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Abstract. Sequential random sampling (‘Markov Chain Monte-Carlo’) is a
popular strategy for many vision problems involving multimodal distributions
over high-dimensional parameter spaces. It applies both to importance sampling
(where one wants to sample points according to their ‘importance’ for some
calculation, but otherwise fairly) and to global optimization (where one wants
to find good minima, or at least good starting points for local minimization,
regardless of fairness). Unfortunately, most sequential samplers are very prone
to becoming ‘trapped’ for long periods in unrepresentative local minima, which
leads to biased or highly variable estimates. We present a general strategy for
reducing MCMC trapping that generalizes Voter’s ‘hyperdynamic sampling’
from computational chemistry. The local gradient and curvature of the input
distribution are used to construct an adaptive importance sampler that focuses
samples on low cost negative curvature regions likely to contain ‘transition states’
— codimension-1 saddle points representing ‘mountain passes’ connecting
adjacent cost basins. This substantially accelerates inter-basin transition rates
while still preserving correct relative transition probabilities. Experimental tests
on the difficult problem of 3D articulated human pose estimation from monocular
images show significantly enhanced minimum exploration.

Keywords. Hyperdynamics, Markov-chain Monte Carlo, importance sampling,
global optimization, human tracking.

1 Introduction

Many vision problems can be formulated either as global minimizations of highly non-
convex cost functions with many minima, or as statistical inferences based on fair sam-
pling or expectation-value integrals over highly multi-modal distributions. Importance
sampling is a promising approach for such applications, particularly when combined
with sequential (‘Markov Chain Monte-Carlo’), layered or annealed samplers [8, 4, 5],
optionally punctuated with bursts of local optimization [10, 3, 25]. Sampling methods
are flexible, but they tend to be computationally expensive for a given level of accuracy.
In particular, when used on multi-modal cost surfaces, current sequential samplers are
very prone to becoming trapped for long periods in cost basins containing unrepresen-
tative local minima. This ‘trapping’ or ‘poor mixing’ leads to biased or highly variable
estimates whose character is at best quasi-local rather than global. Trapping times are
typically exponential in a (large) scale parameter, so ‘buying a faster computer’ helps
little. Current samplers are myopic mainly because they consider only the size of the
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integrand being evaluated or the lowness of the cost being optimized when judging ‘im-
portance’. For efficient global estimates, it is also critically ‘important’ to include an
effective strategy for reducing trapping, e.g. by explicitly devoting some fraction of the
samples to moving between cost basins.

This paper describes a method for reducing trapping by ‘boosting’ the dynamics
of the sequential sampler. Our approach is based on Voter’s ‘hyperdynamics’ [29, 30],
which was originally developed in computational chemistry to accelerate the estimation
of transition rates between different atomic arrangements in atom-level simulations of
molecules and solids. There, the dynamics is basically a thermally-driven random walk
of a point in the configuration space of the combined atomic coordinates, subject to
an effective energy potential that models the combined inter-atomic interactions. The
configuration-space potential is often highly multimodal, corresponding to different
large-scale configurations of the molecule being simulated. Trapping is a significant
problem, especially as the fine-scale dynamics must use quite short time-steps to ensure
accurate physical modelling. Mixing times of 106–109 or more steps are common. In our
target applications in vision the sampler need not satisfy such strict physical constraints,
but trapping remains a key problem.

Hyperdynamics reduces trapping by boosting the number of samples that fall near
‘transition states’— low lying saddle points that the system would typically pass through
if it were moving thermally between adjacent energy basins. It does this by modifying
the cost function, adding a term based on the gradient and curvature of the original po-
tential that raises the cost near the cores of the local potential basins to reduce trapping
there, while leaving the cost intact in regions where the original potential has the neg-
ative curvature eigenvalue and low gradient characteristic of transition neighborhoods.
Hyperdynamics can be viewed as a generalized form of MCMC importance sampling
whose importance measure considers the gradient and curvature as well as the values of
the original cost function. The key point is not the specific form adopted for the poten-
tial, but rather the refined notion of ‘importance’: deliberately adding samples to speed
mixing and hence reduce global bias (‘finite sample effects’), even though the added
samples are not directly ‘important’ for the calculation being performed.

