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Abstract. How should one filter very noisy images of curves? While
blurring with a Gaussian reduces noise, it also reduces contour contrast.
Both non-homogeneous and anisotropic diffusion smooth images while
preserving contours, but these methods assume a single local orientation
and therefore they can merge or distort nearby or crossing contours. To
avoid these difficulties, we view curve enhancement as a statistical esti-
mation problem in the three-dimensional (x, y, θ)-space of positions and
directions, where our prior is a probabilistic model of an ideal edge/line
map known as the curve indicator random field (cirf). Technically, this
random field is a superposition of local times of Markov processes that
model the individual curves; intuitively, it is an idealized artist’s sketch,
where the value of the field is the amount of ink deposited by the artist’s
pen. After reviewing the cirf framework and our earlier formulas for the
cirf cumulants, we compute the minimum mean squared error (mmse)
estimate of the cirf embedded in large amounts of Gaussian white noise.
The derivation involves a perturbation expansion in an infinite noise
limit, and results in linear, quadratic, and cubic (Volterra) cirf filters
for enhancing images of contours. The self-avoidingness of smooth curves
in (x, y, θ) simplified our analysis and the resulting algorithms, which run
in O(n logn) time, where n is the size of the input. This suggests that the
Gestalt principle of good continuation may not only express the likely
smoothness of contours, but it may have a computational basis as well.

1 Introduction

Is noise a help or a hindrance? Despite intriguing phenomena such as stochastic
resonance, noise is largely viewed a necessary evil for applied science. Filter-
ing images of contours, the problem studied here, is especially susceptible to
noise because spatial differentiation is often involved in obtaining initial mea-
surements (Fig. 1, top). Large noise levels, however, can actually simplify the
filtering problem analytically, making difficult problems (asymptotically) man-
ageable [22]. For example, here we derive nonlinear contour enhancement filters
that operate in a neighborhood of an infinite noise limit.

This work is part of a larger project to understand visual contour computa-
tions as the Bayesian inference of a random field [2]. Beginning with a random
� I am grateful to Steven Zucker for his deep insights and his caring and patient
advice in supporting this work. I thank Patrick Huggins, Athinodoros Georghiades,
and Ohad Ben-Shahar for helpful discussions. Funding was provided by AFOSR and
the Heinz Endowment. Please direct correspondence to jonas@cs.cmu.edu.

A. Heyden et al. (Eds.): ECCV 2002, LNCS 2352, pp. 604–620, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Volterra Filtering of Noisy Images of Curves 605

process model of individual curves, we have developed a prior for images of
these curves, which we call the curve indicator random field (cirf), and we have
obtained the complete cirf statistics. The main contributions of this paper are
three new linear and nonlinear Volterra filters for computing the posterior mean
of the cirf for noisy contour images.

a:

Image
Local

Responses
Thresholding

b:

Fig. 1. (a) (Left) A guide wire imaged fluoroscopically during surgery. Finding the
wire in noise is important [11] because surgery can take hours, all the while exposing
the patient to radiation. Reducing exposures increases the noise level, however, and
makes local filtering perform poorly (e.g., logical/linear positive-contrast line operator
response tuned to thin curve, center, and its thresholding, right). In addition, local
operators often employ numerical differentiation, which increase noise. (b) Crossing
contours (left) in noise (center left) are distorted by Gaussian blurring (center right
and right with blur sizes 5 and 10, respectively), revealing loss of distinction among
overlapping contours, as well as reduced contrast. In this paper we exploit a model
of random images of contours to derive nonlinear filters for overcoming noise without
merging or attenuating contours.

