super-resolution error,
and the super-resolution results. We emphasize that for the last two sequences,
rigid 3D motion (parallax) and non-rigid motions are present, therefore global
motion estimates cannot be utilized.

For the back-projection algorithm, we choose the forward and backward fil-
ters as suggested by the authors in [1]. In our experiment, we use the interpolated
reference image as the initial high-resolution image.

4.1 Purely Synthetic Data

We select a single high-resolution image from a real video sequence that consists
of a rich scene with man-made rigid objects, text, and natural textures. Three
synthetic motions are used to create three more frames: [—0.5, —0.5], [0.5, 1], and
[1,0.5]. In the following experiments, statistics are computed from all the frames.
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For example, the flow error statistics are based on all flows from the reference
image to the other images. Note that although a parametric model is chosen for
the synthesized motions, for the experiments a non-parametric optical field is
computed to assess the various aspects of flow accuracy.

Comparison of Flow Estimation. We compare three different methods for
flow computation: 1) Least-squares based flow [I5] (LSQ flow), 2) consistent flow
(CONS flow), and 3) bundled flow with CONS flow as the initial input (CB flow).
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Fig. 1. Top row: the reference image and the selected region of interest (ROI). Bottom
row: a close-up look at the computed flows in the selected ROI.

Fig. Mshows the three flow fields for a region-of-interest (ROI) highlighted in
one frame at the top. The qualitative nature of the flow and the relative errors
are clear from the pictures. In addition, we compute quantitative errors in the
flow in two different ways. If we define the error flow as the difference vector
between the perfect flow and the computed flow, then the histograms of the
two directional components, and the histograms of flow magnitude and angle
can be used. To represent the error flow using just one measurement, we define
the signed magnitude which is the product of its magnitude and the tangent
of its direction. A similar quantity has been used to represent the probability
distribution of the flow error in [16].

Figure 2 plots the two histograms, one for x-direction flow and the other for
the signed magnitude of flow, for the three different methods. Furthermore, we
also compute a measure of flow inconsistency, called reprojection error flow, as
the difference between the forward and backward flows at corresponding points.
That is, e12(p) = p — u21(p + ul2(p)), where €12,ul2,u21 are the reprojec-
tion error flow and the flow fields for frames 1-2 and 2-1, respectively. Table [
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0.18 2.18 0.18
5 0 1 5 0 1 5 0 1
0.12 2.12 0.12
5 0 1 5 0 1 5 0 1
LSQ CONS CB

Fig. 2. Comparison of flows computed from synthetic low-resolution images. The top
row plots the histogram of flow error in x-direction while the bottom row plots the
histogram of the signed magnitude of error flows.

compares the peaks and standard deviations of the histograms of reprojection
error flow for the three methods.

Table 1. Histogram peak (left) and standard deviation (right) of error flows corre-
sponding to Fig. 2

LSQ CONS CB
x-dir .0748/.1685(.0795/.1163|.1601/.0417
signed mag .0464/.8272(.0493/.1580|.1130/.0769
reproj. signed mag|.0308/.7093 none small

Gradient-based Flow Error vs. Warping Error. We have computed the
statistics for flow error and corresponding errors in image warping based on the
gradient of the images. First, regardless of gradient information, if flow error is
small, e.g., less than half pixel, then the warping error at the same location has a
well-behaved Gaussian-shape distribution. Second, when gradient information is
considered, relatively large flow error due to small gradients does not cause large
warping error as pointed out in Section Bl This behavior is shown in Table 2l for
the three methods using data from regions of three different gradient types..

4.2 Semi-synthetic Data

The second set of results are on a 9-frame video sequence captured with a DV
(digital video) camcorder inside an office. There is parallax in the sequence so
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Table 2. Standard deviation of flow (left) versus warping (right) errors based on
gradient information.

Low gradient |Medium gradient| High gradient
LSQ [0.3235/0.5802| 0.1930/1.9736 [0.1686/ 0.7202
CONS|0.1254/0.4836| 0.1292/2.0864 |0.1602/1.3643

global motion models do not suffice. Dense motion estimation algorithms that in-
corporate rigidity constraints could have been employed to process this sequence.
However, since one of the goals of this paper is to demonstrate the efficacy of con-
sistent dense motion estimation, for uniformity of results, we used the proposed
consistent flow estimation algorithm without the rigidity constraints.

Super-resolution Error. We have experimented with the super-resolution
algorithm with the three flows computed earlier plus the true flow. In Fig.[3, we
plot the projection error (Eq.[I8) as a function of the number of iterations for an
ROI highlighted in the original frame on the top left in Fig. @l For comparison
purposes, the reconstructed images are also shown in Fig. Bl Note that errors in
non-consistent flow tend to increase the reconstruction error as is evident both
in the plot as well as the reconstructed image. The error becomes larger with
more iterations. However, consistent flow does not suffer from this problem.

60

5 iterations 20 iterations 60 iterations minimum Ey: 0.53
h % 60
5 iterations 20 iterations 60 iterations minimum E,: 0.38

Fig. 3. Comparison of reconstruction results. An ROI is selected (as shown in the top
frame in in Fig. Hl) and its super-resolved image is zoomed up for display. The figures are
arranged in a way that rows from one to two correspond to LSQ flow, and CONS flow,
respectively. The first column plots the reconstructed image at iteration 5 while images
in the second column are results at iteration 60. The last column plots projection error
curves of LSQ and CONS flow for 60 iterations.
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Fig. 4. Reconstruction results using one reference images and eight other images. The
top row shows a low-resolution reference image with an ROI marked. Figures plotted
in the second row are bicubic interpolation result and LSQ flow based super-resolved
image. Finally, figures in the last row are CONS flow based super-resolved image and
the true high-resolution image.

4.3 Real Video Sequences

The final results are with one sequence for which there is no ground truth. So the
result is for visual quality assessment only. Again, we emphasize that no 2D/3D
global motion model is valid for this sequence since the bee and the flower are
swaying in the wind while the camera is moving. Fig.[d shows one original frame
and two super-resolved frames, one with LSQ flow and another with CONS flow.
The superior quality in terms of sharpness and detail for the latter is evident.

5 Conclusions

We have studied the feasibility of reconstruction-based super-resolution with re-
spect to errors in image alignment. An analysis of errors in optical flow indicates
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CONS flow based super-resolved image

Fig. 5. Comparison of super-resolved images from high-quality DV.

that optical flow based super-resolution may be feasible in the small noise case
since warping errors are well-behaved. However, even in the small noise case,
flow accuracy is important. We introduced the concept of flow consistency and
showed both quantitatively and qualitatively that flow consistency is critical
for super-resolution. In the context of flow consistency, we presented algorithms
that enforce consistency and demonstrated their efficacy. We plan to test these
ideas with other reconstruction based super-resolution algorithms. We are also
developing fully consistent bundled flow fields.
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