
Surface Extraction from Volumetric Images
Using Deformable Meshes: A Comparative

Study

Jussi Tohka

DMI / Institute of Signal Processing
Tampere University of Technology
P.O. Box 553, FIN-33101,Finland

jussi.tohka@cs.tut.fi

Abstract. Deformable models are by their formulation able to solve sur-
face extraction problem from noisy volumetric images. This is since they
use image independent information, in form of internal energy or internal
forces, in addition to image data to achieve the goal. However, it is not
a simple task to deform initially given surface meshes to a good repre-
sentation of the target surface in the presence of noise. Several methods
to do this have been proposed and in this study a few recent ones are
compared. Basically, we supply an image and an arbitrary but reason-
able initialization and examine how well the target surface is captured
with different methods for controlling the deformation of the mesh. Ex-
periments with synthetic images as well as medical images are performed
and results are reported and discussed. With synthetic images, the qual-
ity of results is measured also quantitatively. No optimal method was
found, but the properties of different methods in distinct situations were
highlighted.

1 Introduction

Deformable models are by their formulation able to solve ill-posed problems
in image processing and analysis. This is due additional image independent soft
and hard constraints that are set. For the surface extraction problem, these state
that the resulting surface should be smooth in the basic setting. The ability to
deal with noisy and poor contrast images makes three dimensional deformable
surface models particularly interesting for automated medical image analysis:
Obviously, the use of model-based techniques is necessary for analyzing med-
ical images because of imaging artifacts and noise. On the other hand, large
variability of biological shapes restricts the use of shape models with only few
parameters. Consequently, deformable surface meshes - which can be used to ex-
tract surfaces of highly variable shapes - are popular tools in automated medical
image analysis. For deformable surface models in general and their applications
to medical images, see surveys [8,9].
Deformable surface meshes are polygon meshes whose geometry evolves dri-

ven by image data and shape regularity constraints starting from given initial
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meshes. There are two basic approaches controlling the evolution of the mesh.
The force based approach assigns an equation of motion to each vertex of the
mesh (or mexel) and lets it move in a force field formed by internal and external
forces. Internal forces derive from the geometry of the mesh itself. They guarantee
the smoothness of the final mesh. External forces are derived from the image data
and draw deformable mesh towards salient image features. On the other hand,
the energy based approach assigns an energy to each mesh belonging to the set
of admissible meshes. The energy is minimized and its minimum argument is the
resulting mesh. Again, the energy is divided in external and internal energies.
The internal energy is derived from geometry of the mesh and the external energy
is derived from image data.
If the initializations for the processes are not in the close vicinity of the

target, advanced solutions for both approaches are required. Especially, when
images are noisy, the energy function is likely to have multiple local minima and
as well equations of motion may stabilize before the correct surface has been
found. Methods to minimize the energy globally have been proposed as well as
techniques for constructing external forces so that they are not sensitive to image
noise nor positioning of the initial surface. In this paper, a few of recent meth-
ods for minimizing energy and techniques for advanced construction of external
forces are compared experimentally. We will fix the internal energy/force model
and image data and see how the different methods cope given a generic (i.e auto-
matic) but reasonable initialization. The chosen deformable meshing techniques
are compared with synthetic images in order to obtain quantitative results and
with medical images to link findings into real world situations. To our knowledge,
this kind of empirical study does not exist in the context of deformable surface
meshes. With 2-D deformable models some quantitative comparisons have been
reported, at least in [3,15].
There are approaches to the problem which are relevant to the study but are

intensionally left out from it. For example, algorithms based on multi-resolution
image representations (see e.g. [7]) are not considered in order to keep the size
of the study reasonable. The three-dimensional generalization of the snakes-
algorithm [6] is not included, since its limitations are well known. Furthermore,
we do not consider algorithms that automatically adapt the topology of the mesh
and hence the topology of the target surface as well as the resolution of the final
mesh are to be fixed in advance.