Given the apparently slight distinction between a set of random curves and an
image of them (the cirf), it is not surprising that the cirf has been overlooked
as an object of study in vision. But there are significant advantages to making
the cirf a focus for understanding visual contours. First, it provides an exact
notion of an ideal edge or line map (Fig. 1, top), satisfying the two desiderata
of being (a) nonzero-valued along the true contours, and (b) zero-valued else-
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where. The cirf therefore provides a basis for formalizing saliency [24,13] as
the problem of estimating the cirf. Second, unlike dictionary-based relaxation
labeling [8] and line processes in Markov random fields [7,14], the cirf does not
require an explicit and arbitrary enumeration and weighting of local field con-
figurations to specify its joint statistical structure. Instead, by formally defining
the field as a function of the curves depicted by it, the statistical properties of
the field become a derivable consequence of those of the contours. Third, being
a field, the cirf makes it possible to formalize what is even meant by observing
contours under various forms of corruption. Without the cirf, a concept of a
noisy contour might mean a smooth curve made rough; with the cirf, a noisy
image of a contour is simply the pointwise addition of one field (the cirf) with
another (white noise), for example. Fourth, the filters we derive provide a dif-
ferent notion of blur scale than convolution by a Gaussian (Fig. 1, bottom), or
linear scale-space [12]. In particular, smoothing will take place along the (puta-
tive) contours, and unlike nonhomogeneous [19] and anisotropic diffusion [26],
it allows for multiple, nearby and crossing curves. Finally, the cirf provides a
local representation of contour intersections; in contrast, parameterized curves
require a strictly global computation to determine intersections. As ink builds
up where contours cross in an artist’s sketch, so too does the (local) value of the
cirf increase at intersections.

There are two major sources of inspiration for this project. The first is the set
of relaxation labeling [21] approaches to contour computation, which explicitly
emphasize the need to include contextual interaction in inference, in contrast
to purely local techniques [4] that detect edges largely independently. These
approaches formalize contour inference as a labeling problem using a notion of
label compatibility derived from good continuation in orientation [28] or cur-
vature as well [18,10]. The second source of inspiration is the work on curves
of least energy [9] or elastica [16] and its probabilistic expression as stochas-
tic completion fields [27]. The cirf was introduced to unify these works in a
probabilistic framework.

2 A Prior on Images of Curves

Our random field inference framework for contour enhancement begins with
a Markov process model for each contour. Mumford [16], Williams and co-
workers [27] imagined a particle at Rt (in the space of positions (x, y) and di-
rections θ in R

2 × S) whose direction is slightly perturbed at each time instant t
before taking its next step forward. The particle’s probability density p(x, y, θ, t)
diffuses according to ∂p

∂t = Qp, where Q := σ2
κ

2
∂2

∂θ2 − cos θ ∂
∂x − sin θ ∂

∂y − λ−1 is
the generator of Markov process Rt (the direction process), σκ bounds the direc-
tion perturbations and λ is the mean of the (exponentially-distributed) contour
length T . In our framework the Markov process Rt models all image contours,
irrespective of how they are observed. Indeed, the particular (stationary) Markov
process contour model is unspecified in our framework; more exotic processes,
which include scale [25] or curvature κ [3] can be used as well. At this level of
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generality, the Markov process Rt takes on values (states or sites) i in a finite
state space I, e.g., i = (x, y, θ) (where space is discretized). The Markov pro-
cess is summarized by its Green’s operator G = (gij), for i, j ∈ I, where gij is
the average amount of time the process spends in site j given that it started
in site i (Fig. 3). A natural image will have an unknown number N (assumed
to be Poisson-distributed with mean N̄ ) of contours, R(1)

t1 , . . . , R
(N )
tN , which are

independent and identically distributed (i.i.d.) with lengths T1, . . . , TN .
So far we have only described the individual contours, but we know of them

only through a (spatially distributed) field of measurements M = (Mi) from an
image (e.g., orientation-selective edge operator responses), which are corrupted
due to noise and blur. To cope with such ambiguity, we suggest that contour
organization be formalized as the estimation of an ideal field U of assertions of
local contour existence.

Definition 1. The curve indicator random field (cirf) U = (Ui) is:

Ui :=
N∑

n=1

∫ Tn

0
�{R(n)

tn
= i}dtn, ∀i ∈ I.

Here, the integral over tn is called the local time at i for process R(n)
tn

; the
different processes (curves) are combined via superposition. In words, Ui is the
(random) amount of time that particles spent in state i, and so non-zero values of
Ui indicate that a contour passed through i (Fig. 2). We suggest that the cirf
be used a prior on images of curves not only because it captures an intuitive
notion of the “perfect” edge map, but also because its can be tractably and fully
characterized. In particular, the following is a formula for the cirf cumulants1—
a complete set of joint statistics of this prior—and provides, in effect, an exact
description of contextual interactions in an image of curves.

