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Abstract. Eigensegments combine image segmentation and Principal
Component Analysis (PCA) to obtain a spatio-temporal decomposition
of an ensemble of images. The image plane is spatially decomposed into
temporally correlated regions. Each region is independently decomposed
temporally using PCA. Thus, each image is modeled by several low-
dimensional segment-spaces, instead of a single high-dimensional image-
space. Experiments show the proposed method gives better classification
results, gives smaller reconstruction errors, can handle local changes in
appearance and is faster to compute. Results for faces and vehicles are
shown.

1 Introduction

View-based representation is often used in problems such as object recognition,
object detection or image coding. In such an approach 3D objects are represented
by a collection of images and therefor a compact representation of ensembles of
images is crucial. In this scheme, images are considered as points in the high-
dimensional image-space and an ensemble of images of a class of objects forms
a non-linear image-manifold in this space. The question is what is the best
representation of the manifold for the above mentioned problems.

The first possibility is to approximate the image-manifold with a linear sub-
space, as was suggested for the case of upright, frontal faces. This subspace is
taken to be the leading principal components of the ensemble of images and the
key finding of [TTIT0] was that the intrinsic dimensionality of this linear PCA-
space is much lower than the dimensionality of the image-space. This gives a
very compact approximation to a large number of images in terms of a small
number of orthogonal basis images, termed “eigenimages”.

There exists a constant tension between the desire to increase the number
of principal components, to improve reconstruction quality, as well as object
recognition and detection capabilities, and the desire to keep that number low
to avoid modelling noise and to maintain the computational efficiency of the
algorithm. To overcome this hurdle several authors proposed to approximate
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the manifold with several PCA-spaces [6I5[41l2]. This means that instead of
having a single fixed PCA-space to represent all the images in the manifold, the
manifold is broken into several regions and each region is approximated with a
different PCA-space. Note that the high-dimensional image-manifold is broken
into regions, not the 2D image-plane. This is where we set in.

Our approach is orthogonal to the above mentioned methods. Instead of tak-
ing an image to be a point in the image-space we spatially segment the image
into several segments and work in each segment-space independently. The spa-
tial segmentation is carried out once, during the training phase, and is based on
clustering together pixels that exhibit similar temporal behavior. All the methods
developed to work in the image-space should work, as is, in each of the segment-
spaces as well. Moreover, since our decomposition breaks the high-dimensional
image-space into several lower-dimensional segment-spaces the number of sam-
ples (per space) is denser and a better approximation, to each of the segment-
manifolds, can be obtained.

Our approach is somewhat related to the work on eigenfeatures [8] where
facial features such as eyes, nose and mouth were manually selected for face
detection and recognition. Instead of manually characterizing special features,
such as eyes or nose, we define the special features to be a collection of pixels that
exhibit similar temporal behavior. Our work is also related to the work of [4lJ]
who used Factor Analysis to approximate the image-manifold by several PCAs.
We, on the other hand, focus on the spatial decomposition of the image-plane,
as well as the representation of an image by several low-dimensional segment-
spaces, instead of a single high-dimensional image-space.

This spatio-temporal decomposition has several advantages. It is as fast and
simple to compute as the PCA approach but yet if offers some of the advantages
of the mixture of PCA-spaces. Each segment-space can be viewed as an approx-
imation to the original image-space where all the pixels outside the segment
are ignored. We also found empirically that our method gives better classifi-
cation results and can only speculate that the additional spatial information
help improve the classification results. Our approach is also better than PCA
and PCA-mixture approaches in handling occlusions. Occlusions will only affect
some of the segments and we will be able to determine if a mis-fit between an
image and our model is local (and hence can be classified as an occlusion and
ignored) or is global and act accordingly. Finally, it is natural to extend our
approach to handle Level-of-Details PCA, where each segment is approximated
by a different number of principal components, say to maintain a predefined
reconstruction error.

2 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method for dimensionality
reduction. Let A = [A;...An] be the, so called, design matrix of M rows and
N columns, where each column A; represents an image of M pixels (in vector
form). Further assume that all the columns of A are zero-mean (or else subtract
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the mean image from all the columns of A). Then the principal components are
obtained by solving the following eigenvalue problem:

C=UDU" (1)

where C is the covariance matrix C = %AAT, U is the eigenvectors matrix
and D is the diagonal matrix of eigenvalues. PCA maximizes the variance of the
input data samples and the eigenvalues measure the variance of the data in the
directions of the principal components. The principal components form an or-
thonormal basis of the columns of A and if the effective rank of A is much smaller
than IV then we can approximate the column space of A with K << N principal
components. Formally, A7¢ = UgUxkA;, is an approximate reconstruction of
A; where Uy are the first K eigenvectors, and the coefficients z; = Ug A; are
obtained by projecting the column A; on the principal components.