2 Deformable Surface Mesh

In this study, simplex meshes [1] are applied for surface representation. In a
simplex mesh each vertex of the mesh, or mexel, has exactly three neighbors. In
another words their graphs are 3-regular. Triangular meshes, which are topolog-
ical duals of simplex meshes, are also often applied in deformable meshing, see
e.g. [7]. Meshes are denoted by M = (V,G), where V = {v1, . . . ,vN} ⊂ R

3 is
set of mexels and G is the graph of the mesh. Three mexels adjacent to vi are
denoted by vij , j = 1, 2, 3. The unit normal to the mesh at vi is denoted by ni.
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The input for a deformable mesh, image I, is a preprocessed version of an
image to be analyzed . In I voxels are given an intensity value based on their
saliency, which depends on the application. For example, I can be an edge-
detected version of the original image if the interest is in finding the boundary
of a volumetric target. The image I is normalized to have intensity values from
0 to 1, the voxel of the highest saliency receiving the intensity value of 1.

3 Force Based Approach

The evolution of the mesh can be controlled by assigning an equation of motion
to each mexel. In the general case the equation of motion is Newtonian:

mv̈i(t) + γv̇i(t) = αFint(vi(t)) + βFext(vi(t)), (1)

where α, β, γ, m ∈ R and t is time. In discrete form this is written as (assuming
m = 1)

vt+1
i = vt

i + (1− γ)(vt
i − vt−1

i ) + αFint(vt
i) + βFext(vt

i), (2)

with the mesh when time t = 0 given. When γ = 1, (2) reduces to a Lagrangian
equation of motion. The internal force

Fint(vi) =
1
3

3∑
j=1

vij − vi. (3)

The internal force (3) causes surface to shrink to a point if no external forces
are present. This is sometimes useful, because it reduces sensitivity to the ini-
tialization provided that initial meshes are set outside the target.
Semi-implicit evolution equations, such as in snakes [6], are not popular with

3-D meshes. This is since in the 3-D case this involves multiplication of large
matrices, which do not have a banded structure as in the 2-D case.

3.1 Delingette’s External Force

A local external force model was introduced by Delingette [1]. These forces rely
on a good initialization or, as in our case, shrinking effect caused by internal
forces to produce acceptable results. The external force is

Fext(vi) = Fgrad(vi) + Fedge(vi). (4)

The gradient force

Fgrad(vi) = βgrad((mi − vi) · ni)ni,

wheremi is the centre of the voxel of greatest intensity in s×s×s neighbourhood
of the voxel containing vi. We set s = 5. The edge force

Fedge(vi) = βedge(ei − vi),
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where ei is the center of the closest edge voxel to vi along the normal ni. For
computing Fedge a binary edge-image, where each voxel is classified either edge
or non-edge, has to be created. In this study, the optimal thresholding method
is used for automatically binarizing I as described in [2]. After the thresholding,
isolated edge voxels are removed in order to reduce sensitivity to noise.
Delingette also suggests the use of a two stage technique for recovering the

target surface. At the first stage, a coarse mesh with a large α is used for getting
close to the target surface. Thereafter, a more fine mesh with smaller α is used for
capturing details of it. We also adopted the procedure after few failed attempts
to use a single resolution mesh.

3.2 Gradient Vector Flow External Forces

In [16,15] methods for deriving global external forces from image data were
proposed. With gradient vector flow (GVF) [16] the external force is defined as
the vector field Fext = f = (f1, f2, f3) : R3 → R

3 minimizing the expression

∫
R3

µ

3∑
i=1

||∇fi(x)||2 + ||∇I(x)||2||f(x)− ∇I(x)||2dx, (5)

where µ is a real scalar. A solution can be found by introducing time variable t
and finding a steady state solution of

f(x; t)
dt

= µ∇2f(x; t)− (f(x, t)− ∇I(x))||∇I(x)||2, f(x; 0) = ∇I(x), (6)

where the Laplace-operator ∇2 applies only on the spatial component (i.e x) of
f . Generalized gradient vector flow (GGVF) [15] is defined as the equilibrium
solution of the following partial differential equation (PDE):

f(x; t)
dt

= g(||∇I(x)||)∇2f(x; t)− h(||∇I(x)||)(f(x, t)− ∇I(x)), (7)

f(x, 0) = ∇I(x), (8)

where g(x) = e−( x
κ )2 , κ ∈ R and h(x) = 1− g(x).