Proposition 1. Suppose the Markov process Rt is spatially homogeneous and
the endpoint distributions are spatially uniform. Let the contour density be
η := N̄λ|I|−1. The k-th (joint) cumulant of the cirf at sites i1, . . . , ik is
cumi1,... ,ik

:= cum{Ui1 , . . . , Uik
} = η

∑
gj1j2 · · · gjk−1jk

, where the sum is over
all permutations j1, . . . , jk of i1, . . . , ik.

The proof requires the Feynman-Kac formula, a broadly-applied result in quan-
tum physics (see [2] for details). Since cirf cumulants of order greater than two
are (generally) nonzero, the cirf is therefore a non-Gaussian random field [17].
The cumulants are the coefficients of a Taylor series expansion of the cumu-
lant generating functional cgfU (c) := lnmgfU (c) of U , where mgfU (c) :=
E exp 〈c, U〉 is the moment generating functional of U at c and 〈a, b〉 denotes
the inner product between vectors a, b ∈ R

|I|. We now turn the main question
for this paper: how can the cirf be used in a filter?

1 Cumulants are a function of the moments of a distribution, but can be easier to work
with. The lowest-order cumulants are the mean and covariance.
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Fig. 2. Modeling images of curves with the cirf prior. The contours in these images
(left: angiogram (top) and surface of a Jupiter moon (bottom)) are primarily char-
acterized by their number (N ), smoothness (σ−1

κ ), and extent (λ). Given only noisy
local measurements m = (mi), i = (x, y, θ), (center: logical/linear line operator re-
sponses [10]), we seek to enhance contours using a prior on images of curves. Several
random samples of the cirf prior in R

2×S (right: various parameter settings) resemble
(up to N , σκ, and λ) the qualitative structure of the local responses, but without the
corruption. These random samples of the prior are intended only to reflect the “con-
tourness” of the local responses, not the particular contours, which are modeled by
the posterior. At each (x, y), the maximum over θ was taken for both local responses
and the cirf. The goal is to bias the enhancement method toward contour images (as
opposed to pebble or sand texture images, for example).

3 Estimating Noisy CIRFs

3.1 The Likelihood

The likelihood represents how our ideal contour image U relates to the mea-
surements M , characterizing the corruptions in local edge and line operator
responses. We focus on noise contamination in the measurements because (1)
edge/line detection requires differentiation, which amplifies noise and (2) the
local signal-to-noise ratio (snr) drops for fixed sensor noise, when the local con-
trast (i.e., signal) is low. For concreteness and simplicity, our measurement model
isM = U +N , where N is white Gaussian noise N with zero-mean and variance
σ2

N , and the likelihood is

p(m|u) = (
√

2πσN )−|I| exp
(

−1
2
σ−2

N ||m− u||2
)
. (1)
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By a change in variables in m, other observation models with i.i.d. noise can
be included, including those estimated from histograms of edge/line operator
responses both on and off the actual contours [6,2].

3.2 The Posterior

Using Bayes’ rule, the posterior distribution P (du|m) is proportional to p(m|u)
times P (du), where du is an infinitessimal region around realization u. The cirf
prior is written P (du) := P{U ∈ du} because a density for U exists only in
a generalized sense2. Expanding the norm in the likelihood (1), the posterior
therefore becomes

Pε(du) := Z−1
ε exp(ε

〈
m− 1

2
u, u

〉
)P (du) = P (du|m),

where the subscript ε := σ−2
N (the inverse noise variance) indicates conditioning

on the measurements m, and the normalizing constant is

Zε :=
∫

exp(ε
〈
m− 1

2
u, u

〉
)P (du).

Although we do not have an explicit expression for the prior P (du) (and so
neither for the posterior), in §4 we shall find that we can indirectly use the prior
through its cumulants in order to obtain Volterra filters.