Another general approach to multi-modal optimization is annealing — initially sam-
pling with a reduced sensitivity to the underlying cost (‘higher temperature’), then pro-
gressively increasing the sensitivity to focus samples on lower cost regions. Annealing
has been used many times in vision and elsewhere1, e.g. [18, 5], but although it works
well in many applications, it has important limitations as a general method for reducing
trapping. The main problem is that it samples indiscriminately within a certain energy
band, regardless of whether the points sampled are likely to lead out of the basin towards
another minimum, or whether they simply lead further up an ever-increasing potential
wall. In many applications, and especially in high-dimensional or ill-conditioned ones,
the cost surface has relatively narrow ‘corridors’ connecting adjacent basins, and it is
important to steer the samples towards these using local information about how the
cost appears to be changing. Hyperdynamics is a first attempt at doing this. In fact,
these methods are complementary: it may be possible to speed up hyperdynamics by
annealing its modified potential, but we will not investigate this here.

1 Raising the temperature is often unacceptable in chemistry applications of hyperdynamics, as
it may significantly change the problem. E.g., the solid being simulated might melt...
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1.1 What Is a Good Multiple-Mode Sampling Function?

‘The curse of dimensionality’ causes many difficulties in high-dimensional search. In
stochastic methods, long sampling runs are often needed to hit the distribution’s ‘typical
set’ — the areas where most of the probability mass is concentrated. In sequential
samplers this is due to the inherently local nature of the sampling process, which tends
to become ‘trapped’ in individual modes, moving between them only very infrequently.
More generally, choosing an importance sampling distribution is a compromise between
tractable sampleability and efficient focusing of the sampling resources towards ‘good
places to look’.

There are at least three issues in the design of a good multi-modal sampler: (i)
Approximation accuracy: in high dimensions, when the original distribution is complex
and highly multi-modal (as is the case in vision), finding a good approximating function
can be very difficult, thus limiting the applicability of the method. It is therefore appealing
to look for ways of using a modified version of the original distribution, as for instance in
annealing methods [18, 5]. (ii)Trapping: even when the approximation is locally accurate
(e.g. by sampling the original distribution, thus avoiding any sample-weighting artifacts),
most sampling procedures tend to get caught in the mode(s) closest to the starting point
of sampling. Very long runs are needed to sample infrequent inter-mode transition events
that lie far out in the tails of the modal distributions, but that can make a huge difference
to the overall results. (iii)Biased transition rates: annealing changes not only the absolute
inter-mode transition rates (thus reducing trapping), but also their relative sizes [27]. So
there is no guarantee that the modes are visited with the correct relative probabilities
implied by the dynamics on the original cost surface. This may seem irrelevant if the
aim is simply to discover ‘all good modes’or ‘the best mode’, but the levels of annealing
needed to make difficult transitions frequent can very significantly increase the number
of modes and the state space volume that are available to be visited, and thus cause the
vast bulk of the samples to be wasted in fruitless regions2. This is especially important
in applications like tracking, where only the neighboring modes that are separated from
the current one by the lowest energy barriers need to be recovered.

To summarize, for complex high dimensional problems, finding good, sampleable
approximating distributions is hard, so it is useful to look at sequential samplers based
on distributions derived from the original one. There is a trade-off between sampling for
local computational accuracy, which requires samples in ‘important’ regions, usually
mode cores, and sampling for good mixing, which requires not only more frequent
samples in the tails of the distribution, but also that these should be focused on regions
likely to lead to inter-modal transitions. Defining such regions is delicate in practice, but
it is clear that steering samples towards regions with low gradient and negative curvatures
should increase the likelihood of finding transition states (saddle points with one negative
curvature direction) relative to purely cost-based methods such as annealing.

2 There is an analogy with the chemist’s melting solid, liquids being regions of state space with
huge numbers of small interconnected minima and saddles, while solids have fewer, or at least
more clearly defined, minima. Also remember that state space volume increases very rapidly
with sampling radius in high dimensions, so dense, distant sampling is simply infeasible.
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1.2 Related Work

Now we briefly summarize some relevant work on high-dimensional search, especially
in the domain of human modelling and estimation. Cham & Rehg [3] perform 2D track-
ing with scaled prismatic models. Their method combines a least squares intensity-based
cost function, particle filtering with dynamical noise style sampling, and local optimiza-
tion of a mixture of Gaussians state probability representation. Deutscher et al [5] track
3D body motion using a multi-camera silhouette-and-edge based likelihood function
and annealed sampling within a temporal particle filtering framework. Their sampling
procedure resembles one used by Neal [18], but Neal also includes an additional im-
portance sampling correction designed to improve mixing. Sidenbladh et al [22] use an
intensity based cost function and particle filtering with importance sampling based on a
learned dynamical model to track a 3D model of a walking person in an image sequence.
Choo & Fleet [4] combine particle filtering and hybrid Monte Carlo sampling to esti-
mate 3D human motion, using a cost function based on joint re-projection error given
input from motion capture data. Sminchisescu & Triggs [25] recover articulated 3D mo-
tion from monocular image sequences using an edge and intensity based cost function,
with a combination of robust constraint-consistent local optimization and ‘oversized’
covariance scaled sampling to focus samples on probable low-cost regions.