3 EigenSegments

An ensemble of images can be approximated by its leading principal components.
This is done by stacking the images (in vector form) in a design matrix A and
taking the leading eigenvectors of the covariance matrix C = %AAT. The lead-
ing principal components are the leading eigenvectors of the covariance matrix
C and they form a basis that approximates the space of all the columns of the
design matrix A. But instead of looking at the columns of A we look at the rows
of A. Each row in A gives the intensity profile of a particular pixel, i.e., each
row represents the intensity values that a particular pixel takes in the different
images in the ensemble. If two pixels come from the same region of the face they
are likely to have the same intensity values and hence have a strong temporal
correlation. We wish to find this correlations and segment the image plane into
regions of pixels that have similar temporal behavior. This approach broadly falls
under the category of Factor Analysis [3] that seeks to find a low-dimensional
representation that captures the correlations between features.

Let A® be the z-th row of the design matrix A. Then A?® is the intensity
profile of pixel z (We address pixels with a single number because the images are
represented in a scan-line vector form). That is, A® is an N-dimensional vector
(where N is the number of images) that holds the intensity values of pixel x in
each image in the ensemble. Pixels z and y are temporally correlated if the dot
product of rows A* and AY is approaching 1 and are temporally uncorrelated if
the dot-product is approaching 0.

Thus, to find temporally correlated pixels all we need to do is run a clustering
algorithm on the rows of the design matrix A. In particular, we used the k-means
algorithm on the rows of the matrix A but any method of Factor Analysis
can be used. As a result, the image-plane is segmented into several (possibly
non-continuous) segments of temporally correlated pixels. Each segment can
then be approximated by its own mean segment and set of leading principal
components. Put formally, let s = {s1,...,sg} be a collection of R rows of the
matrix A that form the segment s. Next, define A as the pixels in image 4
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that belong to segment s and the design matrix of this segment is given by
As = [Af, A5, ..., A%]. All the variants for PCA can be applied to each AS®
independently.

The eigensegment approach has nice computational and memory properties.
Observe that the collection of the first K principal components of all the S
segments occupy the same memory as the first K principal components of the
entire image. This is because the number of pixels in all the segments is equal
to the number of pixels in the image. The only additional memory requirement
is to store the segmentation map that assigns each pixel to a different segment.
If we assume we have S segments, each with K principal components then the
eigensegment representation is a collection of S K-dimensional points. If we stack
them together we have that each image is represented by a SK-dimensional
feature vector. This SK-dimensional feature vector is not as optimal as the
one obtained by taking the first SK principal components. But it is S times
faster to compute because of the additional dot-products required in traditional
PCA. This property becomes increasingly important in applications of object
detection where exhaustive search over the entire image is often performed and
hence speed-ups are crucial.

Another interesting property we found empirically is that the spatial decom-
position is often as powerful, if not more powerful, then the temporal decom-
position for the purpose of object classification. In the experimental section we
demonstrate that good classification scores are obtained if an image ensemble is
decomposed spatially and each segment is approximated by its mean intensity
value (this can be thought of as the 0-th principal component). This is particu-
larly encouraging because this spatial decomposition can be achieved in a single
pass over the test image, compared to the multiple dot-products needed in case
of using several principal components.

4 Experiments

We performed a number of experiments to demonstrate the potential of the
spatio-temporal decomposition. We show results on faces and vehicles and ad-
dress issues of image reconstruction and object classification.

4.1 Experiments with Face Images

We demonstrate our results on both the Olivetti [9] and the Weizmann [7] face
databases. The Olivetti database contains 10 images of 40 subjects, taken over a
period of about two years (see Figure[ll). The size of the original images is 112x92
pixels but we reduced their size by half, to increase the speed of computations.
The Weizmann database contains about 28 subjects under various pose, lighting
and facial expressions. There is a total of 840 images. The original size of the
images is 512 x 352 pixels, but we reduced their size to be 32 x 22.
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Fig. 1. Some sample images from the Olivetti database.