For finding numerical solutions to the above PDEs, guidelines given in [16,15]
are followed. After numerical solutions are found, external forces are normalized
to have maximal magnitude of 1. From (discrete) numerical solutions, continuous
external force fields are obtained by trilinear interpolation.

4 Energy Based Approach

With the energy based approach one minimizes the energy of the deformable
mesh:

E(M) =
1
N

N∑
i=1

(λEint(vi) + (1− λ)Eext(vi)), (9)

where λ ∈ [0, 1].
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The internal energy of vi is defined as

Eint(vi) =
||vi − 1

3

∑3
j=1 vij

||2
A(M)

, (10)

where A(M) is a measure of area of M. It is computed as the average area of
faces of the mesh. Areas of faces of simplex meshes are computed by triangulating
them. Note that the internal energy is invariant to scalings, translations and
rotations of the mesh. A comparison of (3) and (10) reveals that (3) is the
negative of the gradient of the numerator of Eint(vi) for each i. However, similar
result does not hold if we consider the numerator of the internal energy of M
as whole because also Eint(vij ), j = 1, 2, 3, depend on vi. The external energy
is defined as

Eext(vi) = 1− I(vi). (11)

4.1 Dual Surface Minimization

Dual surface minimization (DSM) algorithm was introduced in [12] and refined
in [10] for minimization of the energy of deformable surface meshes. It is a
generalization of an energy minimization method for active contours [4]. The
initialization for the process consists of two surface meshes differing only in size.
One of these is placed inside of the sought surface and the other is placed outside
of it. Thereafter, the energy of the mesh with higher energy is minimized locally
by the greedy algorithm [13] with the constraint that outer mesh must shrink
and the inner mesh must grow in size. If the mesh of higher energy is stuck on a
local minima, its energy function is modified by adding a penalty for the current
position of the mesh [10]. The penalty is increased gradually until the mesh is
forced to move from its current position. The whole process continues iteratively
until areas of the inner mesh and the outer mesh are approximately equal.
It is necessary to equip meshes with a global position parameter (or moving

reference point) if the earlier implementation is used [12]. We tried if the usage
of the global position parameter can improve results with the refined implemen-
tation [10]. It was found that using meshes equipped with the global position
parameter was not worthwhile in our experiments because that did not improve
the quality of results and is computationally expensive.

4.2 Minimization Method Based on Genetic Algorithms

A hybrid of real coded genetic algorithms [5] (RCGA) and greedy algorithm [13]
for mesh optimization was used in [11]. The algorithm is abbreviated here as
GAGR and it is as follows

1. Global minimization of the energy of the mesh by a RCGA;
2. Greedy minimization of the energy of the mesh obtained from the first step;
3. Adaptation of the resolution of the mesh;
4. Minimization of the energy of the adapted mesh for the final solution by the
greedy algorithm;
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The RCGA uses BLX-0.3 crossover [5], tournament selection and an initial
population just like in [11]. Our implementation differs from the original in
that the crossover operator is constrained to produce meshes within the image
domain. In the original implementation such reasonable constraint was not used
and penalty function was applied to solve the problem. Only 100 generations of
RCGA are used in the first step for efficiency as in [11].