3.3 Bayes Estimation

Filtering here means the estimation of the (unknown) cirf U given a noisy re-
alization m. In Bayes decision theory, estimation is formalized by specifying the
posterior and a loss function loss(U, u) that penaltizes estimate u when the true
unknown is U ; the Bayes estimate is then ũ := argminu E[loss(U, u)|m]. Maxi-
mum a posteriori (map) estimation corresponds to the 0/1 loss function, which
penalizes all errors equally; this loss is zero only when the estimate is perfect
(at all sites i), and 1 otherwise. Despite the popularity of the map estimator,
we believe an additive loss function such as the squared error ||U − u||2 is more
appropriate for high-noise filtering because it penalizes small errors at a few sites
much less than large errors at many sites, unlike the 0/1 loss function (map).
Therefore we define our filtering task to be the computation of the minimum
mean squared error (mmse) estimate

ũ = argmin
u

Eε||U − u||2, (2)

where ε again denotes the conditioning on m. By a standard argument [5], the
mmse estimate ũ is equal to the posterior mean EεU of the cirf U .
2 Specifically, at each site i there is positive mass for ui = 0.
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Since the posterior mean is generally difficult to compute, we seek simpli-
fications. A typical approach would be to approximate the cirf prior with a
Gaussian, giving rise to mmse linear filtering [2]. We avoid this method, how-
ever, because it ignores all the cirf cumulants beyond the mean and covariance.
Instead, we focus on an aspect of our problem that we have not yet considered:
extremely noisy conditions. In this way we can simplify our filtering problem
tremendously, while exploiting the higher-order statistical structure of the cirf.

4 Volterra Filtering at Large Noise Levels

Volterra filters constitute one class of nonlinear filters that subsumes linear fil-
ters [23]. By definition, the output of a k-th order Volterra filter is a k-th degree
polynomial3 function of the input signal. Analogous to the connection between
mmse linear filters and second-order statistics, mmse Volterra filters are related
to higher-order statistics. In particular, a mmse k-th order Volterra filter gen-
erally requires up to the (2k)-th order moments of the input and unknown [1,
20]. Unfortunately, the computational complexity of simply applying the gen-
eral k-th order Volterra is O(nk+1), where n = |I|; solving for the mmse filter
coefficients is much more costly in general.

Here we derive linear, quadratic and cubic Volterra filters for approximating
the posterior mean of the cirf corrupted by large amounts of white Gaussian
noise. Our approach is based on the following observation: in such noisy condi-
tions, the inverse noise variance ε will be small. This suggests that we consider
the infinite noise limit where ε approaches zero; in particular, we perform a
Taylor series expansion of the posterior mean EεU around ε = 0. We then ex-
ploit simplifying aspects of the cirf, especially the self-avoiding nature of the
direction process, to obtain Volterra filters that run in in O(n log n) time.

Now we proceed with the derivation. Observe that the posterior mean can
be computed by differentiating the logarithm of the normalizing constant, or

∂ lnZε

∂(εmi)
= Z−1

ε

∫
∂ exp(ε

〈
m− 1

2u, u
〉
)

∂(εmi)
P (du) =

∫
uiPε(du) = EεUi. (3)

Therefore to get a Taylor series for the posterior mean, we need only get a Taylor
series for lnZε and then differentiate with respect to εmi.

Where do we get a Taylor series for lnZε? Observe that the normalizing
constant Zε is just the moment generating functional of the random vector
W =

〈
m− 1

2U,U
〉

in disguise, or, equivalently, W has the cumulant generat-
ing functional cgfW (ε) such that

lnZε = ln
∫

exp(εw)P (du) = lnmgfW (ε) = cgfW (ε).

3 Note the distiction between the (nonlinear) polynomial filters here and those linear
filters whose kernel is based on some (e.g., Hermite) polynomial.
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But the coefficients in a Taylor series expansion of a cumulant generating func-
tional are by definition the cumulants, and therefore we need to obtain the
cumulants of W , a (quadratic) polynomial in U . We now only sketch the rest of
our derivation, as the full version takes 20 pages [2].

Since the cumulants of W are not directly known, we computed them in
terms of McCullagh’s so-called generalized cumulants (an algebraic structure
that eases computations of polynomials of moments and cumulants) of U [15].
We then differentiated with respect to εmi to get the first few terms in the Taylor
expansion of EεUi as a function of the generalized cumulants of U .