EigenSegment representation. In this experiment we measured the recon-
struction error of eigensegment representation vs. the usual eigenimage repre-
sentation. We tested it on both databases by exhaustively computing the recon-
struction error for all combinations of up to 5 segments and up to 30 eigenvectors
per segment. Figure Plshows the contour maps for both databases. Each contour
in the figure represent an iso-reconstruction error contour in the spatio-temporal
space. As can be seen, there is a tradeoff between the number of eigenvectors
and the number of segments. For example, in the Olivetti database one segment
with 21 eigenvectors has the same reconstruction error (in intensity values), for
this image ensemble, as a 5-segment 5-eigenvector combination. The advantage
of the latter is that it takes less memory to store the principal components
and it takes less time (5 scans of the image, compared to 21 scans in the usual
PCA approach) to compute the projection of an image into the eigensegment
space, albeit at the price of representing an image as a 25-dimensional vector in
eigensegment representation compared to a 21-dimensional vector in PCA. The
Weizmann database is much more diverse than the Olivetti database (in terms
of facial expressions, illumination and head pose) and hence the tradeoff between
the number of segments and the number of principal components is lower, but
still a factor of 2 in speedup can be achieved.
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Fig. 2. Tradeoff between number of segments (the y-axis) and number of eigenvectors
(the x-axis). The contour labels measure the reconstruction error (in intensity values)
per pixel. For example, In the Olivetti database one segment with 21 eigenvectors has
the same reconstruction error, for this image ensemble, as a 5-segment 5-eigenvector
combination. See text for further details.

Face segmentation. We segmented the Olivetti database into five segments.
Figure Blshows the result of the segmentation. As can be seen, the segments cor-
respond to natural facial features such as eyes, nose, forehead and hair. This was
achieved without enforcing spatial continuity on the various segments. We did
note however that as the image ensemble becomes more diverse (in terms of facial
expressions, illumination and head pose) the quality of the spatial segmentation
deteriorates.

Fig. 3. Segmentation of the Olivetti image ensemble into 5 segments. Each color repre-
sents a segment, that is, a collection of pixels that exhibit a similar temporal behavior.
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Handling local changes in appearance. In another experiment we analyzed
the effect of local changes in appearance on our representation. OQur learning set
consisted of 40 images, one per subject, from the Olivetti database. We then
focused on one of the subjects that had glasses in the learning set and took a
different image of him, without the glasses. We then measured the reconstruction
quality of eigensegment decomposition vs. the reconstruction quality of eigenim-
age decomposition. Figure ] shows the results. One interesting observation we
can make is that the eigensegment representation can go beyond PCA in terms
of representation power. In our case we have only 40 images to learn from and
so we are limited to only 40 principal components to represent every new face
(even of the same subject). However, by breaking the image into segments we
can approximate each segment with it own set of 40 principal components. At
the limit, if the number of pixels in the segment goes below 40, we can have a
perfect reconstruction.

We found that in such a small database the advantage of increasing the
number of segments instead the number of principal components is considerable.
Consider figure [d(c) that shows the reconstruction error as a function of the
number of segments and principal components. It can be seen that the test
image can be reconstructed up to an average error of 16 intensity values (in
the 0-255 range), using 5 segments and 7 principal components per segment, or
using a single segment (that corresponds to the entire image) and 30 principal
components. The advantage of the former is that it takes less memory to store
the principal components (7 instead of 30) and is faster to compute (7 scans of
the image instead of 30).

Eigensegments for recognition. In this experiment we tested the classifica-
tion power of the eigensegment representation, compared to that of the usual
eigenspace approach. The Olivetti database was divide into a learning set that
contains the first 5 images of every subject and a testing set that contains the last
5 images of every subject. The learning database of 200 images was then decom-
posed using various combinations of segments and principal components. Both
learned images and test images were projected into feature space, according to
the particular spatio-temporal decomposition we choose, and a nearest-neighbor
algorithm was used to classify each test image. Table 1 compares the results us-
ing the vanilla eigenspace vs. the eigensegments approach with either 3, 5 or 20
segments. As can be seen, the best results (189 correct classifications out of 200)
are obtained using the segment-mean decomposition, that is the feature vector
of the image is taken to be the mean intensity value of each segment. In addition
to being the most accurate it is the fastest to compute since only a single scan
of the image is needed to compute the mean intensity value of each segment, as
opposed to the multiple dot-products required in the usual PCA approach.

