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Abstract. Traditional techniques of dense optical flow estimation don’t
generally yield symmetrical solutions: the results will differ if they are
applied between images I1 and I2 or between images I2 and I1. In this
work, we present a method to recover a dense optical flow field map from
two images, while explicitely taking into account the symmetry across
the images as well as possible occlusions and discontinuities in the flow
field. The idea is to consider both displacements vectors from I1 to I2 and
I2 to I1 and to minimise an energy functional that explicitely encodes
all those properties. This variational problem is then solved using the
gradient flow defined by the Euler–Lagrange equations associated to the
energy. In order to reduce the risk to be trapped within some irrelevant
minimum, a focusing strategy based on a multi-resolution technique is
used to converge toward the solution. Promising experimental results on
both synthetic and real images are presented to illustrate the capabilities
of this symmetrical variational approach to recover accurate optical flow.

1 Introduction and Motivation

A large number of methods have been proposed in the computer vision commu-
nity to address the important problem of motion analysis from image sequences.
In this paper, we are interested in computing the 2D optical flow field which is a
specific type of motion defined as the velocity field obtained from the temporal
changes of the intensity values of the image sequence. 2D optical flow estimation
has been extensively addressed in the literature, and the most common meth-
ods are correlation, gradient, spatiotemporal filtering, Fourier phase and energy
based approaches. We refer the interested reader to [6,17] for an excellent analy-
sis and evaluation of important optical flow methods. Many of these approaches
use the classical constraint equation that relates the gradient of brightness to
the components u and v of the local flow to estimate the optical flow. Because
this problem is ill-posed, additional constraints are usually required. The most
used one is to add a quadratic constraint on the gradient magnitude of the
flow to impose some form of smoothness on the flow field as done originally by
Horn and Schunk [16]. Other formulations have been proposed using different
smoothness constraints, but despite their interest, they clearly lacked robustness
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to the presence of occlusions and discontinuities. In order to estimate the optical
flow more accurately, one have to explicitely take into account the problem of
occlusions and discontinuities. See the following works, mostly based on varia-
tional approaches [20,19,10,24,15,14,22,13,5,18,11,3,31]. Due to the fact that the
functional to be minimised is generally not convex, some focusing strategy em-
bedding the method in a multi-resolution scheme or a linear scale-space have
been successfully applied to reduce the risk to get trapped in some irrelevant
minima [20,4,3].

The method presented here is inspired from this kind of variational framework
that has also proven recently to be very useful in many other image processing
and computer vision tasks [25,30,8,1]. We start explicitely with the method de-
scribed in [4] and modify it using ideas similar to those developed in [9] to obtain
an algorithm that will give the same solution if applied between images A and
B or between images B and A. Contrarily to [9], we deal with discontinuities of
the flow field and explicitely take into account the possibility of occlusions.

The article is organised as follows: in section 2, we will introduce some nota-
tions and basic concepts on which the approach will be based, section 3 describes
the method which is demonstrated on some examples in section 4.

2 Notations and Previous Work

In this paper, images are represented as functions that map some coordinate
space D to an intensity space I. We consider that two images, I1 and I2, of the
same scene are given:

I1 : D1 �−→ I and I2 : D2 �−→ I .

Note that it is assumed here that the two images share the same range I.
This assumption can be made without loss of generality as it is always possible to
preprocess the images in order to normalize them. Preprocessing also allows us
to limit ourselves on SSD-like (Sum of Squared Differences) criteria to compare
the values of I1 and I2. The basic problem addressed by this paper is establish-
ing dense correspondences between those two images. To do so, two unknown
functions, h1 and h2, are introduced:

h1 : Ω1 ⊂ D1 �−→ Ω2 and h2 : Ω2 ⊂ D2 �−→ Ω1 .