sphere metasphere A metasphere B

Fig. 1. Surfaces used in the first experiment

5 Experiments

5.1 Material

Three types of tests were performed for the evaluation. The first experiment was
a standard one. First metaspheres [14], see Fig. 1, were drawn to 64 × 64 × 64
grid and then white Gaussian noise was added to the images. Thereafter, images
were filtered with a Gaussian filter with the 3 × 3 × 3 kernel and the standard
deviation 1.0. The intensity of the true surfaces was 1.
The images for the second kind of tests consisted a true surface of intensity

of one and few false surfaces of the intensity of 0.5. Some cross sections of images
are shown in Fig. 2.
In the third experiment, boundaries of brain from two FDG (fluorodeoxyglu-

cose) PET (positron emission tomography) images were extracted. An example
of a PET image is shown in Fig. 3. Salient image features in this case mean edges
which were found by applying a three-dimensional Sobel operator [17]. An edge
(magnitude) map from the PET image in Fig. 3 is shown also in Fig. 3.

5.2 Error Measures

With synthetic images, it is possible to evaluate extraction errors also quanti-
tatively. Here two criteria were used: Denote the set of voxels belonging to true
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Image 1 Image 2 Image 3

Fig. 2. Central cross sections in xy planes of images for the second experiment.

(digital) surface by TS and the set of voxels belonging to the extracted surface
by ES. Furthermore, let the set of voxels inside the true surface be TV and the
set of voxels inside the extracted digital surface be EV . Then,

ε1 = 1− |TV ∩ EV |
|TV ∪ EV | , (12)

ε2 = max
X∈TS

min
Y ∈ES

dist(X, Y ), (13)

where distance between voxels X and Y (dist(X, Y )) is the Euclidean distance
between their integer coordinates. The first error measure captures well the
goodness of overall result. (Note that the quantity 1−ε1 is known as the Tanimoto
coefficient.) The second one reacts also to very local reconstruction errors. This
makes it useful in determining if high curvature parts of a surface are extracted
well. However, the second measure is not necessarily good for determining how
well the surface extraction has succeeded in a global sense.

5.3 Experiment Settings and Implementation

Resolution of Meshes. Meshes of 1280 mexels were used with DSM, GVF and
GGVF. With GAGR, at the first stage, meshes of 320 mexels were used. Then the
mesh resulting from the resolution adaptation step (Step 3 in the algorithm) was
constrained to have 1280 mexels. Same applies for the Delingette’s method. Both
algorithms adapt the mesh resolution by repeated application of T 2

2 operator
defined in [1].

Initializations. With synthetic images, every algorithm except GAGR, was
tested with five different initializations. The initializations for the force based
methods were spheres all completely outside the true surface. Also initializations
inside the true surface were tested with GVF and GGVF but results were not
good unless initialization was very close to the target. This is due to shrinking
effect of the internal force. For DSM, outer initial surfaces were same than the
ones for the force based methods and inner initial surfaces were obtained by
scaling from these. With GAGR, an initial population is random, and only one
population was used for each image. Similar settings apply for the experiments
with PET images, except three ellipsoid initializations per image were tested.
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Fig. 3. PET images: Top row (left to right): transaxial, sagittal and coronal views of
a FDG-PET image used in the experiments. Bottom row: 3-D Sobel edges from the
image in the top row, left to right: Transaxial, sagittal and coronal views.

Parameter Values. The selection of parameter values is often a fundamental
issue in implementing deformable models. Here values of as many parameters as
possible were fixed before any experiments by using suggestions of the authors
of the algorithms. Basically, only values of λ and α were tuned during the ex-
periments. For each method, we tried to find such λ or α that would be suitable
for every experiment. Sometimes this was impossible and a change in α or λ
between experiments improved results significantly. However, within an experi-
ment all parameter values were fixed since a method is not really automatic if it
requires different values of parameters for each input in order to succeed.
The Lagrangian motion was used for force-based techniques in all tests. Also,

the Newtonian motion with γ = 0.65 was studied, but results were generally
worse than with the Lagrangian motion. However, the use of the Newtonian
motion can offer a speed-up if a large α is applied.
Results with two versions of GVF external forces are reported, one with