Besides spatial homogeneity, two properties of the cirf played a signifi-
cant role in simplifying our calculations. First, the contour density η is small
(0 ≤ η � 1) in a large number of images, as contours constitute a small fraction
of the total image (which is why pen ink does not run out quickly). In the con-
tinuum, an extreme form of this claim certainly holds: the bounding contours
in an image of smooth surfaces in an occlusion relationship constitute a set of
measure zero (with respect to the standard area measure in the plane). This low
density is even more appropriate for the cirf based on the direction process,
where the curves live in a three-dimensional space. The low density of the cirf
was crucial for simplifying McCullagh’s formula for expressing generalized cu-
mulants in terms of a sum of products of (ordinary) cumulants: we neglect all
terms which are a product of two or more cirf cumulants (having magnitude
O(η2) by Prop. 1). Thus the low density of the cirf allowed us to express the
posterior mean as a weighted O(η)-sum of cumulants of U , each of the form∑

i,j,k,l,... cumr,i,j,k,...mimj · · · δkl · · ·.
The second cirf property that simplified our derivation is the approximate

self-avoidingness of the direction process. If our Markov processes were perfectly
straight, they would never return to their starting points, even if infinitely long.
We observe in Fig. 3 that the direction process rarely returns to its starting
position. Many permutations in cumulants of the cirf (Prop. 1) could therefore
be neglected.

To support the error-prone task of explicitly summing over the permutations
in the cirf cumulants in the O(η)-sum for the posterior mean, we constructed a
diagram corresponding to each permutation (Fig. 4). Nodes indicate sites, arrows
indicate ordering in the permutation, and multiplicative constants such as η are
temporarily suppressed. In Fig. 4a, permutation (r, i) of term

∑
i cumr,imi is∑

i grimi = (Gm)r, or “G acts on inputm, and the result is evaluated at readout
r” (G is understood for arrows away from r, G∗ is understood for arrows toward
r, and “X” represents an input m at a node). Using the diagram we see that the
reverse permutation (i, r) gives rise to G∗m (evaluated at r). In Fig. 4b, permu-
tation (j, i, r) of term

∑
i,j cumr,i,j mimj is G∗ diag(m)G∗m, where diag(m) is

a diagonal matrix with m along the diagonal; the reverse permutation (r, i, j)
is G diag(m)Gm using the reversed diagram. In Fig. 4c, permutation (r, i, j, k)
of term

∑
i,j,k cumr,i,j,kmiδjk has a loop, which represents contour intersection

(at node j = k) and arises from the Kronecker delta δjk, which in turn comes
from the quadratic term in W . Terms that have larger loops can require taking
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Fig. 3. (Left) The Green’s operator of the direction process (see §2); brightness indi-
cates average time spent at a site, given that process started near lower left, traveling
diagonally to the upper right (parameters: σκ = 1/24 with 44 directions; λ = 100
throughout this paper). (Right) The self-avoidingness of the direction process: a com-
parison of average number of returns to starting location for various Markov processes
(chains), plotted as a function of total contour length. The average number of returns
is at least one because the first visit is included. Unlike random walks on the line, in
the plane, or even in space, the average number of returns of the direction process
(“plane with orientation”) does not increase with contour length; the direction process
is therefore (approximately) self-avoiding. Spatial stepsize (∆x, etc.) is one, except
∆θ = 2π/(number of directions); also, σκ ≈ ∆θ throughout this paper unless specified
explicitly.

componentwise products of operators such as G�G∗, and are neglected due to
the self-avoidingness of the direction process. See [2] for details.

These diagrams are loosely analogous to Feynman diagrams, which support
perturbation calculations in statistical physics and quantum field theory. Inde-
pendently of this work, Ruderman [22, pp. 29–33] used Feynman diagrams to
calculate the posterior mean of an underlying signal observed in Gaussian white
noise, where the perturbation is in terms of the non-Gaussian underlying sig-
nal. In contrast, the perturbation used here is due to the Gaussian noise; the
underlying non-Gaussian signal (the cirf) is modeled exactly.

G

r i

G G

i

* *

r j r i {j,k}
a: b: c:

Fig. 4. Diagrams dramatically simplified the cumulant permutation computations in
the lengthy derivation of the Volterra cirf filters. See text.
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Using this diagram-based technique, we obtained linear, quadratic, and cubic
Volterra filters which asymptotically approximate the posterior mean of the cirf.
Let a�b denote the vector which is the componentwise product of vectors a and
b, i.e., (a� b)i = aibi.