For each point m1 = (x1, y1) of Ω1 (resp. m2 = (x2, y2) of Ω2), the function
h1 (resp. h2) give its corresponding point h1(m1) = [u1(x1, y1), v1(x1, y1)]T in
Ω2 (resp. the point h2(m2) = [u2(x2, y2), v2(x2, y2)]T in Ω1). Note that we have
been careful to define these functions on subsets of D1 and D2 so that we can take
account of occlusions in both images which are defined by the sets D1 \ Ω1 and
D2 \Ω2 respectively. Consequently, a good matching should satisfy the following
two properties:

h2 ◦ h1 = IdΩ1 and h1 ◦ h2 = IdΩ2 , (1)
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where IdΩi
denotes the identity over the domain Ωi. These equations mean that

there is a one-to-one correspondence between the sets Ω1 and Ω2 (ie that the
matched points are corresponding to each other) or equivalently that h1 = h−1

2
and h2 = h−1

1 .

2.1 Dense Optical Flow

Given the previous notations, optical flow computation procedures have been
defined as variational scheme that minimise an energy functional of the form:

E1(h1) = EM
1 (h1) + αER

1 (h1) , (2)

where α is a weighting factor and EM
1 (h1) and ER

1 (h1) represents the matching
and regularisation costs, respectively. The matching term can be written as:

EM
1 (h1) =

1
max ‖∇I1‖2

∫
Ω1

(I1(m1) − I2(h1(m1)))
2
dm1

As announced previously, EM
1 (h1) corresponds to a SSD-like criterion, which

is allowed by our assumptions. The factor in front of the integral is used to
normalize the relative strength of the terms EM

1 (h1) and ER
1 (h1). Various differ-

ent proposals have been made for the regularisation term. To prevent the flow
map to be smoothed by the algorithm across images boundaries, we have cho-
sen to use Nagel-Enkelmann operator [20] , first because its efficiency has been
demonstrated numerous times in the context of optical flow estimations [3,6,12,
19,21,20,26,27] and because of its simplicity since the underlying second order
differential operator is linear.

ER
1 (h1) =

∫
Ω1

Φ (D(‖∇I1‖),∇h1) dm1 ,

with:

Φ (D(∇Ii),∇hi) = trace
(∇(hi)tD(∇Ii)∇(hi)

)
,

where ∇(hi) denotes the Jacobian matrix of the function hi(mi). Since hi(mi) =
[ui(mi), vi(mi)]T , the previous formula can also be written as:

Φ (D(∇Ii),∇hi) = ∇ut
1D (∇I1)∇u1 + ∇ut

2D (∇I1)∇u2

D (∇I1) is a regularised projection matrix in the direction perpendicular to
∇I1

D (∇I1) =
1

‖∇I1‖2 + 2ν2



[

∂I1
∂y1

− ∂I1
∂x1

][
∂I1
∂y1

− ∂I1
∂x1

]t

+ ν2Id


 . (3)
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In this formulation, Id denotes the identity matrix and ν is a parameter used to
control the desired level of isotropy.

It is interesting to note that the matrix D(∇I1) plays the role of a diffusion
tensor. Its eigenvectors are v1 := ∇I1 and v2 := ∇I⊥

1 , and the corresponding
eigenvalues are given by

λ1(‖∇I1‖) = ν2

‖∇I1‖2 + 2ν2 , (4)

λ2(‖∇I1‖) = ‖∇I1‖2 + ν2

‖∇I1‖2 + 2ν2 . (5)

In the interior of objects we have ‖∇I1‖ → 0, and therefore λ1 → 1/2 and
λ2 → 1/2. At ideal edges where ‖∇I1‖ → ∞, we obtain λ1 → 0 and λ2 → 1.
Thus, we have isotropic behaviour within regions, and at image boundaries the
process smoothes anisotropically along the edge. This behaviour is very similar
to edge-enhancing anisotropic diffusion filtering [29,28], and it is also close in
spirit to the modified mean-curvature motion considered in [2,1].

At this point, two remarks can be made:

– Since Ω1 is usually unknown, the domain D1 is used instead in the previous
integrals.