µ = 0.05 and the other with µ = 0.1, because they were clearly different. Also
other values of µ (0.2 and 0.4) were tested but they did not seem to work. With
GGVF, κ = 0.05 suggested in [15] worked well so there was no reason to play
with it. Generally, the value of α was 0.1 for GVF and 0.3 for GGVF. With all
force based models, β was set so that the maximal magnitude of external forces
was 1. With Delingette’s method α in the first stage was generally 0.6 and in the
second stage 0.1. The values of other parameters were: βedge = 0.0625, βgrad =
0.15, β = 1. Closest edges to a voxel where looked only within radius of 8 from
the voxel. Sometimes, especially with PET images, the binarization of the input
image failed completely. Then no edge external force was used and βgrad was set
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to 0.3. For the energy based approach, only the value of λ was adjusted. It was
usually 0.3. For DSM the rest of the parameters (relating mainly to the search
spaces) were selected as advised in [10,12].

Complexity. Time consumptions of the algorithms are not given because no
attention was paid on how to implement algorithms efficiently, and so listing time
consumptions would be misleading. On the average, the method of Delingette
and DSM are the fastest algorithms and GAGR is the slowest one. The complex-
ity of GVF and GGVF methods depends heavily on the size of the underlying
image in contrast to the other methods. This makes it difficult to evaluate the
speed of GVF and GGVF methods as compared to others. On the average, the
usage of GVF or GGVF external forces leads to solutions slower than DSM or
Delingette’s external forces but faster than GAGR.

6 Results

6.1 Results with Synthetic Images

Quantitative results of the first experiments are given in Table 1. The values
listed in Table 1 are medians of the error criteria values resulting from different
initializations. Some examples of reconstructed surfaces are in Fig. 4. Results
were not surprising. All algorithms performed fairly well with images with a
sphere in it. In this case, increased noise level most clearly degraded results
obtained by DSM. On average, GGVF and GAGR were best methods. With
more complex surfaces, DSM performed nearly as well as GGVF and GAGR,
which were again best methods. However, there was a larger deviation of error
criteria values resulting from different initializations with DSM than with the
other methods. The performance of both GVF based algorithms suffered heavily
from noise with Metaspheres in the image. As can be seen from Fig. 4, no really
good surface reconstruction of Metasphere A was obtained by using any of the
algorithms when the noise variance was 0.6. However, the results obtained by
GAGR, DSM, GGVF and external force of Delingette were acceptable. This was
not the case with GVF external forces.
Deligette’s external force led to the surface shrunk to a point from some of the

initializations with noiseless images although it produced quite good results with
noisy images. This can avoided by carefully tuning the parameter α, but that
might require a-priori knowledge about the signal to noise ratio of the image.
The error criteria values from the second experiment can be found from

Table 2. Again, the values are medians of the ε2 values resulting from different
initializations. The findings of the experiment were interesting. Meshes with
GGVF external forces stuck with outermost false surface. Changing values of κ
and α did not help. GVF with µ = 0.1 produced best results in this experiment.
The results with GVF with µ = 0.05 and α = 0.1 were worse as can be seen
from Table 2. However, GVF with µ = 0.05 and α = 0.3 gave results similar to
those with GVF and µ = 0.1.
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The method of Delingette was also quite good in this experiment. Surpris-
ingly, although the binarization algorithm labeled all surfaces, true or false, as
edges, results with the edge external force were better than those with no edge
external force and βgrad = 0.3.

DSM was successful with Image 1 and in some extent with Image 3. The
extraction of true surface from Image 2 failed. The reason for failure was that
the algorithm failed to converge because of the oscillation. This problem was
also noted in [10] and an effort were made to prevent oscillations in this study.
GAGR optimization produced results almost as good as those obtained with
GVF and µ = 0.1. Only with Image 3, surface extraction has failed a little bit
as ε2 value in Table 2 reveals.