Result 1 (High-noise MMSE Volterra CIRF Filters) Suppose that the
curve indicator random field U (for approximately self-avoiding Markov pro-
cesses) is corrupted with additive Gaussian white noise of variance σ2

N =: ε−1

to produce measurement vector m. Let ζ := giiλ, where λ is the average curve
length. Then the minimum mean squared error estimate of U given m has the
following approximate asymptotic expansion as σN → ∞ (ε → 0):
Linear Filter:

ũ(1) = η{1 − 2εζ + ε(Gm+G∗m)} +O(ηε2 + η2ε) (4)

Quadratic Filter:

ũ(2) = η{1 − 2εζ + 3ε2ζ2 + ε(1 − 2εζ)(Gm+G∗m)
+ε2(G diag(m)Gm+Gm�G∗m+G∗ diag(m)G∗m)}

+O(ηε3 + η2ε) (5)

Cubic Filter:

ũ(3) = η{1 − 2εζ + 3ε2ζ2 − 4ε3ζ3

+ε(1 − 2εζ + 3ε2ζ2)(Gm+G∗m)
+ε2(1 − 2εζ)(G diag(m)Gm+Gm�G∗m+G∗ diag(m)G∗m)
+ε3(G diag(m)G diag(m)Gm+G diag(m)Gm�G∗m

+Gm�G∗ diag(m)G∗m+G∗ diag(m)G∗ diag(m)G∗m)}
+O(ηε4 + η2ε). (6)

These filters compute quickly: by implementing the operator G in the Fourier
domain [2], its computational complexity is O(n log n) for the direction process,
where n = |I|. Since multiplying a diagonal matrix with a vector has O(n)
complexity, the net complexity for all of these filters is therefore O(n log n) for
the direction process. This is far better than for the general k-th order Volterra
filters, which have O(nk+1) complexity.

5 Results

Here we apply our high-noise mmse Volterra cirf filters to some noisy synthetic
and real images. To test robustness, we evaluated responses to image of a hori-
zontal straight line under varying noise variance σ2

N . For the sythetic images in
this paper, we mapped from the planar image to a discrete R

2 × S by copying
the image to each direction, so that our measurements m = m(x, y, θ) were con-
stant in θ. Noise was quantified using the peak signal-to-noise ratio (snr), or
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10 log10(Imax − Imin)2/σ2
N (in decibels), for an image I having minumum value

Imin and maximum Imax. The 0 dB result is shown in Fig. 5 (left), showing sig-
nificant noise cleaning (at each (x, y), maximum response over θ is shown). The
error between noisy and noisy-free responses (Fig. 5, right) shows improvement
for increasing order of nonlinearity.

Volterra cirf Filter Performance
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Fig. 5. Noisy image of a line (top left) is cleaned via linear, quadratic, and cubic cirf
filters (second from top to bottom, respectively; parameters: ε = 10, ζ = 0, σκ = 1/10,
with 64 directions). (Right) Noise performance of the high-noise mmse Volterra filters
in R

2 × S. Plotted is the angle between the mean-shifted noisy and noise-free filter
responses for each filter type and at each noise level. Angle is measured between two
vectors in R

|I|. Notice the advantage of the cubic filter over the others.

Next we tested the filter’s response on both open and closed curves (Fig. 6).
Observe that the response is well resolved at the contour crossings; even though
we have no initial estimate of local direction. Fig. 7 is a more strenuous test
at contour crossings. Unlike isotropic, nonhomogeneous, or even anisotropic dif-
fusion, the Volterra filter performs smoothing along even overlapping contours,
and therefore the preservation of junctions is possible. In addition, quite power-
ful orientation-selectivity is apparent (fixed θ slices of the response are shown in
bottom rows). We studied the effect of parameter variations in Fig. 8. For most
examples, we let ζ ≥ 0 be small (usually 0) and let ε > 0 be about 10, although
the exact settings did not appear to have a great effect.