– The criterion depicted above is clearly non-symmetrical in the images I1
and I2 so that the minimisation of E1(h1) and that of the similarly defined
E2(h2) will not yield functions h1 and h2 that satisfy the constraints (1). In
other words, the two procedures will not give the same matching which is
unfortunate.

In the following section, we will discuss a method to reintroduce the symme-
try across the two images while allowing simultaneously the detection of occlu-
sions. Section 4 describes results obtained with this method.

3 Symmetric Optical Flow

Let us first assume that the function h2 is known. The first step is to extend the
energy depicted in equation (2) by adding a term ES

1 (h1) to impose the first of
the two constraints (1):

E′
1(h1, h2) = EM

1 (h1) + αER
1 (h1) + βES

1 (h1, h2) , (6)

where β is another weighting factor. ES
1 (h1) can be written as:

ES
1 (h1, h2) =

∫
Ω1

Ψ
(
‖h2(h1(m1)) − IdΩ1(m1)‖2

)
dm1 ,

where Ψ is a function that will be used to provide some robustness in the method.
This function will be detailed in section 3.3. For the time being, we can assume
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that Ψ(s) = s. A large value of ‖h2(h1(m1)) − IdΩ1(m1)‖ means a lack of sym-
metry in the matching (h2 being given). Assuming that h2 is correct, when the
solution for h1 is reached, the most probable reasons for such a situation is an
occlusion problem or an error in the estimated matching. Notice that taking only
the first of the two constraints (1) just imposes that h1 is injective and that h2
is mapping from h1(Ω1) onto Ω1.

It is possible to define E′
2(h1, h2) in a similar fashion, with the roles of hi, i =

1..2 and the Ωi, i = 1..2 reversed. A completely symmetric criterion is then
obtained easily by:

E′(h1, h2) = E′
1(h1, h2) + E′

2(h1, h2) .

3.1 A Multi-resolution Scheme Approach to Escape from Local
Minima

In general, the Euler–Lagrange equation associated to the energy E′ will have
multiple solutions. As a consequence, the asymptotic state of the parabolic equa-
tion that will be used to minimize E′, will depend on the initial data (h0

1, h
0
2).

Typically, we may expect the algorithm to converge toward a local minimum
of the energy functional that is located in the vicinity of that initial data. To
reduce the risk of being trapped into irrelevant local minima, we embed our
method into a multi-resolution framework. At the coarsest-scale the problem
is much smoother, so that many irrelevant local minima disappear. Using the
coarse-scale solution as initialisation for finer scales helps in getting close to the
most relevant global minimum. A detailed analysis of the usefulness of such a
focusing strategy in the context of a related optic flow problem can be found for
instance in [4].

3.2 Minimising the Energy

The previous energy function is minimised as the asymptotic solution of a gradi-
ent flow based on the Euler–Lagrange partial differential equation corresponding
to the energy E′. In order to look for the minimum of this energy, we proceed in
an iterative way as follows: first we begin with an initial approximation (h0

1, h
0
2)

and then obtain (hn+1
1 , hn+1

2 ) from (hn
1 , hn

2 ) as an iteration of a gradient descent
method applied to the energy:

E′(hn+1
1 , hn+1

2 ) = E′
1(h

n+1
1 , hn

2 ) + E′
2(h

n
1 , hn+1

2 )

The initial approximation is obtained by a classical correlation at the coarsest
level of resolution. For the gradient descent, applying Euler-Lagrange, and using
the notation Ih = I ◦ h for compactness, we obtain:

∂E′

∂h1
= −

(
I1 − Ih1

2

)
(∇I2)

h1 − αdiv (D(‖∇I1‖)∇h1) +

βΨ ′
(
‖h2 ◦ h1 − IdΩ1‖2

)
(∇h2)

h1 · (h2 ◦ h1 − IdΩ1)
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∂E′

∂h2
= −

(
I2 − Ih2

1

)
(∇I1)

h2 − αdiv (D(‖∇I1‖)∇h2) +

βΨ ′
(
‖h1 ◦ h2 − IdΩ2‖2

)
(∇h1)

h2 · (h1 ◦ h2 − IdΩ2)

Using coordinates, the updates for the evolution of the PDE are:(
∂u1
∂t

∂v1
∂t

)
= −∂E′

∂h1

(
∂u2
∂t

∂v2
∂t

)
= −∂E′

∂h2

Given a time step dt, these equations give the updates du1, dv1, du2, dv2 that
must be applied to (hn

1 , hn
2 ) to obtain (hn+1

1 , hn+1
2 ).