Table 1. Error criteria values from the first set of tests. Medians of values from different
initializations are shown. Symbol σ2 stands for variance of Gaussian noise. GVF 0.05
means GVF with µ = 0.05, and similarly GVF 0.1 means GVF with µ = 0.1. Parameter
values were as listed in Sect. 5.3.

measure surface σ2 Method
GVF 0.05 GVF 0.1 GGVF Delingette DSM GAGR

sphere 0 0.03 0.03 0.03 0.08 0.03 0.05
0.2 0.09 0.11 0.05 0.07 0.06 0.06
0.6 0.09 0.12 0.06 0.08 0.14 0.06
1 0.13 0.17 0.06 0.08 0.17 0.07
1.4 0.13 0.17 0.07 0.13 0.21 0.07

metasphere A 0 0.03 0.03 0.02 0.09 0.03 0.06
0.2 0.11 0.16 0.05 0.09 0.02 0.07

ε1 0.6 0.16 0.24 0.10 0.11 0.10 0.08
1.0 0.20 0.26 0.14 0.12 0.14 0.11

metasphere B 0 0.07 0.07 0.06 1 0.07 0.10
0.2 0.30 0.37 0.13 0.19 0.11 0.16
0.6 0.27 0.38 0.19 0.21 0.18 0.20
1.0 0.27 0.36 0.24 0.26 0.32 0.22

sphere 0 1.4 1.4 1.4 1.4 2.2 2.2
0.2 1.7 2.2 1.4 1.7 2.0 1.4
0.6 2.0 2.2 2.0 2.4 2.4 2.2
1 2.8 3.0 1.7 3.0 4.5 1.7
1.4 2.7 3.0 1.4 3.6 4.2 2.2

metasphere A 0 1.4 1.4 1.4 4.9 2.2 1.7
0.2 4.0 5.1 3.0 2.4 2.0 2.2

ε2 0.6 4.6 7.0 5.8 3.3 3.2 3.0
1.0 5.4 6.3 5.7 5.4 6.1 4.4

metasphere B 0 3 2.8 2.2 - 3.2 3.5
0.2 9.3 10 6.1 6.4 3.0 8.5
0.6 8.6 10 7.3 8.5 6.7 7.3
1.0 6.5 10 10 9.1 10.3 7.3
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Table 2. Error values from the second set of tests. Listed values are medians of the
error criteria obtained from different initializations. Parameter values were as listed in
Sect. 5.3.

measure image no. Method
GVF 0.05 GVF 0.1 GGVF Delingette DSM GAGR

1 0.16 0.03 0.50 0.07 0.04 0.05
ε1 2 0.06 0.05 0.51 0.07 0.34 0.05

3 0.07 0.02 0.42 0.09 0.12 0.10
1 3.6 1.4 4.4 3.0 1.7 2.0

ε2 2 2.0 2.2 10 1.7 9.6 2.2
3 5.7 1.4 7.3 3.2 4.6 7.7

6.2 Results with Medical Images

For PET images there were two methods above others. GGVF and DSM pro-
duced excellent results with all initializations and both images. However, with
GGVF the success was achieved only after changing value of α to 0.1. GGVF
with α = 0.3 worked well only with one of the images. DSM was good with both
images and pre-defined set of parameters. GGVF results were slightly more ac-
curate than the ones obtained with DSM. See Fig. 5 for examples. With GAGR
we had some success in this experiment without tuning parameters, however
resulting surfaces were clearly less accurate (see Fig. 5) than with the methods
mentioned above. Using λ = 0.4 improved the resulting surfaces, but not much.
Delingette’s technique produced some moderate results after tuning of value of α
in the both stages of the two stage algorithm. But further adjustment of param-
eter values would still be required in order to have acceptable results. Also best
parameter values varied from image to image and from initialization to initial-
ization. See Fig. 6. It was necessary to use the gradient external force only, since
the thresholding algorithm did not perform well. However, thresholding original
PET-image and then finding edges is probably better alternative than simply
thresholding the gradient-image (as we did). GVF external forces had the worst
performance of the methods in this experiment, even adjusting value of α would
not help much. See Fig. 5 for the best result obtained by GVF.