Hyperdynamics uses stochastic dynamics with cost gradient based sampling as in
[8, 17, 4], but ‘boosts’ the dynamics with a novel importance sampler constructed from
the original probability surface using local gradient and curvature information. All of the
annealing methods try to increase transition rates by sampling a modified distribution, but
only the one given here specifically focuses samples on regions likely to contain transition
states. There are also deterministic local-optimization-based methods designed to find
transition states. See our companion paper [26] for references.

2 Sampling and Transition State Theory

2.1 Importance Sampling

Importance sampling works as follows. Suppose that we are interested in quantities de-
pending on the distribution of some quantity x, whose probability density is proportional
to f(x). Suppose that it is feasible to evaluate f(x) pointwise, but that we are not able
to sample directly from the distribution it defines, but only from an approximating dis-
tribution with density fb(x). We will base our estimates on a sample of N independent
points, x1, ...,xN drawn from fb(x). The expectation value of some quantity V (x) with
respect to f(x) can then be estimated as V̄ =

∑N
i=1 wi V (xi)/

∑N
i=1 wi, where the im-

portance weighting of xi is wi = f(xi)/fb(xi) (this assumes that fb(x) �= 0 whenever
f(x) �= 0). It can be proved that the importance sampled estimator converges to the
mean value of V as N increases, but it is difficult to assess how reliable the estimate V̄
is in practice. Two issues affect this accuracy: the variability of the importance weights
due to deviations between f(x) and fb(x), and statistical fluctuations caused by the
improbability of sampling infrequent events in the tails of the distribution, especially if
these are critical for estimating V̄ .
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2.2 Stochastic Dynamics

Various methods are available for speeding up sampling. Here we use a stochastic dy-
namics method on the potential surface defined by our cost function (the negative log-
likelihood of the state probability given the observations, f(x) = − log p(x|·) ). Canon-
ical samples from f(x) can be obtained by simulating the phase space dynamics defined
by the Hamiltonian function:

H(x,p) = f(x) + K(p)

where K(p) = p�p/2 is the kinetic energy, and p is the momentum variable. Averages
of variables V over the canonical ensemble can be computed by using classical 2N-
dimensional phase-space integrals:

〈V 〉 =
∫∫

V (x,p)e−αf(x)e−αK(p)dxdp∫∫
e−αf(x)e−αK(p)dxdp

where α = 1/T is the temperature constant. Dynamics (and hence sampling) is done by
locally integrating the Hamilton equations:

dx
dt

= p and
dp
dt

= −df(x)
dx

using a Langevin Monte Carlo type integration/rejection scheme that is guaranteed to
perform sampling from the canonical distribution over phase-space:

xi+1 = xi − ∆t2sd

2
df(x)
dx

+ ∆tsdni (1)

where ni is a vector of independently chosen Gaussian variables with zero mean and
unit variance, and ∆tsd is the stochastic dynamics integration step. Compared to so
called ‘hybrid’ methods, the Langevin method can be used with a larger step size and
this is advantageous for our problem, where the step calculations are relatively expensive
(see [17] and its references for a more complete discussion of the relative advantages
of hybrid and Langevin Monte Carlo methods)3. For physical dynamics t represents the
physical time, while for statistical calculations it simply represents the number of steps
performed since the start of the simulation. The simulation time is used in §3 below to
estimate the acceleration of infrequent events produced by the proposed biased potential.