3.3 Choosing the Function Ψ

As said above, Ψ(.) can be chosen to improve the robustness of the algorithm.
We have tested two possibilities:

Ψ1(s) = s , Ψ2(s) =
s

γ
e1− s

γ ,

where γ is a threshold for which we consider there is a good matching. Note
that the function Ψ1 corresponds to standard least-squares (remember that the
function Ψ is applied to the square of the error values), whereas Ψ2 is similar in
essence to least-trimmed-squares which can be used to deal with outliers. Indeed,
with least-trimmed-squares, only the smallest residuals are summed up into the
criterion. This is what achieves the function Ψ2 (see figure 1): when the error
is too large, the function Ψ2 cancels its contribution to the criterion whereas
for small errors it has a linear behaviour. These two constraints along with the
fact that a variationnal approach is used so that the function chosen must be
differentiable, imposes the general shape of the Ψ function. Ψ2 is such a function
(other choices obeying to the same constraints can be made).

In preliminary experiments, we have noticed that the locations where the
flows obtained as the solutions of E1 and E2 are the least symmetrical with each
other can be associated with the occlusions of the two images. We will use this
property to recover those locations. To do so, the domain of integration will be
extended to the whole images (ie D1 and D2 respectively), but the symmetry
errors will be weighted by the Ψ2 function. This weighting ensures that the large
errors in symmetry will not affect the criterion. As a consequence the sub-domain
Ω1 can be found as the domain where the un-weighted errors are too large. A
better choice of the function Ψ is under consideration [7].

4 Experimental Results

We now show results on both synthetic and real images. In both cases, the
theoretical flow is available, and a comparison of the obtained and the expected
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Fig. 1. Ψ2(s2)

results will be made. For both the experiments, the algorithm has been run
for 200 iterations with a time step dt = 10. In [4], the non-symmetric method
is compared with the other (the ones used in [6]) classical dense optical flow
methods that give a density of matches of 100%. Typically, the non-symmetric
method yields better results than the classical ones. Consequently, in this section,
the comparison is limited to the non-symmetric and symmetric methods which
have been depicted in the previous sections. This is the most relevant option.

4.1 Synthetic Images

We have first tried our algorithm with the set of synthetic images depicted in
figure 2. Occlusion with these images is important so that they were processed
with the robust version, ie Ψ = Ψ2. Figure 3 show the theoretical result that
should be obtained.

Fig. 2. The initial input images

Figure 4 shows the results obtained with our algorithm. A pyramid of three
levels of resolution have been used with α = 1, β = 0.5, γ = 5 and ν = 0.1.
Notice how the smoothness constraint, managed to give reasonnable results (of
course there are multiple solutions, but the algorithm choose one of minimal
cost with respect to the smoothness constraint) in homogeneous regions while
being able to respect the discontinuities. Figure 5 shows the computed occlusion
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Fig. 3. The true optic flow. On the left (resp. right), the u (resp. v) component of the
true flow. On the top (resp bottom) is the true function h1 (resp. h2).

images. These were obtained by selecting the image points where the symmetry
conditions are violated by more than a fixed threshold (γ = 5). As it can be
seen, these locations correspond fairly well to the occlusions. However, these
have been slightly eroded on the background side of the occluding region, as the
smoothing term of the partial differential equation has been in action at those
locations.