7 Discussion

We have compared experimentally few recent algorithms based on deformable
meshes for the surface extraction from noisy volumetric images. As one could
have expected, no universally best method for controlling the deformation of
the mesh was found. It depends on the application which algorithm is the best.
In general, GAGR seems to be the most reliable choice: It gave good results
in synthetic image experiments and errors in the PET image experiment were
not large. However, if it is known in advance that the target surface is the
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GVF, µ = 0.05 GVF µ = 0.1 GGVF

Delingette DSM GAGR

Fig. 4. Extracted Metasphere A from the image of noise variance of 0.6 using different
methods. Surfaces are from initializations that led to the median value of the ε1.

outermost surface in the image as was the case in the PET image experiment,
then algorithms like GGVF or DSM - which can actually gain from the situation
- are the ones to be preferred. GAGR as general purpose optimization algorithm
does not have the capability to take advantage of structural a-priori information
about the image unless it is coded into the energy function.
DSM and GGVF were also reliable choices, but they also have weaknesses as

the second set of tests with synthetic images proved. GGVF external forces can
cope with random noise sufficiently well, but are not able to handle false surfaces
in the image. In the case of false surfaces, meshes with GGVF external forces
tended to stuck with the outermost “strong enough” surface in the image. The
problem of the DSM was that it was not always able to converge: the mesh with
higher energy may stick oscillating between few surface positions. This is clearly
an implementational problem, but solving it completely and efficiently could be
challenging. The implementation of DSM from [12] does probably not impose os-
cillation problems but has other disadvantages compared to the implementation
from [10].
GVF external forces worked well when a simple surface, such as a sphere, was

to be extracted. However, when the surface in the image was more complex and
the image was even slightly noisy we were not able to get good results with GVF
external forces. This is due to the regularizing component of (5) which tends to
blur the surface details, see [15]. GVF external forces failed with PET images,
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GGVF

DSM

GAGR

GVF

Fig. 5. Cross-sections of the extracted brain surfaces from a PET image. From left to
right: transaxial view, sagittal view, coronal view. Result with GVF was obtained by
using the best set of parameter values (α = 0.05, µ = 0.05) and the best initialization.
Other results were obtained with pre-defined parameter values and results from other
initializations look similar.

where the problem is intensity inhomogeneity of the target surface in addition
to noise. However, GVF external forces worked well in extraction of the correct
surface from images where also false surfaces were present.
The external forces of Delingette turned out to do well in synthetic image

experiments. The extraction results were good but generally not the most accu-
rate ones. In the PET image experiment, we were not able to obtain good results
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a) b) c) d)

Fig. 6. Results with external forces of Delingette. a) b) and c): The result from the
best initialization with a PET image, transaxial, sagittal and coronal views. Parameter
α = 0.3 at the first stage and α = 0.1 at the second stage. d) The transaxial view of
a result with the same initialization but a different image than for the result shown in
a),b) and c).

with this external force model. The results could maybe be improved by using
a more advanced thresholding method than the one used in this study and fine
tuning the parameter values. Indeed, the results obtained by using Delingette’s
external forces were sensitive to parameter values for the deformable mesh. In
fact, this is also the major difference between force based and energy based ap-
proach. The energy based scheme is less sensitive to values of parameters, which
makes it easier to select them well. On the other hand, the force based approach
has an advantage of not discretizing the search space, what often leads visually
more pleasant surface reconstructions.
To conclude, there is no optimal deformable meshing scheme which upper-

hands the others in all applications. This study has highlighted strengths and
weaknesses of recent methods to guide the deformation process in a general con-
text. Because of generic nature of our experiments, we have been able to observe
common characteristics of each method. Hopefully, the study will be a useful
reference to those applying deformable meshes.
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