2.3 Transition State Theory

Continuing the statistical mechanics analogy begun in the previous section, the behavior
of the physical system can be characterized by long periods of ‘vibration’ within one

3 Note that the momenta are only represented implicitly in the Langevin formulation: there is no
need to update their values after each leapfrog step as they are immediately replaced by new ones
drawn from the canonical distribution at the start of each iteration. If approximate cost Hessian
information is also available, the gradient in (1) can be projected onto the Hessian eigen-basis
and its components weighted by the local eigen-curvatures to give an effective ‘Newton-like’
step. We use such steps near saddle points, where the hyperdynamic bias potential is essentially
zero, to avoid the inefficiencies of random walk behavior there.
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Fig. 1. The original cost function and the bias added for hyperdynamics.

‘state’ (energy basin), followed by infrequent transitions to other states via saddle points.
In the ‘transition state theory’ (TST) approximation, the transition rates between states
are computed using the sample flux through the dividing surface separating them. For
a given state S, this is the N − 1 dimensional surface separating the state S from its
neighbors. The rate of escape from state S is:

ktst
S→ = 〈 |νS | δS(x) 〉S

where δs(x) is a Dirac delta function positioned on the dividing surface of S and νs is
the velocity normal to this surface. Crossings of the dividing surface correspond to true
state change events, and we assume that the system loses all memory of this transition
before the next event.

3 Accelerating Transition State Sampling

In the above formalism, the TST rate can be evaluated as follows:

ktst
S→ =

∫∫ |νS | δS(x) e−αf(x) e−αK(p) dxdp∫∫
e−αf(x) e−αK(p) dxdp

Now consider adding a positive bias or boost cost fb(x) (with a corresponding ‘biased’
state Sb) to the original cost f(x), with the further property that fb(x) = 0 whenever
δS(x) �= 0, i.e. the potential is unchanged in the transition state regions. The TST rate
becomes:

ktst
S→ =

∫∫ |νS | δS(x) e−α[f(x)+fb(x)] eαfb(x) e−αK(p) dxdp∫∫
e−αf(x) e−αK(p) dxdp

(2)

=

〈 |νS | δS(x) eαfb(x)
〉

Sb

〈 eαfb(x) 〉Sb

=
〈 |νS | δS(x) 〉Sb

〈 eαfb(x) 〉Sb

(3)

The boost term increases every escape rate from state S as the cost well is made shallower,
but it leaves the ratios of escape rates from S, Sb to other states S1, S2 invariant:

ktst
S→S1

ktst
S→S2

=
ktst

Sb→S1

ktst
Sb→S2

This holds because all escape rates from S all have the partition function of S as denom-
inator, and replacing this with the partition function of Sb leaves their ratios unchanged.
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Concretely, suppose that during Nt steps of classical dynamics simulation on the bi-
ased cost surface, we encounter Ne escape attempts over the dividing surface. For the
computation, let us also assume that the simulation is artificially confined to the basin
of state S by reflecting boundaries. (This does not happen in real simulations: it is used
here only to estimate the ‘biased boost time’). The TST escape rate from state S can
be estimated simply as the ratio of the number of escape attempts to the total trajectory
length: ktst

S = Ne/(Nt∆tsd). Consequently, the mean escape time (inverse transition
rate) from state S can be estimated from (2) as:

τS
esc =

1
ktst

S→
=

〈 eαfb(x) 〉Sb

〈 |νS | δS(x) 〉Sb

=
1

Nt

∑Nt

i=1 eαfb(xi)

Ne/(Nt ∆tsd)
=

1
Ne

Nt∑
i=1

∆tsd eαfb(xi)

The effective simulation time boost achieved in step i thus becomes simply:

∆tbi
= ∆tsde

αfb(xi) (4)

The dynamical evolution of the system from state to state is still correct, but it works
in a distorted time scale that depends exponentially on the bias potential. As the system
passes through regions with high fb, its equivalent time ∆tb increases rapidly as it
would originally have tended to linger in these regions (or more precisely to return to
them often on the average) owing to their low original cost. Conversely, in zones with
small fb the equivalent time progress at the standard stochastic dynamics rate. Of course,
in reality the simulation’s integration time step and hence its sampling coarseness are
the same as they were in the unboosted simulation. The boosting time (4) just gives
an intuition for how much time an unaccelerated sampler would probably have wasted
making ‘uninteresting’ samples near the cost minimum. But that is largely the point: the
wastage factors are astronomical in practice — unboosted samplers can not escape from
local minima.