In addition, table 1 shows the two error measures for both the symmetric
and the non-symmetric cases and for both the left-to-right and the right-to-left
flows. The two measures are the average of Euclidean norm of the difference
between the true and the computed flow and the average angle between those
two flows as defined in [6]. These measures are averaged only on the squares as
the flow is undefined on the background with these images. It can be seen that
errors are roughly divided by two with symmetrisation.

Finally, figure 6 shows the residual symmetry errors ‖h1 ◦ h2 − Id‖ and
‖h2 ◦ h1 − Id‖ over the images. Except in the occluded regions, these errors
are very close to zero (black) everywhere, which shows that the algorithm in-
deed obtained a symmetric matching. The maximum symmetry error (outside of
the occluded regions) is of about 1.0 for both ‖h1 ◦ h2 − Id‖ and ‖h2 ◦ h1 − Id‖
with the symmetrical method and of about 25.5 with the non-symmetric one
(since the background is textureless there is no way the non-symmetric method
can give symmetrical flows).
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Fig. 4. The computed optic flow. On the left (resp. right), the u (resp. v) component
of flow. On the top (resp. bottom) is shown h1 (resp. h2).

Fig. 5. The computed occlusions. On the left (resp. right), the occlusion mask com-
puted for the first (resp. second) image. On the top (resp bottom) is the true (resp.
the computed) occlusions.
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Table 1. The mean errors in norm and angle between the computed and the true flow
in the non-symmetric and the symmetric cases. LR (resp. RL) means left to right (resp.
right to left) flow.

Euclidean norm Error Angular Error

Non symmetrical
LR 0.16 0.50
RL 0.18 0.58

Symmetrical
LR 0.081 0.18
RL 0.084 0.19

Fig. 6. The symmetry errors ‖h1 ◦ h2− Id‖ (left) and ‖h2 ◦ h1− Id‖ (right).

4.2 Real Images

The algorithm depicted above has also been run on various pairs of real images.
One particularly useful pair is that provided in the paper [23] as it provides
the ground truth optical flow. These images have been kindly provided by the
KOGS/IAKS group of Karlsruhe University. Figures 7 and 8 show the input
images and the two components of the true flow. As there is very little occlusion
with these images, they were processed with the variant Ψ = Ψ1.

Fig. 7. The initial input images
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Figure 9 give the results obtained with this set of data both with (on the
bottom) and without (on the top) the symmetrisation constraints. Three levels
of resolution have been used with α = 0.3, β = 0.1 and ν = 0.3. As it can be
seen, the symmetrisation constraints had several effects:

– The flow estimated on the floor is smoother.
– The computed flow on the column situated at the middle of the image is

more homogeneous.
– The large error at the places marked with the letters A and C has disappeared

at the cost of a much smaller one at the bottom right.
– The vertical component of the flow in the background is much more con-

sistent with the ground truth solution (see the location marked with the
letter B). In this very low-textured zone, the addition of the symmetry con-
straint resulted in a much better solution than the one obtained with just
the regularisation constraint.

Fig. 8. The true optical flow. On the left (resp. right), the u (resp. v) component of
the true flow.

In addition, figure 10 shows the two error measures: the Euclidean norm of the
difference between the true and the computed flow, and the angle between those
two flows as defined in [6]. Table 2 summarises the means of these two errors.
Here again, errors are roughly divided by two with the symmetric method.

Table 2. The mean errors in norm and angle between the computed and the true flow.

Euclidean norm Error Angular Error
Non symmetrical 0.37 9.4
Symmetrical 0.17 5.2

Finally, figure 11 shows the the residual symmetry errors ‖h1 ◦ h2 − Id‖ and
‖h2 ◦ h1 − Id‖ over the images. Here again, these errors are very close to zero
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A

B

C

Fig. 9. The estimated optic flow with (top) and without (bottom) the symmetry con-
straint. On the left (resp. right) is shown the u (resp. v) component of the computed
optical flow.

everywhere so that it has been necessary to show the images with a gamma cor-
rection of 2, in order to see the residual errors. Small problems remain along the
edges of the marbled floor where the texture contours have affected the symme-
try constraint. The maximal symmetry errors are of about 0.8 for ‖h1 ◦ h2 − Id‖
and 1.4 for ‖h2 ◦ h1 − Id‖ with the symmetric method and respectively of 1.5
and 1.9 with the non-symmetric one.