To apply the Volterra filters to real images, we set the filter input m to
be the (directional) output of a logical/linear operator (with parameter degree
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Noisy Image of Contours Linear cirf Filter Cubic cirf Filter

Fig. 6. Filtering a noisy image of a circle with a diagonal line (top left, peak snr=4.2
dB) with linear and cubic cirf filters (responses at top center and right, resp.). The
cubic response was thresholded and the resulting isosurface in R

2 × S is shown from
different viewpoints (bottom, with θ ∈ [0, π)). The filter is orientation selective and
separates the contours in R

2 × S. Parameters were ε = 10.5, ζ = 0, σκ = 1/5, with 32
directions.

d = 0.1 in Iverson’s implementation4, and other values at their default), instead
of copying over direction. For the ship’s wake in Fig. 9 (top left), we zoom
in the highlighted portion (top right) and then obtain logical/linear negative-
contrast line responses and their thresholding (second row). Responses to high-
noise Volterra filters (ε = 10.5, ζ = 0, σκ = 1/15, λ = 100, and 96 directions) is
shown in the bottom three rows of Fig. 9. Observe how the many bogus responses
in the thresholded local responses are not present in the quadratic and cubic cirf
filter responses. A prostate boundary is enhanced with the cubic cirf filter in
Fig. 10. Returning to our opening example of a noisy guide wire image (Fig. 1),
we see that the cirf Volterra filters reduce noise while enhancing the guide wire
(Fig. 11).

6 Conclusion

In this paper we took a Bayesian estimation approach to contour enhancement
at large noise levels, where we used an exact prior for images of curves, the cirf.
4 Code and settings available at http://www.ai.sri.com/˜leei/loglin.html.
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Image Without Noise Noisy Image Cubic cirf Filtered Noisy Image

Fig. 7. Crossing lines are teased apart with the cubic cirf filters. From left to right
in top row: original image, image corrupted with additive white Gaussian noise (peak
snr=8 dB), and cubic cirf filter response (parameters were ε = 10.5, ζ = 0, σκ =
1/10, with 64 directions). Observe the noise reduction without merging the nearby
junctions, unlike Gaussian blurring (Fig. 1). The direction-specific (i.e., without taking
the max over direction) cubic responses (middle row, left to right: θ = 0◦, . . . , 135◦)
and the corresponding thresholded responses (bottom row) reveal that the initially
strong responses at the inappropriate directions are chiseled away by the action of the
filter.

a b c d e f g h i

Fig. 8. The effect of parameter varations. Since η amounts to a simple threshold, we
only varied ε and ζ in cubic cirf filter (6) applied to Fig. 6 (top left), as follows: ζ = 0
(a,b,c), 1 (d,e,f), 50 (g,h,i); ε = 0.5 (a,d,g), 10.5 (b,e,h), 50 (c,f,i). At large ζ, cubic
responses (g,h,i) resembled linear response (Fig. 6, center); otherwise, the cubic cirf
filter was insensitive to parameter changes.

Exploiting both the high-noise limit and the approximate self-avoidingness of the
direction process model of random, smooth curves, we obtained mmse Volterra
filters for contour enhancement that run in O(n log n) time, where n is the size
of the input. These filters perform well even for crossing or nearby curves, thus
this might be interpreted as an extension of anisotropic diffusion ideas where
multiple local directions are allowed.
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Image

Original Zoom

Local
Responses

Linear

Quadratic

Cubic

Filter Response Thresholding

Fig. 9. Finding a ship’s wake (see text for explanation).



618 J. August

Fig. 10. To find the boundary of a prostate imaged with ultrasound (left), we obtained
blurred, directed local edge measurements (center, region around transducer and upper
corners were cropped out), and then applied the cubic cirf filter (right).

Volterra
cirf Filter
Responses

Thresholded
Responses

Linear Quadratic Cubic

Fig. 11. Finding a guide wire in the image of Fig. 1. Responses to high-noise Volterra
cirf filters (ε = 10.5, ζ = 0, λ = 100, σκ = 1/10, with 64 directions). Observe how
the cubic filter at σκ = 1/10 enhances the guide wire, by increasing, not reducing,
contrast (cf. Fig. 1). To produce these two dimensional images from the actual discrete
(x, y, θ)-space responses, the maximum over θ was taken.
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