4 The Biased Cost

The main requirements on the bias potential are that it should be zero on all dividing
surfaces, that it should not introduce new sub-wells with escape times comparable to
the main escape time from the original cost well, and that its definition should not
require prior knowledge of the cost wells or saddle points (if we knew these we could
avoid trapping much more efficiently by including explicit well-jumping samples). For
sampling, the most ‘important’ regions of the cost surface are minima, where the Hessian
matrix H has strictly positive eigenvalues, and transition states, where it has exactly one
negative eigenvalue e1 < 0. The gradient vector vanishes in both cases. The rigorous
definition of the TST boundary is necessarily global4, but locally near a transition state
the boundary contains the state itself and adjacent points where the Hessian has a negative
eigenvalue and vanishing gradient component along the corresponding eigenvector:

gp1 = V�
1g = 0 and e1 < 0 (5)

4 The basin of state S can be defined as the set of configurations from which gradient descent
minimization leads to the minimum S. This basin is surrounded by an (n−1)-D hypersurface,
outside of which local descent leads to states other than S.
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where g is the gradient vector and V1 is the first Hessian eigenvector. Voter [29, 30]
therefore advocates the following bias cost for hyperdynamics:

fb =
hb

2


 1 +

e1√
e2
1 + g2

p1/d2


 (6)

where hb is a constant controlling the strength of the bias and d is a length scale (e.g. an
estimate of the typical nearest-neighbour distance between minima, if this is available).
Note that Voter’s fb has all of the properties required in §3. In particular, it is zero on the
dividing surface, as can be seen from (5) and (6).

Increasing hb increases the bias and hence the nominal boosting. In principle it
is even permissible to raise the cost of a minimum above the level of its surrounding
transition states. However, there is a risk that doing so will entirely block the sampling
pathways through and around the minimum, thus causing the system to become trapped
in a newly created well at one end of the old one. Hence, it is usually safer to select a
more moderate boosting.

One difficulty with Voter’s potential (6) is that direct differentiation of it for gradient-
based dynamics requires third order derivatives of f(x). However an inexpensive nu-
merical estimation method based on first order derivatives was proposed in [30]. For
completeness we summarize this in the appendix. These calculations are more complex
than those needed for standard gradient based stochastic simulation, but we will see that
the bias provides a degree of acceleration that often pays-off in practice.

5 Human Domain Modelling

This section briefly describes the humanoid visual tracking models used in our hyper-
dynamic boosting experiments. For more details see [24, 25].

Representation: Our body models contain kinematic ‘skeletons’ of articulated joints
controlled by angular joint parameters, covered by ‘flesh’ built from superquadric el-
lipsoids with additional global deformations [1]. A typical model has about 30-35 joint
parameters xa; 8 internal proportion parameters xi encoding the positions of the hip,
clavicle and skull tip joints; and 9 deformable shape parameters for each body part, gath-
ered into a vector xd. The complete model is thus encoded as a single large parameter
vector x = (xa,xd,xi). During tracking or static pose estimation we usually estimate
only joint parameters.

The model is used as follows. Superquadric surfaces are discretized into meshes
parameterized by angular coordinates in a 2D topological domain. Mesh nodes ui are
transformed into 3D pointspi(x), then into predicted image pointsri(x)using composite
nonlinear transformations ri(x) = P (pi(x)) = P (A(xa,xi, D(xd,ui))), where D
represents a sequence of parametric deformations that construct the corresponding part
in its own reference frame, A represents a chain of rigid transformations that map it
through the kinematic chain to its 3D position, and P represents perspective image
projection. During model estimation, prediction-to-image matching cost metrics are
evaluated between each predicted model feature ri and nearby associated image features
r̄i, and the results are summed over all features to produce the image contribution to
the overall parameter space cost function. The cost is thus a robust function of the
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prediction errors ∆ri(x) = r̄i − ri(x). The cost gradient gi(x) and Hessian Hi(x) are
also computed and assembled over all observations.

Estimation: We aim for a probabilistic interpretation and optimal estimates of the model
parameters by maximizing the total probability according to Bayes rule:

p(x|r̄) ∝ p(r̄|x) p(x) = exp
(−∫

e(r̄i|x) di
)

p(x) (7)

where e(r̄i|x) is the cost density associated with observation i, the integral is over all
observations, and p(x) is the prior on the model parameters. Discretizing the continuous
problem, our MAP approach minimizes the negative log-likelihood for the total posterior
probability:

f(x) = − log p(r̄|x) − log p(x) = fl(x) + fp(x) (8)

Observation Likelihood: In the below experiments we actually only used a very simple
Gaussian likelihood based on given model-to-image joint correspondences. The negative
log-likelihood for the observations is just the sum of squared model joint reprojection
errors. Our full tracking system uses this cost function only for initialization, but it still
provides an interesting (and difficult to handle) degree of multimodality owing to the
kinematic complexity of the human model and the large number of parameters that are
unobservable in a singular monocular image. In practice we find that globalizing the
search is at least as important for initialization as for tracking, and this cost function is
significantly cheaper to evaluate than our full image based one, allowing more extensive
sampling experiments.