5 Conclusion

In this paper, we have presented a PDE based optical flow estimation that
preserve the discontinuity of the flow field along the image contours in such a way
that it is symmetrical with respect to both images. This is done by computing
simultaneously the flow from image 1 to image 2 and from image 2 to image 1,
while adding explicit terms in the PDE that constrain those two flows to be
compatible. The places where this compatibility cannot be achieved correspond
to occlusions, so that the process allows for the detection of sufficently large
occlusions. The experimental results on synthetic and real images demonstrate
the validity of the approach and the importance of the symmetry term, not only
for the accuracy of the results but also as a tool to recover occluded regions.

It is important to note that the ideas developed can be generalized to many
similar situations. For example, they can be very easily extended to deal with
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Fig. 10. The errors on the optical flow with (top) and without (bottom) the symmetry
constraint. On the left (resp. right) is shown the angular (resp. Euclidian) error of the
computed optical flow.

Fig. 11. The symmetry errors ‖h1 ◦ h2− Id‖ (left) and ‖h2 ◦ h1− Id‖ (right). These
images are displayed with a gamma correction of 4, otherwise they would have appeared
totally black.
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stereo images (ie when the matching is constrained to safisfy some given epipolar
geometry). This is an ongoing research. More details will be given in a forth-
coming research report.
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13. S. Ghosal and P. Vanĕk. A fast scalable algorithm for discontinuous optical flow
estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(2):181–194, Feb. 1996.



Symmetrical Dense Optical Flow Estimation with Occlusions Detection 735

14. F. Guichard and L. Rudin. Accurate estimation of discontinuous optical flow
by minimizing divergence related functionals. In Proceedings of the International
Conference on Image Processing, volume I, pages 497–500, 1996.

15. F. Heitz and P. Bouthemy. Multimodal estimation of discontinuous optical flow
using markov random fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(12):1217–1232, Dec. 1993.

16. B. Horn and B. Schunk. Determining optical flow. Artificial Intelligence, 17:185–
203, 1981.

17. B. McCane, K. Novins, D. Crannitch, and B. Galvin. On benchmarking optical
flow. Computer Vision and Image Understanding, 84(1):126–143, 2002.

18. E. Memin and P. Perez. Multiresolution Markov random field and multigrid algo-
rithm for discontinuity preserving estimation of the optical flow. In Proceedings of
the International Society for Optical Engineering, San Diego, USA, July 1995.

19. H. Nagel. Constraints for the estimation of displacement vector fields from image
sequences. In International Joint Conference on Artificial Intelligence, pages 156–
160, 1983.

20. H. Nagel and W. Enkelmann. An investigation of smoothness constraint for the
estimation of displacement vector fiels from images sequences. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8:565–593, 1986.

21. H.-H. Nagel. On the estimation of optical flow: relations between different ap-
proaches and some new results. Artificial Intelligence Journal, 33:299–324, 1987.

22. P. Nési. Variational approach to optical flow estimation managing discontinuities.
Image and Vision Computing, 11(7):419–439, Sept. 1993.

23. M. Otte and H. Nagel. Optical flow estimation: Advances and comparisons. In
J.-O. Eklundh, editor, Proceedings of the 3rd European Conference on Computer
Vision, volume 800 of Lecture Notes in Computer Science, pages 51–70. Springer–
Verlag, 1994.

24. M. Proesmans, L. Van Gool, E. Pauwels, and A. Oosterlinck. Determination of
Optical Flow and its Discontinuities using Non-Linear Diffusion. In Proceedings
of the 3rd ECCV, II, number 801 in Lecture Notes in Computer Science, pages
295–304. Springer–Verlag, 1994.

25. G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cam-
bridge University Press, 2001.
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