4.2 Experiments with Vehicles Images

This experiment demonstrates the use of segments for the purpose of vehicle
recognition using Support Vector Machine (SVM) [12]. We collected a set of 2832
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Fig. 4. Reconstruction quality in the presence of local appearance changes. The subject
has glasses in the database image (a) but not in the test image (b). Image (c) shows a
contour map of reconstruction error for a various number of segments and PCs. Images
(d-f) show the reconstructed test image using different combinations of segments and
PCs. Image (d) uses 1 segment and 40 PCs, Image (e) uses 10 segments and 20 PCs
and Image (f) uses 20 segments and 40 PCs. Image (d) is the best PCA can do because
there are only 40 images in the database. Image (e) is as good as image (d) but takes
half the time to compute and image (f) is better than the best reconstruction PCA can
do. We can keep improving the reconstruction by increasing the number of segments.
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Table 1. The table on the left compares PCA vs. eigensegments for different numbers
of principal components (PCs). Classification rates (for 200 test images) for different
numbers of segments and eigenvectors are shown. The case of 1 segment is equivalent to
the usual eigenimage approach. The table on the right shows the classification results
where each segment is approximated by its mean intensity value (which can be seen
as the 0-th principal component). Note that the spatial decomposition where every
segment is approximated by its mean intensity value gives the best results. In both
cases, the Olivetti database was used with 200 images for learning and 200 images for
testing. See text for further details.

# PCs||1 Segment|3 Segments|5 Segments|| ||# Segments||Correct classification
1 117 158 169 1 126
3 169 189 185 3 158
5 176 182 186 5 164
10 184 183 187 10 178
20 185 187 187 20 189

images of vehicles and 7757 images of non-vehicles, see Figure Bl All the images
are rescaled to be 20 x 20 pixels in size and the mean intensity value is set to 127
(in the range [0..255]) to compensate for variations in illumination and color. We
compared three spatio-temporal decompositions of the image ensemble. In the
first case we decomposed the images into 4 segments and approximated each seg-
ment with 30 principal components resulting in a 120-dimensions feature vector.
In the second case we decomposed the images into 6 segments and approximated
each segment with 8 principal components resulting in a 48-dimensional feature
vector. In the third case we decomposed the image into 50 segments and took
the mean intensity value of each segment, resulting in a 50-dimensional feature
vector. The first case requires 30 dot-products of the test image, the second case
requires 8 dot-products, and the last case requires a single scan of the test im-
age to compute the mean intensity value of each segment. In every case we fed
the feature vectors to a second-order homogenous polynomial SVM. The trained
SVM was then tested on a set of 4292 images of vehicles and 9589 images of
non-vehicles. The Receiver Operator Characteristics (ROC) curve is shown in
figure [l Each curve represent the percentage of correct classifications of vehicles
against false classifications. So, for example, in the third method there is correct
classification on 99.29% of the vehicles at the price of wrongly classifying 15.26%
of the non-vehicles as vehicles. By changing the SVM threshold we can achieve
a classification score of 95.90% on vehicles at the price of wrongly classifying
only 3.15% of the non-vehicles as vehicles. The first two methods, that involve
a combination of eigenvectors and segmentation perform far worst. The third
method, that takes the mean intensity value of the different segments, produced
the best results, in terms of classification power, at the lowest CPU time as it
requires only a single scan of the test image.

The results of using the usual PCA approach on this database were much
worst. We projected the images on the first 50 principal components of the image
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ensemble and fed this 50-dimensional vectors to the same SVM classifier. The
results were considerably worse than those reported above. The classifier was
correct on 83.71% of the test vehicles and 89.97% correct on the non-vehicles,
compared to 94.92% and 90.62%, respectively achieved by the third method
(taking the means of 50 segments) reported above.

Fig. 5. Some sample images from the vehicle database.

5 Conclusions

We have shown a method for a spatio-temporal decomposition of an ensemble
of images. The ensemble is first decomposed spatially into regions of pixels that
exhibit a similar temporal behavior and each region is then approximated by
a number of principal components. In the experiments we conducted we found,
empirically, that this spatio-temporal decomposition can give the same recon-
struction errors as the usual eigenimages approach, at a lower computational
and memory price, compared to the usual PCA approach. For the purpose of
object classification we found that the mean-segment decomposition, where ev-
ery segment is approximated by its mean intensity value gives the best result
both for face and vehicle classification.



EigenSegments: A Spatio-Temporal Decomposition 757

% of true positives

0.4 (a) At
031 (b) 002
0.2 (c) o660

0 L L L L L
0 0.05 0.1

0.15
% of false positives

Fig. 6. Comparison of Receiver Operator Characteristics (ROC) for vehicle detection.
The image ensemble was decomposed in three different ways. (a) 6 segments and 8 PCs.
(b) 4 segments and 30 PCs. (c) 50 segments where each segment is approximated by
its mean intensity value. As can be seen, the mean-segment decomposition is far better
than the other two methods that involve both spatial decomposition and temporal
decomposition. Moreover, method (c) is the fastest to compute as it requires a single
scan of the test image to compute the mean intensity value of each segment. See text
for further details.
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