Priors and Constraints: Both hard and soft priors are accommodated in our framework.
They include anthropometric priors on model proportions, parameter stabilizers for hard
to estimate but useful modelling parameters, terms for collision avoidance between body
parts, and joint angle limits. During estimation, the values, gradients and Hessians of
the priors are evaluated and added to the contributions from the observations.

6 Experiments and Results

In this section we illustrate the hyperdynamics method on a toy problem involving a
two-dimensional multi-modal cost surface, and on the problem of initial pose estimation
for an articulated 3D human model based on given joint-to-image correspondences. In
both cases we compare the method with standard stochastic dynamics on the original
cost surface. The parameters of the two methods (temperature, integration step, number
of simulation steps, etc.) are identical, except that hyperdynamics requires values for the
two additional parameters hb and d that control the properties of the bias potential (6).

6.1 The Müller Cost Surface

Müller’s Potential (fig. 2, left) is a simple 2D analytic cost function with three local
minima M1, M2, M3, and two saddle points S1, S2, which is often used in the chemistry
literature to illustrate transition state search methods5. The inter-minimum distance is

5 It has the form V (x, y) =
∑4

i=1 Ai eai(x−xi)
2+bi(x−xi)(y−yi)+ci(y−yi)

2
where A =

(−200, −100, −170, 15), a = (−1, −1, −6.5, 0.7), b = (0, 0, 11, 0.6), c =
(−10, −10, −6.5, 0.7), x = (1, 0, −0.5, −1), y = (0, 0.5, 1.5, 1).
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M1

M2

M3

S1

S2

Fig. 2. The Müller Potential (left) and a standard stochastic dynamics gradient sampling simulation
(right) that gets trapped in the basin of the starting minimum.

Fig. 3. Hyperdynamic sampling with hb = 150, d = 0.1 and hb = 200, d = 0.5.

Fig. 4. Hyperdynamic sampling with hb = 300, d = 10 and hb = 400, d = 100.

of order 1 length unit, and the transition states are around 100–150 energy units above
the lowest minimum.

Fig. 2(right) shows the result of standard stochastic dynamic sampling on the original
cost surface. Despite 6000 simulation steps at a reasonable step size ∆tsd = 0.01, only
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Fig. 5. Effective boost times for mild (left) and more aggressive (right) bias potentials.

the basin of the starting minimum is sampled extensively, and no successful escape has
yet taken place. Fig. 3 shows two hyperdynamics runs with parameters set for moderate
boosting. Note the reduced emphasis on sampling in the core of the minimum — in fact
the minimum is replaced by a set of higher energy ones — and the fact that the runs
escape the initial basin. In the right hand plot there is a clear focusing of samples in the
region corresponding to the saddle point linking the two adjacent minima M1 and M2.
Finally, fig. 4 shows results for more aggressive bias potentials that cause the basins of
all three minima to be visited, with strong focusing of samples on the inter-minimum
transition regions. The bias here turns the lowest positive curvature region of the initial
minimum into a local maximum.

The plots also show that the Voter potential is somewhat ‘untidy’, with complicated
local steps and ridges. Near the hypersurfaces where the first Hessian eigenvalue e1
passes down through zero, the bias jumps from hb to 0 with an abruptness that increases
as the length scale d increases (sic) or the gradient projection gp1 decreases, owing to

the e1/
√

e2
1 + g2

p1/d2 term in (6). A small d makes these e1 = 0 transitions smoother,

but increases the suddenness of ridges in the potential that occur on hypersurfaces where
g1p passes through zero.

Fig. 5 plots the simulation boosting time for two bias potentials. The left plot has a
milder potential that simply encourages exploration of saddle points, while the right plot
has a more aggressive one that is able to explore and jump between individual modes
more rapidly. (Note the very large and very different sizes of the boosting time scales in
these plots).

6.2 Monocular 3D Pose Estimation

Now we explore the potential of the hyperdynamics method for monocular 3D human
pose estimation under model to image joint correspondences. This problem is well
adapted to illustrating the algorithm, as its cost surface is highly multimodal. Of the
32 kinematic model d.o.f., about 10 are subject to ‘reflective’ kinematic ambiguities
(forwards vs. backwards slant in depth), which potentially creates around 210 = 1024
local minima in the cost surface [13], although some of these are not physically feasible
and are automatically pruned during the simulation (see below). Indeed, we find that it
is very difficult to ensure initialization to the ‘correct’ pose with this kind of data.

The simulation enforces joint limit constraints using reflective boundary conditions,
i.e. by reversing the sign of the particle’s normal momentum when it hits a joint limit.
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Fig. 6. Human poses sampled using hyperdynamics on a cost surface based on given model-to-
image joint correspondences, seen from the camera viewpoint and from above. Hyperdynamics
finds a variety of different poses including well separated reflective ambiguities (which, as ex-
pected, all look similar from the camera viewpoint). In contrast, standard stochastic dynamics
(on the same underlying cost surface with identical parameters) essentially remains trapped in the
original starting mode even after 8000 simulation steps (fig. 8).

We found that this gives an improved sampling acceptance rate compared to simply
projecting the proposed configuration back into the constraint surface, as the latter leads
to cascades of rejected moves until the momentum direction gradually swings around.

We ran the simulation for 8000 steps with ∆tsd = 0.01, both on the original cost
surface (fig. 8) and on the boosted one (fig. 6). It is easy to see that the original sampler
gets trapped in the starting mode, and wastes all of its samples exploring it repeatedly.
Conversely, the boosted hyperdynamics method escapes from the starting mode rela-
tively quickly, and subsequently explores many of the minima resulting from the depth
reflection ambiguities.

Fig. 7 plots the estimated boosting times for two different bias potentials, hb =
200, d = 2, and hb = 400, d = 20. The computed mean state variance of the original
estimator was 4.10−6, compared to 7.10−6 for the boosted one.
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Fig. 7. Boosting times for human pose experiments, with mild (left) and strong (right) bias.

Fig. 8. Stochastic dynamics on the original cost surface leads to “trapping” in the starting mode.

7 Conclusions and Future Work

We underlined the fact that for global investigation of strongly multimodal high di-
mensional cost functions, importance samplers need to devote some of their samples to
reducing trapping in local minima, rather than focusing only on performing their target
computation. With this in mind, we presented an MCMC sampler designed to accelerate
the exploration of different minima, based on the ‘hyperdynamics’ method from compu-
tational chemistry. It uses local cost gradients and curvatures to construct a modified cost
function that focuses samples towards regions with low gradient and at least one negative
curvature, which are likely to contain the transition states (low cost saddle points with
one negative curvature direction) of the original cost. Our experimental results demon-
strate that the method significantly improves inter-minimum exploration behaviour in
the problem of monocular articulated 3D human pose estimation.

Our future work will focus on deriving alternative, computationally more efficient
biased sampling distributions.
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Appendix: Estimating the Gradient of Voter’s Potential

Direct calculation of the gradient of Voter’s potential (6) requires third order derivatives
of f(x), but an inexpensive numerical estimation method based on first order derivatives
was proposed in [30].An eigenvalue can be computed by numerical approximation along
it’s corresponding eigenvector direction s:

e(s) = [f(x + ηs) + f(x − ηs) − 2f(x)]/η2 (9)

The eigenvector direction can be estimated numerically using any gradient descent
method, based on a random initialization s or on the one from the previous dynam-
ics step, using:

de

ds
= [g(x + ηs) − g(x − ηs)]/η (10)

The lowest eigenvector obtained from the minimization (10) is then used to compute the
corresponding eigenvalue via (9). The procedure can be repeated for higher eigenvalue-
eigenvector pairs by maintaining orthogonality with previous directions. The derivative
of the projected gradient g1p can then be obtained by applying the minimization to the
matrices H + λg g� and H − λg g�. One thus minimizes:

dei

dx
=

{
[g(x + ηs) + g(x − ηs) − 2g(x)]/η2}

s=si

where:

e±λ = e(s) ± λ
[f(x + ηs) − f(x − ηs)

2η

]2

A good approximation to gp1 can be obtained from [30]:

gp1 =
1
2λ

(e+λ − e−λ), and
dgp1

dx
=

1
2λ

(
de+λ

dx
− de−λ

dx

)
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